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REDUCING TOWERS OF PRINCIPAL FIBRATIONS

J. F. McCLENDON

Consider a tower of principal fibrations

B < E2 < En < En+ι

i I 1
R1 R2 Rn

That is, Ei+1 is the pullback of Ei-+Ri and the path fibration Piί*-* jβ*.
The question arises as to whether or not the tower can be shortened,
that is, whether or not En+1-*B is fiber homotopically equivalent to a
nice fibration £7->B. If "nice" is taken to mean "principal" then suf-
ficient conditions are known. They involve connectivity assumptions on
the Et. In this paper "nice" is taken to mean "/^-relatively principal"
for some space D. Relative principal fibrations are more general than
principal fibrations. Their lifting properties are studied in [7]. They
enjoy some but not all of the nice properties of principal fibrations.
The assumptions on the tower above which imply that En+1->B is nice
are weaker than the assumptions showing it to be principal—as expected,
since the conclusion is weaker.

One application of the sufficient conditions is a kind of represetation
theorem for certain fibrations. Suppose F —*E —>B is a fibration, F,E,
B, having the homotopy type of CW complexes, and Ẑ CF) = 0 except
possibly when s < i < 2s — 1. Then it is shown that E -»B is a relatively
principal fibration. No connectively assumptions are made on B. It
follows that if E —> B is any fibration with an ^-connected fiber then the
2n'ίh stage of its Moore-Postnikov factorization is a relatively principal
fibration.

In the first section a twisted suspension operation is studied. In the
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150 j . p. MCCLENDON

second section this operation is used to give sufficient conditions for
reducing a two stage tower. In the last section sufficient conditions are
given for reducing an arbitrary tower and the above mentioned represen-
tation theorem is proved.

1. A Suspension Operation for Relatively Principal Fibrations.

First, we recall a few definitions from [6]. Let Top (^: C-* J9) be
the category of triples (X,x,x) where x: C-+X, x: X->D, xx — u and
all of this takes place in Top = Top (0 —> pt) = category of topological
spaces and continuous functions. Write Top (D = D) for Top (id: D —»D).
It has all of the basic properties of Top (pt = pt) = the category of
pointed spaces and maps. In particular if Z e Top (D = D) then there
is a canonical principal fibration (path-loop fibration) ΩDZ -+PDZ ->Z.
(The properties of Top (C->D) were established in my 1966 thesis [5]
and outlined in the published abstract. A couple of years later similar
notions were described by others.)

Now, let XeTop(C->Z>) and / : X->Ze Top(C->Z>) where C->Z
is C -» D -> Z. Then if P = Pf-»X is the pullback of PDZ -»Z and /
then it is called a D-relative principal fibration. Suppose that
LeTop(Z) = D). We wish to define a secondary operation p: [Z,L]%-^
[P,ΩDL\C

D. The operation can be treated in a fairly direct manner.
However, in the interest of clarity and unity (with an operation in [8])
we will start from an abstract level.

Consider the following data (J).

(Δ) {δs:Ht > G} S-ϊ->T-^+ (C7,u0)

Here {δs: Ht —• G}, teT, se β~\t), is a family of group homomorphisms.
S is a G-set, β:S->T, a:T-*U a re set maps, uoeU, crKuo) — β(S)

each β'Kt) is a G-subset of S and G acts transitively on it δ9(Ht) = Gs

= {9 sG\9s = s} = the stability subgroup of s. fs: G —• S is defined by
γ(g) = grs. This situation is exactly the one occurring at the bottom of
exact homotopy sequences. A prototype example can be obtained as
follows. Let S b e a G-set and T = S/G, U = {uQ}9 Ht = GS(ί) where s(ί)
is a chosen element of β~ι(t). For seβ~\t), δs:Ht~+G is defined by
δs(g) = f̂lr̂ "1 where s = <js(£).

Given the data (J), one can select s e S and form the sequence
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(A ^ J-f s •> C* ^s v Sf ^ Ύ1 a •» TJ

1 1 s t = βs u0

Then it is easily checked that this is an exact sequence of pointed sets.

