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RAMIFICATION THEORY FOR EXTENSIONS

OF DEGREE p. II

SUSAN WILLIAMSON

Introduction. Let k denote the quotient field of a complete discrete

rank one valuation ring R of unequal characteristic and let p denote the

characteristic of R; assume that R contains a primitive pth root of unity, so

that the absolute ramification index e of R is a multiple of p — 1, and each

Gallois extension K D k of degree p may be obtained by the adjunction of

a pth root.

The purpose of this paper is to assign to each Galois extension K ID k

of degree p an integer / with —l^f^ep/p — 1 from which the ramifica-

tion-theoretic properties of K z> k can be determined. Specifically, / shall

determine the unramified, wildly ramified, or fiercely ramified character of

KiDk, (see Thm. 1.11); moreover, the ramification number i of Kz>k shall

have an expression in terms of /, (see Prop. 2.1).

Let U{ί) for i >̂ 0 denote the usual filtration on the units of Rf and let

ί/ί"1) denote the set of prime elements of R. In a recent publication, ([5]),

the author has studied the ramification-theoretic properties of a Galois

extension K z> k of degree p by constructing the integral closure 5 of R in

K from a judiciously chosen element b of U{x) {—l^x^p) whose pth root

defines K. The method for computing S in [5] entails the construction of

a chain of g + 1 ring extensions of R in S; the number g is unique for K z>

k, satisfies the inequality 0 < g < (e/p — 1) — 1, and is called the conductor

number of K 3 k.

The present paper makes use of the fact that R is an Eisenstein ex-

tension of an unramified complete discrete rank one valuation ring in order

to determine an alternate method for the construction of the integral closure

S. In Section 1 we associate to each Galois extension K D k of degree p an

integer / with — l^f^ep/p — 1 called its absolute field exponent such that
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98 SUSAN WILLIAMSON

K may be obtained from k by the adjunction of a judiciously chosen ele-

ment b of U(f). By computing S from such an element b of R, we prove

the following main result.

THEOREM. Let f denote the absolute field exponent of a Galois extension

of degree p. Then

i) K D k is wild if and only if f is relatively prime to p

ii) K z> k is fierce if and only if p divides f and f < ep\p — 1

iii) K 3 k is unramified if and only if f — epjp — 1.

In Section 2 we relate the results of the present paper to those of [5].

More specifically, we relate the notions of absolute field exponent and con-

ductor number by computing an expression for the ramification number of

Kz^k in terms of the absolute field exponent /, and then applying the

results of Section 3 of [5].

The author's recent paper and her present paper provide a choice of

two significantly different methods for computing the integral closures S of

R in a Galois extension KzDk of degree p. Available information concerning

an element b whose pth root defines the extension determines the proper

choice of method.

The following notation shall be used throughout the paper. The multi-

plicative group of units of a ring R shall be denoted by U{R) the interme-

diate ring obtained by adjoining to R an element t of an overring of R

shall be denoted by R[t]; and, the residue class field of a local ring R shall

be denoted by R.

Unless otherwise stated, R shall always denote a complete discrete rank

one valuation ring of unequal characteristic which contains a primitive pth

root of unity where p denotes the characteristic of R, and S shall denote

the integral closure of R in a Galois extension K of degree p over the quo-

tient field k of R Π shall denote a prime element of R, Π a prime element

of S, and e the absolute ramification index of R. The usual filtration on

U{R) shall be denoted by Uω (*>:0) and ί/e^ shall denote the set of prime

elements of R.

In [5], the author has defined the quotient field extension of an ex-

tension of discrete rank one valuation rings to be fiercely ramified if the

residue class field extension has a non-trivial inseparable part. For further

details, the reader may refer to [5].
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1. The absolute field exponent. Throughout this section K 3 k shall

always denote a j) ί Λ root extension, where k is the quotient field of a com-

plete "discrete rank one valuation ring R of unequal characteristic containing

a primitive pth root of unity and p is the characteristic of R, and S shall

always denote the integral closure of R in K. The purpose of this section

is to define for each Galois extension K 3 k of degree p an integer / with

—l^f^ep/p — 1 called its absolute field exponent, and to establish a

criterion for determining if K 3 k is unramified, wild, or fierce in terms of

its absolute field exponent.

In [5], the author has assigned to each such extension K 3 k an integer

x with — l : < # < p called its field exponent; the notions of field exponent

and absolute field exponent coincide in the case when k has absolute rami-

fication index p — 1. We shall make use of results established in [5] in our

study of the absolute field exponent.

The first three lemmas concern elements b whose pth roots define the

extension KzDk. Lem. 1.1 follows at once from Prop. 1.3 of [5].

