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Abstract

A subset Y of a metric space (X,p) is called rigid if all the distances p{y\, yi) between points
y\< yz S Y'va. Y are mutually different. The main purpose of this paper is to prove the existence of
dense rigid subsets of cardinality c in Euclidean spaces En and in the separable Hilbert space l2.
Some applications to abstract point set geometries are given and the connection with the theory
of dimension is discussed.

Introduction

The concept of rigidity occurs in different branches of mathematics in different
contexts. In topology it expresses the lack of non-trivial continuous mappings of a
topological space into itself and it has a similar meaning in algebra. It appears
natural to define rigidity of a metric space (X, p) requiring the nonexistence of a
nonidentical isometry/: X -> X of X onto itself. (See Janos (1972)). We adopt here
a definition of rigidity which implies this condition, requiring that all the nonzero
distances p(x1,x2) in X are mutually unequal which means that the distance
function p provides a one-to-one mapping {x1,x2} ->• (0, oo) from the unordered
pairs {xux2} of points of X into the interval (0, oo). If (X,p) is a metric space,
we introduce the concept of a rigid subset T<= X applying the above definition
to the subspace (Y,p).

1. Rigid subsets in metric spaces

DEFINITION 1.1. We say that a subset Y c Xofa metric space (X, p) is rigid
ifp(yuyi) = P(y3>y*) and yi * J'2 implies {yuy2} = {y3,y4}for all yuy2,y3,
yA e Y. In particular any subset Y of cardinality | Y | ^ 2 less or equal 2 is rigid
according to this definition.

REMARK 1.1. One may also define this property requiring that, given a > 0
arbitrarily, there exists at most one solution {yl,y2} in Y of the equation p{yuy2)
= a. The equivalence of both definitions is obvious.
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[2] Rigid subsets 67

LEMMA 1.1. The family 01 of all rigid subsets of a metric space (X,p)
partially ordered by set-inclusion has a maximal element (is inductive).

PROOF. We check that the family is inductive; i.e., given any linearly ordered
subfamily ^ t c 0t we show that u ^ e l . Given xux2,x3,xAe U Si1 with
jq ^ x2 and such that p(x1,x2) — p(x3,x4) there is Y e ^ such that xt,x2,x3,
x4e Y implying that {xl,x2} = {^3,̂ 4} showing that u ^1 is rigid.

DEFINITION 1.2. Given xeX in a metric space (X, p) and r ^ Owe denote by
S(x, r) the sphere about x and of radius r : S(x, r) = {y \p(x, y) = r}. If Y <= X
we denote by @{Y) the set of all nonzero distances in Y :2>(Y) = {p(yi,y2)\yi,
y2eY and yt ^ y2}. If xux2eX and xt ^ x2 we denote by [*i,x2] their
symetral: [xl5x2] = {.y|p(x1,.>0 = p(x2,y)}. For any subset Y <= X we denote
by S(Y) and [Y] the subsets of X defined by :

S(Y) = U {SO, r) I y e Y andr e

LEMMA 1.2. Let Y a X be a rigid subset of a metric space (X,p) and let
x e X be a point in X such that x£Y. Then the subset Y u {x} is rigid if and

PROOF. Assuming xeS(Y) u [Y] we must show that Y U {x} is no longer
rigid. If x e S(Y) then there exists y e Y and de@(Y) such that x e S(y, d), but this
implies that the equation p(x1,x2) = d has at least two different solutions in
Y u {x}. The one is namely {yi,y2}

 c Y for which p(yi,y2) = d and the other
is {x,y}. (They are distinct since x$ Y). If we assume xe[Y] then there exist
yi,y2e Ysuch that p(x,yi) = p(x,y2) so that the above equation has again at
least two distinct solutions. Thus Y \j {x} is not rigid in this case.

Conversely, assuming that Y u {x} is not rigid, the adjunction of the point x
to the rigid set violates this property in the sense that either there exists a distance
d = p{yuy2) in Y such that p(x,y) = p(yi,y2) for some y,yty2e Y and in this
case we have x e S(y, d) or there exist yl3 y2 e Y such that p(x, yt) = p(x, y2) and
in this case we have x e [yu y2~\. So in both cases we have x e S(Y) u [Y] which
completes our proof.