A morphism Δ —> Δf is

H(jt) Ά G S > T >ϋ

h ϊk ϊh 1° ϊf

o(s)

where the diagram is commutative, gt = V', hs — s', mt and k are homo-

morphisms, and f(u0) = vϊQ. For each s e S there is induced a morphism

1.1 DEFINITION. Let J - > J ; be given. Let t e T , ί' = gt, at = u0.

Suppose s' e S' with βs' = £'. Define

1.2 THEOREM. (1) Γ(s';t) is a double coset of (kG,G(s'))9 i.e.,

g'eΓ(s';t) implies Γ(s r; t) = (kG)g'(G(s')).

(2) Γta's' t)flf' - Γ(s' t), αϊϊ gf e G'

(3) feG normal in G' implies Γ(g's'\ t) = Γ(s ;; t), αίί g' ek(G)

Proof, I'll prove (1) only. The interesting thing is that s/ needn't

be in the image of h. Pick s0 with βsQ = t so /Γ1^) = <?s0 and hβ~H =

h(Gs0) = (kG)hs0. Let s'o = fe0. Suppose gr7, ̂ r/; e Γ(s' t) and gV = fcίflr^sj,

0'V = fc^βj. Thus fcflrrVs' = fcΛ"1^, hence (Jcg^gT'kg^g" e G(s') im-

plying flr" e kg2kgϊ1g'G(s') c kGgfG(s). Conversely, ^ e kGgfG{sf) implies

gf~ιkg~ιg eG(S0 (some #) implying ^s7 = kgg/s/ = kgkg^ and hence

As a first example we take up the operation of [8, Section 2]. Let

F -^E -^->B be a fibration in Top(pt), LeTop(J9 = jD) and /^:J5->

L e T o p ( p t - > ΰ ) , putting F->E->B into Top (pt-*£>). Consider

CF, F) > (£?, F) > (β, pt) > (L, L) .

Theorem 3.4 of [7] and the obvious naturality give the following situation

where [ ] means [ ] p t .
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152 J. F. MCCLENDON

KE, F) {ΩB, Ω pt )] s > [(#, F) (ΩL, ΩL)]D

I I
[(F, F) φB, Ω pt)]B > [(F, F) (ΩL, ΩL)]D

[(E, F) (P, ΩT)]D > [(E, F) (B, pt)]B > [(E, F) (L, L)]D

1 I 1
[(F, F) (P, βΓ)]Λ > [(F, F) (J3, pt)]a > [(F, F) (L, L)]fl

Here P = Ph, T = Ic'Kdo) where k L^D, ΩT is the ordinary loop space,

ΩL means ΩDL and Ω means ΩD. This simplifies to

0 > [E ΩL]D [(E, F) (P, ΩT)]D > [(E, F) (B, pt)]

I I
0 >[F;ΩT] [F ΩT] >0

Take s' = *: F -> ΩT and define Σ = [(&, F) i (B, pt)]B — [F j3T] by Σ iff)

= Γ(s';g). It follows from 1.2 that Σ ^ is a coset of i*[E,ΩL]D in

[F,ΩT]. This is the same definition as in [8].

Now we return to the situation at the beginning of the section. Let

/ : X -* Z e Top (C-> D) and h: Z-*Le T o p φ = D). We have

(Pf, Pj) - {X, Pf) - (Z, D) - (L, L)

From [7] we get the following.

[(X, P,) (ώZ, D)] f > KX, Pf) {ΩL, ΩL)]

I ' I
l(Pf, Pf) ΦZ, D)]z > ί(Pf, Pf) (ΩL, ΩL)]

[(X, P,); (P, ΩL)]D > [(X, Pf) {Z, D)]D > [(X, Pf) (L, L)]D

1 I ϊ

KPf, Pf) (P, ΩL)]D > KX, Pf) (Z, D)]D • [(Pf, Pf) (L, L)]D

This simplifies to the following.

[(X, Pf) φZ, D)]z > [X, ΩL]D

I
0 > [Pf, ΩL]D

[(X, Pf), (P, ΩL)]D > l(X, Pf) (Z, £>)] > (X, L)]D

I
[Pf, ΩL]D • 0

1.3 DEFINITION. Let s':Pf^D^ΩDL be the composition of the

structure maps. Define p: [Z, L]ξ -- [Pf, ΩDL]°D by p(h) = Γ(sf / ) .
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It follows from Theorem 1.2 that p(h) is a coset of p*[X; ΩDL] in

[Pf; ΩDL]D. More concretely, consider

ΩDL > D > L

Let H: X —> PDL be a homotopy of ίcx to hf in Top(C-^D). Define

w(x,m) = (Ph)m ~ H(x). Then w e p(h) and it is, in fact, a typical

element.

