EXISTENCE OF NON-TRIVIAL DEFORMATIONS OF INSEPARABLE EXTENSION FIELDS III*

HIROSHI KIMURA

Let K be an extension of a field k and p denotes the characteristic. In [4] and [5], we proved that if K is inseparable algebraic over k, then considered as an algebra over k, K is not rigid. In this note we shall prove the following

THEOREM. Let K be a finitely generated inseparable extension of a field k of characteristic $p \neq 0$. Then considered as an algebra over k, K is not rigid.

Throughout this note, we assume $p \neq 0$.

Let φ be a derivation of K over k and f_t the one-parameter family of deformations of K constructed from φ in [1]. Then f_t is expressible in the form

$$f_t(a, b) = ab + tF_1(a, b) + t^2F_2(a, b) + \cdots,$$

for $a, b \in K \otimes_k k((t))$, where F_i is a bilinear mapping defined over k and $F_1 = Sq_p\varphi$. Now we assume f_t is trivial, i.e., there exists a non-singular linear mapping Φ_t of $K \otimes_k k((t))$ onto itself of the form

$$\Phi_t = 1 + t \varphi_1 + t^2 \varphi_2 + \cdots,$$

where φ_i is a linear mapping defined over k, such that $f_t(a,b) = \Phi_t^{-1}(\varphi_t a \cdot \varphi_t b)$.

LEMMA 1. Let φ , f_t be as above and a be an element of ker φ . If f_t is trivial, then φ_r satisfies the following conditions;

- 1) If r is not divisible by p, then $\varphi_r(a^p) = 0$.
- 2) If r is not divisible by $p^m(m>0)$, then $\varphi_r(a^{p^{m+1}}) = 0$.
- 3) $\varphi_{p^m}(a^{p^{m+1}}) = 0.$

Proof. By [5, Lem. 2], $F_i(a, b) = 0$ for every $b \in K$ and $i \ge 1$.

Received January 24, 1968.

^{*)} This work was supported by The Sakkokai Foundation.

1) Since $\delta \varphi_1(a, a^n) = F_1(a, a^n) = 0$, $\varphi_1(a^n) = na^{n-1}\varphi_1(a)$. Hence $\varphi_1(a^p) = 0$. By [5, Lem. 3],

$$\left(\delta\varphi_r+\sum_{i=1}^{r-1}\varphi_i\cup\varphi_{r-i}\right)\left(a,a^{n-1}\right)=0,$$

i.e.,

$$\varphi_r(a^n) = a \varphi_r(a^{n-1}) + a^{n-1} \varphi_r(a) + \sum_{i=1}^{r-1} \varphi_i(a) \varphi_{r-i}(a^{n-1}).$$

Hence if we set $x_i = \varphi_i(a)$, $x'_i(n) = \varphi_i(a^n)$ and y = a, then, by [5, Cor. 1], $\varphi_r(a^v) = 0$, where r is not divisible by p.

- 2) and 3) We shall prove by induction on m.
- i) The case m = 1. By [5, Lem. 3],

$$\left(\delta\varphi_r + \sum_{i=1}^{r-1}\varphi_i \cup \varphi_{r-i}\right)\left(a^p, a^{(n-1)p}\right) = 0.$$

Set $x_1 = \varphi_i(a^n)$, $x'_i(n) = \varphi_i(a^{np})$ and $y = a^p$. By [5, Cor. 1], if r is not divisible by p, $x'_r(p) = \varphi_r(a^{p2}) = 0$ and $\varphi_p(a^{p2}) = x'_p(p) = x_1^p = \{\varphi_1(a^p)\}^p = 0$.

ii) The case m > 1. By [5, Lem. 3], $(\delta \varphi_r + \sum_{i=1}^{r-1} \varphi_i \cup \varphi_{r-i}) (a^{p^m}, a^{(n-1)p^m}) = 0$. Set $x_i = \varphi_i(a^{p^m})$, $x'_i(n) = \varphi_i(a^{np^m})$ and $y = a^{p^m}$. By [5, Cor. 1], if r is not divisible by p, then $x'_r(p) = \varphi_r(a^{p^{m+1}}) = 0$, if $r = up^v (1 < u < p, 1 \le v < m)$, then $x'_r(p) = (x_{up^{v-1}})^p = \{\varphi_{up^{v-1}}(a^{p^m})\}^p = 0$ and if $r = p^m$, then $x_{p^m}(p) = (x_{p^{m-1}})^p = \{\varphi_{p^{m-1}}(a^{p^m})\}^p = 0$. This ends the proof.

LEMMA 2. Let φ , f_t be as in Lemma 1. If f_t is trivial, then $\varphi_{p^m}(a^{p^{m+1}}b) = a^{p^{m+1}}\varphi_{p^m}(b)$ for $a \in ker \varphi$ and $b \in K$.

Proof. By Lemma 1, $\varphi_r(a^{p^{m+1}}) = 0$ for $r \leq p^m$. Therefore, by [5, Lem. 4], $\delta \varphi_{p^m}(a^{p^{m+1}}, b) = 0$ and $\varphi_{p^m}(a^{p^{m+1}}b) = a^{p^{m+1}}\varphi_{p^m}(b)$. This ends the proof.

Let $K = k(x_1, \dots, x_g)$ be a finitely generated inseparable extension of a field k. Then we may assume that there exist non-negative integers $e < f \leq g$ such that K is separable algebraic over $L = k(x_1, \dots, x_f)$, the set $\{x_1, \dots, x_e\}$ is a transcendency base, $x_i(e+1 \leq i \leq f)$ is inseparable algebraic over $M = k(x_1, \dots, x_e)$ and the set $\{x_1, \dots, x_f\}$ is a p-base of K over k (see [3, Ch. IV, 7]).