DEFINITION 1.3. We say that a metric space (X,p) is geometric, or has prop-
erty Pt if and only if all the spheres S(x, r)(xel.c^O) and all the symetrals
[xj](x,j?eX, x 7̂  y) in X are nowhere dense in X; i.e., have no interior points
inX.

DEFINITION 1.4. We say that a metric space (X, p) has the rigidity developing
property, or property P2, if and only if given any finite rigid subset Y <= X, any
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68 Ludvik Janos [3]

point xeX and any s-neighhourhood B(x,s) about x, there exists a point
yeB(x,s) such that Y u {y} is rigid.

REMARK 1.2. It is obvious that the finite metric space (X, p) cannot have the
property P1 ; since the singletons {x} are open in this case and they can be written
in the form S(x,0). On the other hand, it can have the property P2. This happens
if and only if the whole space (X, p) is rigid.

LEMMA 1.3. The property P t implies the property P2.

PROOF. Let Y be a finite rigid subset in (X, p) with property P1 ; let x e X and
let B(X,E) be an e-neighbourhood of x. Forming the set S(Y) u [Y] we observe
that since it is a finite union of closed sets without interior points it has empty
interior. Hence the open set B(x,s) is not contained in S(Y) u [Y] and therefore
there is y e B(x, e) such that y $ S(Y) u [Y]. If y e Y then Y u {y} = Y is rigid
since Y is rigid and if y $ Y then the rigidity of Y u {y} follows from the Lemma
1.2.

LEMMA 1.4. The property Px is hereditary with respect to dense subsets;
i.e., given a metric space (X,p) having the property P t and a dense subset
Y <= X then the subspace (Y,p) has again the property P1.

PROOF. We observe that if U <= X is open and Y <= X dense then the closure
of U n Y equals the closure of U. Given yeY and r ^ 0 the r-sphere about y in
Y is the set S(y, r) O Y. Assuming that this set contains a nonempty open set in
Y there exists a nonempty open set U in X such that U n Y <= S(y, r) O Y.
Denoting by A the closure of a subset A in X we have:

U = U O Y c S(y, r) nY <= S(y, r) = S(y, r)

since the set S(y, r) is closed. But this implies U <= S(y, r) contrary to the assump-
tion that (X,p) has property P t . The same reasoning applies to the symetrals
b i , ; ' 2 ] n Yin Y.

EXAMPLES. It is obvious that all Euclidean spaces En(n = 1,2, •••) with re-
spect to the usual metric p(x, y) = v l T=i(>'jc ~ xk)2 have the property P t and
hence also P2. Using the last Lemma 1.4 we see that also the dense subspaces
Rat(£n) c En or Irrat (£„) <= En (the set of points with all co-ordinates rationals
or irrationals) also enjoy these properties. But it is not so obvious that these prop-
erties hold also for infinite dimensional linear spaces.

LEMMA 1.5. Any sphere S(x,r) = {y\ || y - x |[ = r}(xeB, r ^ 0) in a
normed linear space (B, | • ||) has empty interior.

PROOF. If U c {y 11| y — x || = r} were a nonempty open set in B, let y e U

and consider the sequence ak = (ljk)x + (1 — ljk)y{k = 1,2, •••)• Obviously is
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ak -»• y. Since || a* - x || = (1 - 1/fc) || y - x || = (1 - l/fc)r it follows that for all
k ak $ S(x, r) contradicting to the assumption that U is open in B and containing y.

THEOREM 1.1. All Hilbert spaces (separable or not) have the property P1.

PROOF. In view of the last lemma we have only to show that in any Hilbert
space (H, ( • , • ) ) the symetrals [xx,x2] (xt # x2) have empty interiors. Using the
translation z -* z — l(xt + x2) we can without loss of generality assume that our
symetral has the form [ — v, v] with veH, v # 0. But then we have [ — v,v]
= {x | (x, v) = 0}. If there were a nonempty open set U in [ — i;, i>] with xeU then
for some B > 0 all the vectors x + y with \y\ < £ would belong to [ — v, v], hence
(x + y, v) = (y, v) = 0. Choosing y parallel to v we would reach the contradiction
to our assumption v ^ 0, which completes our proof.

2. Dense rigid subsets

THEOREM 2.1. If(X,p) is a separable metric space with the property P2 then
there is a dense rigid subset Y in X.