Now suppose that φ: Π —> Aut G is a homomorphism where Π is a

group and G is an abelian group. Suppose that D -> if (/7,1) is given,

defining a local coefficient system Gφ on D and hence on P, X, and Z.

Use these coefficients and form the following diagram.

• Hι{X9 C) > Hι(P, C) > Ht+\X, P)

ΐ ΐ ΐ

> Ht+1(X, C) > Hι(P, C) > • • •

ί ί
> Ht+1(Z, C) • W(D, C) •

Here, and elsewhere in cohomology, a "pair" (X, A) is to be interpreted

as the mapping cone of whatever natural map A —> X is indicated by the

context.

1.4 D E F I N I T I O N . R: Ht+1(Z, D GJ — H%P, C Gφ) is denned by R =

R is a secondary cohomology operation and its indeterminacy is

^W-KXyQcH^iPtC). Now take U = LΦ(G, t + 1), the classifying

space for local coefficient cohomology, and L — D χκU. What follows

is also valid if U is replaced by a product over K of such spaces. We

have

Ht+1(Z,D) - ^ - R\P,C)

II
[(Z9D);(L9D)]D

ίl
[Z9L\% -±^[p
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1.5 THEOREM. R = p.

Proof. Let h: Z —» L. The indeterminacies of R{h) and ρ(h) are the
same so it suffices to find a common element. Consider the following
diagram.

r \H \h

ΩDL > PDL > L

H is a null homotopy of hf (i.e. a homotopy of ίcx to fe/) and w is the
naturally induced map. It is convenient to think of the bottom row as
a principal fibration. First of all, it is clear that R is natural for such
maps of relative principal fibrations. Secondly, note that if λ(t + 1) e
Ht+ι(L,D; Gφ) is a fundamental class for L then λit) e R(λ(t + 1)). Hence
R(h) — R(h*λ(t + 1)) D w*R(λ(t)) a w. However, it is immediate from
the defining diagram for p that wep(h). Q.E.D.

This proof should be compared to the proof that Σl — σ ^n !$]• With
some slight awkwardness it would be possible to define a homotopy
operation including both 2 and p as special cases and prove a theorem
which would specialize to both Theorem 1.5 and Theorem 3.1 of [8]. Both
operations can be viewed as versions of the bracket operation of Section 5
of [6].

We are interested in finding sufficient conditions for p(=R) to be
onto. Now assume z: Z —> D is a fibration in Top (pt) and that its fiber
is (n — l)-connected and that the map x: X —> D is δ-connected.

1.6 THEOREM, t < min(2n — 3,n + b — 1) implies R onto,

Γ> . TJtίV 71 . Γ* \ ^ TJt-\(T> Γ* Γ* \
It . £1 \ZJ , LJ y KjΓφ) *• £1 yJΓf O , \JΓφ) .

Proof. In the defining diagram of R above it suffices to show /*
is isomorphic. Since Z-+D is a fibration in Top (pt) so are PΏZ -> Z
and P - > X We have

P >PDZ

X > Z

The fibers in Top(pt) of P->X and PDZ->Z are the same. It follows
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from the 3 x 3 lemma (Nomura [10]) that the "fibers" of P -> PDZ and

X-+Z are homotopically equivalent and so the relative Serre theorem

[8] can be applied to (X,P)-+(Z,PDZ) and hence to (X,P)-> (Z,D). It

is easy to see that the Top (pt) "fiber" of X —> Z is min (n — 2, 6)-con-

nected and Hι(Z, D; —) = 0 for i < n. The relative Serre theorem im-

plies that / * is isomorphic for t + 1 < min(2π — 2, b + n). Q.E.D.

