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1. Introduction

In recent years there has been extensive development in the theory and
techniques of mathematical programming in finite spaces. It would be very
useful in practice to extend this development to infinite spaces, in order to
treat more realistically the problems that arise for example in economic
situations involving infinitely divisible processes, and in particular problems
involving time as a continuous variable. A more mathematical reason for
seeking such generalisation is possibly that of obtaining a unification of
mathematical programming with other branches of mathematics concerned
with extrema, such as the calculus of variations.

Some early results in infinite programming were obtained by Duffin [1]
who investigated infinite linear programmes. In the present paper the duality
theorems of convex programming are formulated in Banach spaces, based
on Hurwicz' generalisation [2] of the Kuhn-Tucker theorem. Duality theo-
rems of varying generality in finite Euclidean spaces have been developed
by Kuhn and Tucker [3], Karlin [4], Dennis [5], Dorn [6], [7], Wolfe [8],
and Hanson [9].

2. Notation and definitions

Let x denote an element of the set X in a Banach space 3C. The conjugate,
or dual, space of SE will be denoted by !%* whose typical element is x*. Positive
elements of X are defined to be the elements of some specified convex cone
Px C SC. It will be assumed that Px contains the origin, which will be denoted
by 0 for all spaces.

Three ordering relationships are subsequently defined:

xx 5; x2 means that xx—x2 e Px

xx > x2 means that xx S: x2 but x2 ^ x1

and
xi > X2 means that x±—x2 e Int. Px.

In the conjugate space the expression x* 22 0 means
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x*{x) ^ 0 for all x ^ 0.

A programme in Banach space is represented by the couple <(/, gy where
/ and g are defined o n l C f into the Banach spaces & and 2£ respectively;
and a maximal value of the programme is defined to be an element y0 of the
set Y = f(Px n g^iPz)) such that for y eY, y ^ y0 implies y rg y0. Such
an element y0 is said to be maximal over Y, and if y0 = f(x0) then x0 is said to
maximise f(x) over f(Px n g~1{Ps)). (It should be mentioned that the simul-
taneous inequalities x 5̂  y and y ^ x do not necessarily imply that x = y.)
In the terminology of economics the spaces S£, C3/, 3? are called the activity,
objective, and constraint spaces respectively. The value x0 is called the
optimal activity, and y0 the optimal value of the programme.

The symbol 6f(x0; x
1) will denote the Frechet differential of f(x) at xQ

with increment x1.
A concave function / : X -> <& is such that

) for all a^, x2 in X

and 0 ^ ^ :£ 1. It follows that if / is differentiable then

A convex function has the relevant above inequalities reversed.

. 3. The dual problem

Let / and g be Frechet differentiable functions on the Banach space 2£
into the Banach spaces <& and 2£ respectively, and let x0 maximise the
programme </, g>. In the problems to be considered it will be assumed that
the constraints of the programme satisfy Hurwicz' generalisation of the
Kuhn-Tucker constraint conditions, namely that g is regular ([2], p. 95)
and there is regular convexity ([2], p. 61) of the set

{w* : w* = T*{v*), v* ^ 0, v e
where

W = {w : w = (p, x), p real, x e 3£}
and

Tip, x) = [dg(x0; x)-P(dg(x0; xo)-g[xo)), [p, x)].

Further the space <2/ will be restricted to be such that to each closed
convex cone in 'W there exists a continuous linear functional y* e *&* which
is strictly positive on this cone.

Define the Lagrangian expression

<P(x,z*)=y*(f(x))+z*{g(x)).

Hurwicz has shown ([2] Theorem V.3.3.4.) that for r ,~u y* > 0 there exists
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z* ^ 0 such that 0(x, z*) has a non-negative quasi-saddle-point at (x0, z*;
y*); that is, the following relations hold:

(1) d . 0 ( ( x o , z * ) ; x ) ^ 0 f o r a l l x ^ O

(2 ) dx0{(xo,z*);xo) = O

(3) 6* 0{ (x0,z*);z*)^0 for all z* ^ 0

(4) <5*<Z>((*o,2*);z*) = O.

These results will be used to establish a dual programme to the programme
</, g} in the case where / and g are differentiate concave functions.

The activity, objective, and constraint spaces of the dual programme
will be denoted by if, 3T\ and <% respectively, defined by their elements:

s e S? = &X&*
t(s) = 0(x, z*)-dx0((x, z*); x)

where u(s) is defined for elements x1 e Px.
It will be shown that the dual problem is to find s0 e S? which minimises

t(s) over t(Ps n W1(PU)) where Ps = PxxP*; and that a solution of either
primal or dual problem, if such exists, implies the existence, under condi-
tions to be stated, of a solution of the other problem, the optimal values of
primal and dual objectives are the same, and the optimal activity x0 of the
primal is a component of the optimal activity s0 = (x0, z*) of the dual. The
evaluation of s0 may also of course be considered as a maximisation prob-
lem, namely, the programme <—/, «>.

THEOREM 1. If / and g are Frechet differentiable concave functions and
if for some y* > 0 there exists x0 which maximises y* (/(*)) over
yt{f(Px

 n^r"1(-P*))) then there exists z* such that s0 = (x0, z*) minimises
t(s) over t(Ps n u^{Pu)), and »?(/(*„)) = t(s0).