PROOF. In view of the Remark 1.2 we only have to deal with infinite spaces.
Let a,beXbe two distinct points in X and let {xn} be a dense sequence in X (with
repetitions or not). We set up a process constructing consecutively larger and
larger rigid sets using repeatedly the property P2 : choosing e = 1 and using
P2 there is a point yi

1eB(xi,l) such that the set {a, b,yx
1} is rigid. Now

choosing e = \ and using P2 again we construct rigid sets {a,b, y^^i2} and
{a,b,y1

1,y1
2,y2

2} with y1
2eB(x1,i) and y2

2eB(x2,i). Continuing this way
we construct rigid sets of the form {a,b,y1

1,yl
2,y2

2,---,y1",y2",--- yn"} w i t n

yf e B(xu 1/n), y2 e B(x2,1/n) • • • yn" e B(xn, 1/n). Defining Y as the union of these
sets it is obvious that Y is rigid and also dense in X as claimed.

COROLLARY. All Euclidean spaces En and the separable Hilbert space l2

possess dense rigid subsets.

PROOF. It follows from Theorems 1.1. and 2.1 and from the fact that Pt -*• P2.

LEMMA 2.1. / / a metric space (X,p) possesses a dense rigid subset Y a X
then there is a maximal rigid subset M a X in X containing Y.

PROOF. It follows from the inductive property of the family of all rigid subsets.

3. Cardinality of maximal rigid subsets

It is clear that the cardinality of any rigid subset Y <= X of any metric space
(X, p) cannot be larger than c, since the set of all distances 2(Y) in Y is in one-to-
one correspondence with the family of unordered pairs {yl,y2} <= Y. Assuming
the Continuum Hypothesis we will now show that in complete metric spaces with
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property Pt every maximal rigid subset must have cardinality c. We will use the
fact that a complete metric space has the Baire property (is of second category).

THEOREM 3.1. Assuming Continuum Hypothesis every maximal rigid sub-
set of a complete metric space (X,p) with property Pt has cardinality c.

PROOF. The Baire Category theorem implies that X cannot be countable since
otherwise X would be a countable union of singletons {x} which are closed and
nowhere dense since {x} = S(x, 0) (Property Pt). Let M c X be a maximal rigid
subset of X. Using Continuum Hypothesis there are only two possibilities for \M | ,
namely either M is countable or of cardinality c. Assume M is countable,
M = {yn}f, then the sets S(M) and [M] are of the first category as countable
unions of nowhere dense sets S(yn, rm) and [yn, ym] respectively. On the other hand
given xeX such that x$M the Lemma 1.2 says that xeS(M) U [M] since
M u {x} cannot be rigid (maximality of M). Thus we obtain a representation of
X in the form: X = M u S(M) u [M] implying that X is of first category con-
trary to Baire Theorem, which completes the proof.

COROLLARY. Maximal rigid subsets of Euclidean spaces En and of Hilbert
spaces have cardinality c.

One may ask the question to what extent the size of maximal rigid subsets
subsets Y c X can be increased. For example: when is the cardinality of Y larger
than the cardinality of its complement X \ Y? We will show that in Euclidean
spaces and in Hilbert spaces the cardinality of the complement Yc = X \ Y of any
rigid subset Y is always c.

LEMMA 3.1. Let (X,p) be a metric space, Y cX a rigid subset and
f:X-+Xan isometric bijection ofX onto itself such that neither f nor any of its
powers f" has a fixed point in X. Then the intersection Y (~\f(Y) is either empty
or a one point set.

PROOF. It is obvious that an isometric image of a rigid subset is again a rigid
subset. Let us suppose that the intersection Y n / ( 7 ) is not empty. Thus there is
a e Y such that b =/(a) e Y. If y e Y is any element in Y distinct from a we con-
sider the pair {a,y} and its image {f(a)J(y)}. Since p{a,y) = p(/(a),/(y)) we
conclude that either {a,y} = {f(a),f(y)} or f(y)$Y. But the first case would
imply a = f(y) and y = f(a) which in turn would imply f2(y) = y and/2(a) = a
contrary to the assumption that no power of/has a fixed point. Hence f(y)$ Y
for all y e Y, y =£ a and we have in this case Y O>f(Y) — {/(fl)} as claimed.

We are now ready to prove our theorem.