LEMMA 1.1. If KZDU is a Galois extension of degree φ, then K = k{b1/p) for

some element b in IH'V or in U(0\

LEMMA 1.2. i) If b is in U{~1), then k(b1/p) 3 k is wild of degree p, and

k{b1/p) ψ k{b1

llp) for every element bx of ί/<°>.

ii) If b is in £/«», b, is in U™, and k{bllp) = fc(^1/ί?), then b has a φth root

in R.

iii) If b is in Uw and Xp — b is irreducible over R, then k{b1/p) 3 k is fierce

of degree p.

Proof If b is in IH~X) then b1/p is a root of an Eisenstein polynomial

of degree p, from which it follows that K 3 k is wild of degree p. If b is

in £/(0) and Xp — b is irreducible over Rf then S 3 R is purely inseparable

of degree p. The remaining assertions are restatements of parts ii) and iii)

of Lem. 1.5 of [5].

Remark 1.3. If b is in U^x\ then the integral closure S of R in k{b1/p)

is S = R[b1/P1 If b is in £/(0) and Xp — b is irreducible over R, then the

integral closure S of R in k(b1/p) is S = R[b1/Pl

The above expressions for the integral closure have been established in
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Prop. 2.6 Λ of [5]; we shall make use of them in our study of the rami-

fication number of K D k in Section 2.

Lemma 1.6 pertains to extensions K =) k of degree p obtained by the

adjunction of a pth root of an element b of R present in £/(1). Recall that

the complete discrete rank one valuation ring R is an Eisenstein extension

of an unramified complete discrete rank one valuation ring Ro (see Thm.

31.12 p. I l l of [3]). Let e denote the ramification index of the totally

ramified extension R z> Ro; then R = R0[π] where π denotes a prime element

of i?, {1, 7r, , πe~x] is a free basis for R over i?θ5 πeR = pR> and R = j?o,

(see Thm. 1 p. 23 of [2]). Moreover, e is the absolute ramification index of

R.

Facts 1.4 and 1.5 shall be used in the proof of Lem. 1.6.

F A C T 1.4. If bx and b2 are elements of U(R) such that b± = b2 m o d π^ep/p~ί)+1R9

then kfa1'*) = k(b2

1/p).

Proof Since b\ and b2 are in U{R), the congruence bx ==Ξ b2 mod π(evip-v+iR

implies that bjb2 Ξ= 1 mod π(ep/p~1)+1Rf from which it follows that bjb2 has a

pth root in R according to Lem. 1.2 of [5]. The fact that bx and b2 differ

multiplicatively by a pth power from k implies that k{bιιlp) = k(b2

1/p).

FACT 1.5. If b is an element of R, then there exists an element c of R of the

form c = Σΐ/iπ* (O^z ^Lepjp — 1) with each yt in U(R0) U {0} which satisfies the

congruence c^=b mod π{eplp~l)ArlR. If b is in U(1\ then c may be chosen so that

2/o = l.

Proof Since {1, π, , πe~x} is an i^-module basis for R, the element

b may be written in the form b= Y^btπ1 {O^i^Le — l) with each bt in Ro.

If each bt is in U(R0) U {0}, then c = b satisfies the assertion. Otherwise,

we may consider the least positive integer h such that bh is not in U(R0) U

{0}. Since bh is in pR0, the element b satisfies the congruence ^ 2 ^

mod πh+1R {0^i^h — l); we may consider therefore an element b of R of

the form b = Σ btπ1 (0<i^ep/p — 1) with each bt in Ro, bt = bi for 0 < i

< h — 1, and 5Λ = 0, which satisfies the congruence b Ξ= 6 mod π(
ep/p~1)+1R.

If each £j is in ί/(i?0) U {0} for 0 < / ̂  ^jp — 1, then c = b satisfies the as-

sertion. Otherwise, we may consider the least positive integer m such that

bm is not in U(R0) U {0}. Observe that h < mt so that by proceeding in this

way we may obtain, after finitely many steps, an element which c satisfies

the statement of our assertion.
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If b is in £/(1), then b = 1 + rπ for some element r of R. By applying

the first part of this fact to r, we may produce an element c of the desired

form which satisfies the congruence c == b mod π(ep/p~1)+1R.

LEMMA 1.6. Assume the notation introduced above. Let K D k be an extension

of degree p defined by K— k(b1/p) for some element b of £/(1). Then K = k{bx

1/p)

for some element bx of U& of the form bx = 1 + Σ x^π1 (l^Li^L epjp — 1) where

the Xt are elements of RQ such that

i) each xt is in U(R0) U {0}, and the xt are not all zero

ii) Xp — xt is irreducible over Ro for each i divisible by p such that i < epj

p — 1 and xt ψ 0.