130

If there exists $i(e+1 \le i \le f)$ such that x_i is algebraic over k, then K is not rigid ([5, Th. 1]).

So it is assumed that every $x_i(e+1 \le i \le f)$ is not algebraic over k and x_{e+1} is an element of exponent α .

Let $\lambda(X) = \sum_{i=0}^{p} a_i X^{ip\alpha}$ be the minimum polynomial of $x_{e+1} = \theta$ over M. Let P_i , Q_i be the polynomials in $k[x_1, \dots, x_e]$ such that $a_i = \frac{P_i}{Q_i}$ and they are relatively prime, and let b be the least common miltiple of Q_i . Then $b\lambda(X) = \sum_{i=0}^{\beta} b_i X^{ip\alpha} \in k[x_1, \dots, x_e, X].$

First we assume every $b_i \in k[x_1^{p^{\alpha}}, \dots, x_k^{p^{\alpha}}]$. Let φ be a derivation of K such that $\varphi(\theta) = 1$ and $\varphi(x_i) = 0$ for $1 \leq i \leq e$. Then $b_i = \sum_j c_{ij} b_i^{p^{\alpha}}$, where $b_{ij} \in ker \ \varphi$ and $c_{ij} \in k$. By Lemma 1, 2 and [5, Prop. 1],

$$\begin{split} \varphi_{p^{\alpha-1}}(b\lambda(\theta)) &= \sum_{i=0}^{\beta} \varphi_{p^{\alpha-1}}(b_i \theta^{i p^{\alpha}}) \\ &= \sum_{i=1}^{\beta} i b_i \, \theta^{(i-1)p^{\alpha}} = 0 \end{split}$$

Therefore θ is an inseparable element of exponent $> \alpha$ over k. Hence, in this case, K is not rigid.

Next we assume that there exists *i* such that $b_i \notin k[x_1^{p^{\alpha}}, \dots, x_t^{p^{\alpha}}]$. Let $H(x_1, \dots, x_t, X) = \sum_{i=0}^{\beta} c_i X^{ip^{\alpha}}$ be a poylnomial of X with coefficients c_i in $k[x_1, \dots, x_t]$ satisfies the following conditions;

1) $H(x_1, \cdots, x_e, \theta) = 0.$

2) If $H'(x_1, \dots, x_e, X) = \sum_{i=0}^{\beta} c'_i X^{ip}$ is a polynomial of X with coefficients c'_i in $k[x_1, \dots, x_e]$ satisfying the condition 1), then $\sum_{i=0}^{\beta} deg c'_i \ge \sum_{i=0}^{\beta} deg c_i$. Set $c_i = \sum_h c_{hij} x_j^{\tau(h,i,j)} + c_{ij}$, were $\tau(h, i, j)$ is a positive integer and $c_{hij}, c_{ij} \in k[x_1, \dots, \hat{x}_j, \dots, x_e, X]$ (the symbol \wedge over x_j means that x_j is omitted). Let v be the minimal integer of p-degree of $\tau(h, i, j)$ for some i and h. Then we may write $H^p = \sum_{i=0}^{n} d_i^p x_{j_0}^{ipv+1}$, where $d_i \in k[x_1^{pv}, \dots, \hat{x}_{j_0}^{pv}, \dots, \hat{x}_{j_0}^{pv}]$, and there exists $d_i \neq 0$ such that i is not divisible by p. Let φ be a derivation of K such that $\varphi(x_{j_0}) = 1$ and $\varphi(x_i) = 0$ for $i \neq j_0$ and $1 \leq i \leq e+1$. By Lemma 1, 2 and [5, Prop. 1],

https://doi.org/10.1017/S0027763000012903 Published online by Cambridge University Press

$$\varphi_{pv}(H(x_{1}, \cdots, x_{e}, \theta)^{p})$$

$$= \sum_{i=1}^{n} i \ d_{i}(x_{1}^{pv}, \cdots, \hat{x}_{j_{0}}^{pv}, \cdots, x_{e}^{pv}, \theta^{pv})^{p} x_{j_{0}}^{(i-1)p^{v+1}}$$

$$= 0.$$

Therefore

$$\sum_{i=1}^{n} i \, d_i(x_1^{p^v}, \cdots, \hat{x}_{j_0}^{p^v}, \cdots, x_e^{p^v}, \theta^{p^v}) x_{j_0}^{(i-1)p^v} = 0.$$

Hence the polynomial $\sum_{i=0}^{n} i \, d_i \, x_{j_0}^{(i-1)p^{\circ}} = \sum_{i=0}^{\beta} c_i^{\prime \prime} \, X^{ip^{\alpha}}$ satisfies the condition 1). On the other hand, it is trivial that $\sum_{i=0}^{\beta} deg \, c_i^{\prime \prime} < \sum_{i=0}^{\beta} deg \, c_i$. This is contradiction. Hence Theorem has been proved.

By [1, p 29, Cor. 2] and Theorem, we have the following

COROLLARY. Let K be a finitely generated extension field of a field k. Then K is separable over k if and only if, considered as an algebra over k, K is rigid.

References

- M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59-103.
- [2] D.K. Harrison, Commutative algebras and cohomology, Trans. Amer. Math. Soc., 104 (1962), 191–204.
- [3] N. Jacobson, Lectures in abstract algebra III, Van Nastrand, (1964).
- [4] H. Kimura, Existence of non-trivial deformations of some inseparable extension fields (to appear).
- [5] —, Existence of non-trivial deformations of inseparable algebraic extension fields II (to appear).

Nagoya University.

132