Now suppose there is a commutative diagram

P > X > Z in Top (C -> D)

Pr > X' > Zf in Top (C

This gives (coefficients Gφ)

H t + lί 7 Ti\ v TJtίΈ) /"Λ

Ht+ι(Z',D') ^H'iPΊC)

So, in general, ufR(g) c R'u*(g).

1.7 THEOREM. Let w eH^P^C). Assume ufw eR'(u?g) for some g.

Assume u* : Ht+ι(X, P) -> Ht+KX', Pf) is onto. Then w e R(g).

Proof. u*f*g = f'*u?g — δ'ufw = u*δw. Hence f*g=zδw and

weR(g).

Consider now an ordinary principal fibration, in Top(C-^pt), Piu)

-+ X —> Z where u: X —> Z. If a map x: X —* D is given then a twisted

suspension operation p: Hn(D x Z,D; G) — Hn-\P,C\ G) can be defined

as follows. First consider v! = u(x, u): X-+D x Z and form the ir-

relative principal fibration P(u') -> X -* D x Z. Then P{uf) = P(u).

(Here it might be better to write PD(v!) instead of P{u').) Now suppose

N e Top (pt) and set L = D x JV.

[D x Z Dx iSΠS - ^ [Pi ΩDΦ X N)]C

D

II II
[CD χZ,D); (N, pt)] [P ΩN]C

li II
H»φ XZ,D;G) H-KP, C G)

The last two rows give the twisted suspension operation in terms of the

original data. The last row assumes N — K(G,ri). This transference
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technique can be generalized as follows. Given a K-relative principal

fibration, a map x: X -» D, and N e Top (K = K), we get a twisted

operation

[ φ XKZ9D); (N, pt)]g [P, £*2V]£

ff«(D X κ Z, D G,) ff*-1^, C Gφ)

The last row assumes N = Lφ(G,ri) and i£ = K(Π,l).

2. Reducing Two Story Towers.

Suppose that the following tower in Top(C—>D) is given.

B < E2 < E,

Here Li e Top (D = D) and jδ7f is the J9-relative principal fibration in-

duced by kt. We are interested in finding M e Top (JD = D) and f:B—>

M so that EZ-*B is homotopically equivalent in Top (C -> 2?) to Pf->B

(the D-relatively principal fibration induced by / ) . The particular ex-

ample to keep in mind is the following one: L[ = Lφ(G,ri), U2 = L^(H,t),

^ = D XκL'ί9 D -± K = K(Π, 1) is a fixed map, Π is a group, G and i ϊ

are abelian groups and φ: Π —> Aut (G) and ψ: Π —> Aut (ΐf) are homomor-

phisms. The main homotopy theoretic result of this section is the fol-

lowing one.

2.1 THEOREM. Assume L2 = ΩDJ and k2elmp: [Lx J\% — [£72 L2]g.

Γfee^ ίfeerβ is an M e Top φ = D) and f: B -+Me Top (C -> D) ŝ cfe ίfeαί

Pf -* B and EZ—>B are homotopically equivalent in Top (C —> B).

The theorem will be deduced from a couple of lemmas. First con-

sider the following diagram in Top (C —> D).

b H:bf~f'a
pt ^ v/ . πrt

Here P and Pr are the induced D-relative principal fibrations. H: X —>

Tϊ7^^7 is a given homotopy and w = wH: P —> P 7 is defined by w θ , m) =

), (Pb)m + H(x)). If C = Z) = pt then the properties of w are known
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[Nomura, 9]. These known results can be generalized to the present

setting without difficulty. In particular, the following lemma can be

proved.

2.2 LEMMA. // a and b are homotopy equivalences then so is w.

If, in addition, a = id: X —»X then w is a homotopy equivalence in

Top(C-*X), i.e., a fiber homotopy equivalence in Top (C-»Z3).

Now consider the following commutative diagram in Top (C -*D).

P W> P

h

P v v g ^ 7

Assume that g: Y -> Z e Top (D = D) so that Pg e Top (D = D), gh = /,

k — (h, id), so hp2 — pλk and w — (p2,PPi) here.

2.3 LEMMA. The map w is a homotopy equivalence. In fact w is

a fiber homotopy equivalence of Pk —> X to Ph —»X.