THEOREM 3.2. In the Euclidean spaces En and in a Hilbert spaces (separ-
able or not) the complements Yc of rigid subsets Y have always cardinality c.
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PROOF. In each of these spaces the translation f:x->x + a(a # 0) has the
properties required in Lemma 3.1. Let Y be a rigid subset. If | Y \ < c then of
course we have | Yc\ = c. In case that | Y | = c we use the result of Lemma 3.1.
showing that either/(Y) n Y = 0 =>/(Y) <= Ycor/(Y) n Y = {b} =>/(Y) \{b}
c Yc. Since | / (Y) | = | Y[ = c this implies that | Yc\ = c as claimed.

4. An application to abstract point set geometries

An abstract point set geometry is a system (Z, /?, A) where £ is a nonempty set
of points, P is a nonempty class of nonempty subsets of Z called blocks and -4 is a
list of axioms describing the meeting and covering done by blocks of /?. (See
Killgrove (1971).) We will give now a realization of one of these geometries where
the set Z will be the underlying set of any Euclidean space En or of an Hilbert
space H, p will be a certain subfamily of the family of all rigid subsets and the
list of axioms A will be: (using the notation adopted in Killgrove (1971))

M2 If two distinct blocks meet their meet is a point.
C3 For each pair of points x, y there is at most one block A containing both

of them.
Let H stand for any Euclidean or Hilbert space, and let Y <= H be any nonempty
rigid subset in H. Let G be the group of all translations of H. We define the family
P by: p = {gY\geG} and using Lemma 3.1 we observe that both axioms,
M2 and C3 are satisfied. Our construction of a model for (l,,p,A), where
A = {M2,C3} depends on the choice of the rigid subset Y. If we choose Y to have
cardinality c then our model enjoys the following property: | Z | = c, | p \ = c
(since G has cardinality c), and finally each block gYe P has cardinality c.

5. Connection with the dimension theory

In Janos (1972) it is proved that a separable metric space (X, p) is zero-dimen-
sional if and only if there exists a metric p* on X which is topologically equivalent
to p and such that (X, p*) is rigid. The proof of this theorem is based on the fol-
lowing fact which we will need in the sequal:

LEMMA 5.1. There is a metric p on the Cantor set C <= [0,1] with the fol-
lowing properties:

(i) p is topologically equivalent to the Euclidean metric in C,
(ii) (C,p)is rigid,
(iii) for x,y,zeC, O^x^y^z^ 1 holds: p(x,y) + p(y,z) = p(x,z).

For the proof see Janos (1972)
We will use this lemma to prove that rigid subsets of the real line R form a

universal model for separable zero-dimensional spaces in the sense that for any
separable metrizable zero-dimensional space X there exists a rigid subset Y <= R
of the real line R such that Y is homeomorphic to X. We need the following lemma:
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LEMMA 5.2. There exists a rigid subset C* a R on the real line which is
homeomorphic to the Cantor set C.

PROOF. Using the metric p on C described in Lemma 5.1 we observe that the
mapping f:C-*R denned by/(x) = p(0,x) for xeC is an isometry, since given
x,ye C, x ^ y we have, using the property (iii) of p: p(0,x) + p(x,y) = p(O,y),
thus/(x) + p{x,y) = f(y) showing that/O) - / ( * ) = P(x,y). Denning C* as/(Q
it follows that C* is a rigid subset of R and homeomorphic to C.

Now we are ready to prove the theorem:

THEOREM 5.1. Given any separable metrisable zero-dimensional space X
there is a rigid subset Y a R of the real line which is homeomorphic to X.

PROOF. It follows immediately from Lemma 5.2 and from the fact that every
separable metrisable zero-dimensional space can be topologically embedded in the
Cantor set.

This theorem shows a close relationship between zero-dimensionality and
rigidity. A natural question arises whether this relationship can be extended and
generalized to characterize n-dimensional spaces. It is well known that a separable
metrisable space X satisfies dim(X) :S n if and only if there exist n + 1 dense zero-
dimensional subsets y 1 ) y 2 , - , y n + 1 of X such that U"i+1Yk = X. So in view of
the results so far obtained it seems reasonable to ask: Given a separable metrisable
space X with dim(X) ^ n. Does there exist a metric on X, compatible with the
topology of X and such that there are n + 1 rigid subsets Yu Y2, •••, Yn+l of X
such that U\+1 Yk = XI
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