PROOF. Let z* be the functional introduced in the expressions (1) to
(4). Then s0 = (x0, z*) satisfies the dual constraints. Let s = (x, z*) be any
other element of SP satisfying the constraints. Then

t(so)-t(s) = 0(xo,z*)-dx0((xo,z*);xo)-0(x,z*)+dx0((x,z*);x)
= 0{xo, z*)-0(x, z*)-dx0((x, z*); x)
using (2),
= 0{XO, Z*)-0(XO, Z*)+0(XO, Z*)-0(X, Z*) + 6X0{(X, *•); X)

(5) ^ «JU(*b))-«*U(«b))+^*((*. ^*); xo-x)+dx0((x, z*); x)
since 0 is concave,
= dx0((x,z*);xo)
using (3) and (4),
520
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since (a;, z*) satisfies the dual constraints. Hence s0 minimises the dual
problem.

Further, the optimal value of the dual objective function is
0(xo, z*)—Sx0((xo, z*); xo) which by (2) and (4) is equal to the optimal
value of the primal objective function y*{f{x0)).

Note that although this theorem has been stated for the positive cone
in the y space defined as Px X P*. the proof applies equally well to the wider
cone #"xP*.

THEOREM 2. If

(i) 0 is continuously differentiable with respect to x e X
(ii) there exists for any z* e P* and x1 e 2£ a continuous one-to-one inversion

of P u into u-1(Pu),
and
(iii) there exists s0 = (xQ,z*) which minimises t(s) over t(P,nu~1Pu)
then x0 maximises yt{f{x)) over yt(f(Px n g-^P,))).

PROOF. It follows from the hypothesis that (x0, z*) is a feasible solution
of the problem:

(6) minimise 0(xo, z*)—dx0( (x, z*); x)

(7) subject to -dx0{(x, z*); x) ^ 0

and

(8) z* ^ 0.

It will be shown that (xo,z*) is the optimum solution of the problem.
Put

(9) «<>(*) = -dx0((x,z*);x).

Suppose (z*, ux) is a feasible solution of the above problem such that

(10) 0(xQ, z*)+ut ^ 0(xo, z*)+u0

where ux is some particular value of —8x0({x,z*);x) and

(11)
that is,

(12)

Let

(13)

and

(14)

for 0 < k <. 1.

uo= -8x0{(xo,z*);s

*?te(*b))-*Jte(*o))+«i-

z* = z*+k{z*-z*)

U2 = UQ+kfa—Uo)
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Thus (z2, u2) is a feasible solution of the problem (6), (7), (8). Therefore
by hypothesis there exists (x2) z*) e Ps n u~1(Pu) such that

u2=-dx0((x2,z*);xo)

= xo+k-1(x2—xo)

(15)

Define

(16)

Then

(17)

(18)

(19)

since 0

u2

X

[0(x2,zt)-dx0((x2

= [®(X2,4)-®(*0.

^dx0((xQ,z%);x2—

is concave,

(xO) z*)-0(xo, z*)]

~dx0((x2, z*);x2)+dx0((xo, z*); xo)

d0{(x z*); x x )

(20) =

k(x1~x0))+kz*(g(x0))—kz^(g(x0))+ku1-ku0

using (13), (14) and (16).

(21) = * (*•*(K. Z*V> xi~xo)-^

since the Fr6chet differential is linear in its increment. Since by hypothesis
(ii) u is continuously invertible it follows that

(22) u2 ->- u0 => a;2 ->• a;0 =>• xx-> x0,

and since 0 is continuously differentiable we can choose, using (12), the
value of k to be sufficiently small that

(23)
+ ^ ( ( * ) ) 4 ( ^ K ) ) + « « o 52 0.

Hence

(24) #(*,, z*)-dx0{{x2, z*); x2) < 0{xo, z*)-dx0{(xo, z*); x0)

which contradicts hypothesis (iii).
Therefore (x0, z*) is the optimum solution of problem (6), (7), (8).
An equivalent form of this problem is:

(25) maximise - 3 / J ( / W ) - z * ( « W ) - « °

(26) subject to u° ^ 0

(27) and z* ^ 0

https://doi.org/10.1017/S1446788700028329 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028329


[6] Infinite non-linear programming 299

and since it has the solution (x0, z*) there exists, by theorem 1, f* such that
((x0, z*); fj) is optimal in the dual problem:

-dM[-z*{g(x0))-u°+t*(u<>); (z*\ «»*)] ^ o

i* ̂ 0

z*1 ^ 0

uQl ^ 0.

The inequality (29) can be written

(33) -sA-**(g(*o)Y. **1;M«»[-«°+f*K); ^] ̂  o.

(28)

(29)

(30)

(31)

(32)

minimise

subject to

and

for all

and all

Since the two terms in (33) are independent, they must individually satisfy
the inequality; it follows that

(34) ^UM ^ 0
which together with (31) implies that

(35) g(x0) ̂  0.

Hence

(36) xoePxng-i(P,).

Equating the objective functions (25) and (28) at their extreme values, we
have, by theorem 1,

(37) z*(g(xo))+dx0((xo, z*); xo) = 0.

Hence by (31) and (32) each term in (37) is zero:

(38) z*{g{xQ)) = 0

and

(39) dx0{(xo,z*);xo) = O.

From (31), (32), (38), and (39) it follows that 0 has a non-negative quasi-
saddle-point at (xQ,z*).

Hence by Theorem V. 0 of [2] (Kuhn-Tucker Theorem 3) x0 maximises
y*(f(x)) over y*(f(Pxng-i(Pz))).
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