Proof. If C — D — pt this is a result of Nomura [9]. His proof

carries over to the present setting without difficulty. The lemma can

also be deduced from a general 3 x 3 lemma.

We will now combine the previous two lemmas to get a proof of

the main theorem. Consider the following diagram.

I
B

I'
QJ -^-> Pp > Pu -^ L -Jl> J

Here L = L19 k = ku r ~ k2e p(u). r is defined by means of some null-

homotopy of uk. Use the same null-homotopy to define /. n is the

natural homotopy equivalence and s — (/, id) and n (— r) ~ s by H, say,

as is readily checked; all other squares are strictly commutative; the
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map w is due to the homotopy H. b is a homotopy equivalence in

Top (C -* B) by Lemma 2.3 and a and w are homotopy equivalences in

Top (C —• Pk) by Lemma 2.2. Hence bwa is a homotopy equivalence in

Top(C->£). Take M = Pu. This completes the proof of Theorem 2.1.

If (7 = JD = pt, then 2.1 is related to Lemma 1.6 of Gershenson [2].

In order to apply 2.1 we need some conditions which guarantee that

k2 is in the image of p. For simplicity we consider only the specific

situation described at the beginning of the section.

B < E2 < E,

D XKLΦ(G,n) = Lx D XKLΨ(H, t) = L2

Here n < t. The results below can, however, be stated in more general

terms and proved by the same methods. In particular L(G9n) can be

replaced by UKL{Gi9n^ and L(H,t) by ΠκL(Hj9tj). It is now assumed

that all spaces involved have the homotopy type of CW complexes.

2.4 COROLLARY. Assume B -+D is b-connected and that t <

min (2n — 3, n + b — 1). Then there is an M e Top (D = D) and f: B —•

M e Top (C —> D) such that Pf-+B and Ez-+B are homotopically equiva-

lent in Top (C-»B).

Proof. Theorem 2.1,1.5, and 1.6 give this. Here

Now the above diagram is enlargened as follows.

1 ί
1 ί

E'2 is the pullback of E2 -> B. We have

T T> jp

II ΐ ΐ
\u2 \uz

j in/ jp/
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and hence

[LlfJ\D * [E2, L2\D

Let k2 be the composition E'3-+E2-+L2.

2.5 THEOREM. Assume k2 e Imp' and that t <n + b where b = con-

nectivity of Bf —> B. Then the conclusion of 2.4 is valid.

Proof. It suffices, by 2.1, to show k2elmp. Theorem 1.7 will be

used for this purpose. Recall, Theorem 1.5, p = R and pf — R', so:

H"KL19 D H+) H\E29 C HΨ)

\LJ19 U , Γίψ) x ΓL \JCJ29 v_/ , ΓZψJ

and k2 e Hι{E2, C), ufk2 — k2 e Im R'. We must only establish that

u*: Ht+1(B,E2) -* Ht+1(B',E'2) is a monomorphism. Since LX->D is a

fibration in Top (pt), so are E2-> B and E2 -> Bf and these last two have

the same fiber. It follows from the 3 x 3 lemma in Top (pt) that Bf —•

B and E2 —> E2 have homotopically equivalent "fibers" and hence that the

relative Serre theorem [8] can be applied to (B',E'2) —> (B,E2). If it can

be shown that HP(B, E2 Hq(F # ) ; ) = 0 for p < m or 0 < q < mf and t

+ 1 < m + m' it will then follow that u* is monomorphic. By assump-

tion F is δ-connected so mf = 6 + 1. Now consider HP(L19D; Γ) —>

/PtB, ί72 Γ) where Γ is any local coefficient system. Just as above we

see that the "fibers" of B -+LX and E2-* D are homotopically equivalent,

so the relative Serre spectral sequence can be applied. But HP(L19D; Γ)

= 0 for p < n so it follows that the same is true of HP(B, E2; Γ). Hence

m = n and u* : Hι(B9 E2 HΨ) -> H\Bf, E2 H^) is isomorphic for i < n +

6 — 1 and monomorphic for ί < n + b + 1. Q.E.D.

Some special cases are of interest. First note that if B = B' then

2.5 reduces to 2.1. Next, take Bf = E3.

2.6 COROLLARY. Suppose Br = E3, k'2 e Im / . Then if t<2n — 2

conclusion of 2.4 is valid.
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Proof. Since Lt -> D is a fibration in Top (pt), i = 1,2, it follows
that EZ-*B is also and is an extension of K(G,n — 1) by K(H,t — 1).
Since n < t, we see that E3-+ B is (n — 2)-connected and the corollary
follows from Theorem 2.5.

Next, take C = Bf = D. Then there is the following diagram in
Top (D = D).

D < ΩΏLX

Here β ^ = β ^ φ χκL(G,ri)) = JD χκL(G,n — 1). Let fca be the com-
posite β^Lj —* E2—> L2.

2.7 COROLLARY. Suppose k'26lmi3ΰ: [Lx, J] —»[ΩDLl9L2], Suppose also
that B -+ D is r-connected and t < n + r — 1. Then there is an f: B ->
M € Top (D = ί>) ŝ cfe έte£ P / —>β α^d EZ—>B are homotopically equiva-
lent in Top φ -> 5).

Proof. Consider

I
It is clear from the definition of p that p = ΩD. Also, since B —> D is
a retraction and is r-connected it follows that D -* B is (r — l)-connected.
Hence 2.7 follows from 2.5.

Consider now a tower of ordinary principal fibrations is Top (C -* pt).

I? TΠ TΠ
15 < £J2 < £j3

I i
R\ R2

Assume b: B —> D is given and R2 = 42i?2. Then a sufficient condition for
#3 —> B to be D-relatively principal is that r2 e Im p: [(D x JBJ, D) (ίZ^ pt)]
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-»[E2,R2], p is the operation discussed at the end of Section 1. This

follows from 2.1 because we can consider

B < E2 < Ez

l{b>ri) iib>T2)

D x R, D x R2

and it is a tower of D-principal fibrations so 2.1 applies. More generally,

one can transfer from Top (C —> K) to Top (C —• D) and this is what was

done implicitly in 2.4.

3. Reducing Towers

I want to give a version of 2.1 for higher towers. Consider the

following tower of D-relatively principal fibrations.

W I

In this section write P(f) for Pf. For the operation p of 1.3 write p(f: h)

instead of p(h). In the proof of Theorem 2.1 denote / by k'2. Thus we

have the diagram

where Ω means ΩD and ΩM2 = L2. The conclusion of 2.1 is that E3 —•

B and P(kζ) are homotopy equivalent in Top(C-^β). Identify E3 and

P(K) by the equivalence of the proof of Theorem 2.1. Consider the

following statements (At) for i > 2.

kt e p(k^ v^) where^ v^

If i = 2 interpret Pt as L2.
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3.1 THEOREM. Assume (A )̂ for 2<i<n. Then En+1 - » B is equiva-

lent to P(K) -*B in Top (C -> B).

Proof. If At_x is true then P ^ = P(^_2) can be formed and vt_λ: P ^

—> Mi_2 with fci e p(K_2 ^_2) can be selected. We can form k'^ and

identify E^-^B with Pikf^-^B. Hence A€ makes sense. A2 is true
so 3.1 follows from 2.1 by induction.

From now on assume all spaces have homotopy type of CW complexes.

3.2 THEOREM. Assume Lt = D xκLφ(Hif t%) where D-• K = (77,1) is

given. Assume tλ<t2< < tn and tt < min (2tx — 3, t2 + 6 + 1) where

b = connectivity of B-*D. Then there is an M e Top(Z) = J9) and / : β

-»M e Top (C —> D) m t t P(f)->B and En+1-+B homotopically equivalent

in Top(C-*B).

Proof. Assume (A^i) has been established. Hj(LlfD; —) = 0, j < t19

plus the Serre spectral sequence gives Hj(Pm> D; —) = 0, j < t19 m < ί — 1.

The proof of Theorem 1.6 now gives (A,). Q.E.D.

3.3 COROLLARY. Assume Lt = D χκKφ(Hi9 tz), tx<t2< < tn < 2tx

— 3. Then the conclusion of 3.2 is valid with D = B.

Proof, b = oo in 3.2.

Note that in 3.2 and 3.3 we can take Lt = D XκHκLφ(Hij9tij)

provided ί< = i€>1 < t<i2 < . This last corollary is related to a result
of Larmore [4].

3.4 COROLLARY. Let p: E-+B be a fibratίon in Top(pt) with fiber

F = p'Kbo). Assume ΠiiF) = 0 except possibly when s < i < 2s — 1. Then

there is an M e Top (B = B) and f:B-+M such that P(f) -> J5 and £7 -*

J5 are homotopically equivalent in Top (C —> J5).

Proof. Let the diagram at the beginning of the section come from

the Postnikov factorization of p (see Section 4 of [8]). Thus Lx = B χκ

L(ΠsF,s + l),>,Ln = B χκL{Π2s_2F92s - 1), n = s - 1, tx = s + 1, and

£* < 2s - 1 = 2ίx - 3. Hence 3.4 follows from 3.3.

Note that 3.3 is actually valid with D — Bt where B -> Bf is 6-connect-

ed, b>tx-2. So in 3.4 we can take Me Top (#' = JSO for such a £ ' .

For example, if > B(J) -> > B(ΐ) = KiΠ.B, 1) is the Postnikov sys-

tem for B then J5; = B(t, - 2) is permissable in 3.3 and B' = B(s - 1)

in 3.4.
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3.5 COROLLARY. Let E-+B be a fibratίon in Top(pt) with fiber F
and ΠiF = 0 except possibly when s < i < 2s — 1. Assume B is s-con-
nected. Then E—+B is fiber homotopically equivalent to a principal
fibration.

Proof. D = pt in the above comment.
Corollary 3.5 is known and is, in fact, a special case of a theorem

of Ganea [1] and Hilton [3]. In order to generalize the Ganea-Hilton
theorem we consider the following diagram in Top (D = D).

D <-

I
I
u

— E2 <—

I
— E2 <—

1
L

- En <-

I
I

— E

1
— E

The top row is obtained by pullback from the middle row. Let kt be
the composite ί<^->£^-»Z^.

3.6 THEOREM. Assume B -*D is r-connected, kt elmfl^: [Et MJ ->
[Ei9Li]9 where ΩEt = Ei9 and tt < tx + r + 1, 1 < i < n. Then there is
an f:B->Me Top (D = D) such that P(f) -* B and En+ι -> B are
homotopically equivalent in Topφ-^JS). Moreover, ΩDM — En+ι.

Proof. This follows from 3.1 just as 3.7 followed from 2.1.

3.7 THEOREM. Assume p: E->B e Top(D = D) and is a fibratίon in
Top(pt) with fiber F = p~ι(b^. Let E be the pullback of p and b: D —>
B. Assume E — ΩDZ for some Z e Top (D = D) and B —> D is r-connected.
Assume ΠiF = 0 except possibly when s <i < s + r. Then there is an
f:B-*Zίn Top (D = D) such that P(f)->B and E-+B are homotopically
equivalent in Top(D—>J5).

Proof. Let the above tower come from the Moore-Postnikov factori-
zation of p. The U-tower is then the Postnikov tower for En+1-> D.
However, this can also be obtained by applying ΩD to the Postnikov
tower for Z-+D. It follows that each ££ is indeed in the image of ΩD

(by "uniqueness" of Postnikov invariants). Here tx = s + 1 and tt < s
+ r = t1 + r — 1. The result now follows from 3.6. M can be taken
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to be Z because at each stage of the inductive construction the vt can

be taken to be the Postnikov invariant of Z.

The Ganea-Hilton result is the case D — pt of 3.7. Finally we

describe a version of 3.1 which does not explicitly require Top(D = D)

language. Consider a tower of ordinary principal fibrations (in Top C

- P t ) .

β TTT Ύ71 771

< rj2 < < H/n < &n+1

I" I" I
R1 R2 Rn

Assume b: B -> D is given. For simplicity tajke Rt = K(Gi9 ί f).

e Im p: H^KP^, D GJ-* H«(Ei9 C G,) where P,_x =
* ^ - 2 : ( ^ - 2 , ^ ) - ( ^ , p t ) and ΩR't = Rt .

If follows from 3.1 that (A€) for 2 < i < w gives En+1 - > δ a JD-relatively
principal fibration (see the end of Section 2). There is a similar local
coefficient formulation.
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