Proof. By combining Facts 1.4 and 1.5 we may consider an element c

of R of the form c = 1 + Σ yin* (1 ̂  i < epjp - 1) with the yt in U(R0) U {0}

such that k(c1/p) = k(bί/p). Observe that the yt are not all zero; for if yt —

0 for each i, then k(c1/p) = k, which contradicts the assumption that K ID k

has degree p. If Xp — yt is irreducible over ^ 0 for every i divisible by p and

less than epjp — 1 for which yt ψ 0, then bx = c satisfies the assertion of this

lemma.

Otherwise, we may consider the least positive integer h divisible by p,

less than ep/p — 1, for which yhφ0 and Xp — yh is reducible over ^ 0 . We

proceed to show that c can be replaced by an element cx of £/(1) of the form

Ci = Σfin 1 (l<i<ep/p — 1), where the rt are in U(R0) U {0} and are not

all zero, such that for every i :< h divisible by p for which Tt ψ 0, the poly-

nomial Xp — ft is irreducible over ^ 0 . Since Xp — yh is reducible over ^ 0 ,

we may consider an element y of Ro such that yp = yh9 i.e. such that yp =

yh mod pR. Define the element c of R by c = c(l — yπh/p)p, and observe

that k(c1/p) ~ k(c1/p) because c and c differ multiplicatively by a pth power

from k. By expanding (1 — yπh/p)p according to the binomial theorem, we

obtain the congruence c = c(l — ypπh)modπe+(h/p)R since pR=πeR. It is

easy to verify that h + 1 :< e + h/p if and only if h < ep/p — 1. Therefore

the fact that h < epjp — 1 now implies that c Ξ= C — ypπh mod πh+1R, because

c is in U(1). Since c = l + Σ ^ {l^Li^Lep/p — 1) and 3/p = yh mod pi?, it

now follows that c = 1 + Σ ^ π * + (yΛ — yp)πh mod πΛ+1i? ( l k i ^ A - 1) = 1

+ Σ 2/ίtf* m ° d τrΛ+1^ (1 ̂  i ^ A — 1). Now we may define he desired element

Cγ. According to the preceeding congruences we may write c in the form

c = l + Σ V + r ^ + 1 (l^i<h) for some element r of R, where Ti = yi
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(1 ^ i < h — 1) and Th = 0. An application of Fact 1.5 yields the existence

of an element of the form 2 ^ * (* + l^i<ep/p - 1) with the Tt in U(R0)

U {0} which satisfies the congruence SίK+Γ1^** = rπh+ι mod π(
ewp-D+i^#

Define the element Ci of f/(1) by Ci = 1 + Σ 7 W (l^i^LepIp — 1). Observe

that c1 = c mod 2r(ei)/*~1)+1l?, so that K = &(ci1/ί?) according to Fact 1.4 because

K = k(c1/p). Since rΛ = 0 and Tί = yt for 1 < ί < A — 1, it is true that the

polynomial X^ — ft is irreducible over Ro for each i (l^Li^h) divisible by p

such that Ti ψ 0. An argument similar to the one at the beginning of the

proof shows that the elements rt (1 < i < epjp — 1) are not all zero. If Xp —

?i is irreducible over J?o for every i < ep/p — 1 which is divisible by p and

for which Tt ψ 0, then bx = cx satisfies the assertion of this lemma.

Otherwise, we may consider the least positive integer m less than ep\

p — 1 and divisible by p such that Tm ψ 0 and Xp — ΐm is reducible over i?0

observe that h < m. By means of the same technique used above to pro-

duce Cx from c, we may produce an element c2 of £/(1) of the form c2 = 1 +

Σ < W {l^i^ep/p — 1) such that k(c2

ι/p) = ^ i 1 / 3 ? ) , where the dt are in U(R0)

U {0} and are not all zero, and the polynomials Xp — St are irreducible over

jfi?o for every i^Lm divisible by p for which δi ψ 0.

It follows from the inequality h < m, that by proceeding in this way

we may finally obtain an element bx of ί/(1) which satisfies the assertion of

this lemma.

DEFINITION. An element b of C/(1) of the form b = 1 + Σ x i ^

ep/p — 1) with the xt in Ro is said to be in normal form if the xt satisfy

statements i) and ii) of Lem. 1.6.

The usefulness of Lem. 1.6 for the definition of the absolute field ex-

ponent motivates its name.

The following proposition concerning elements of ί/(1) shall be used to

establish the main result (Thm. 1.11); its corollary (Lem. 1.9) shall be used

to establish the uniqueness of the absolute field exponent in Prop. 1.10.

PROPOSITION 1.7. Let b = 1 + Σ xi^ (1 ̂  i' -<, epjp — 1) denote an element

of U(1) in normal form, and let f denote the least integer for which %fΨ0\ let K =

kψ1'*). Then

i) KID k is wild of degree p if and only if f is relatively prime to p

ii) K 3 k is fierce of degree p if and only if p divides f and f < epjp — 1

iii) K 3 k is unramified if and only if f = ep/p. — 1. Moreover, Kz> k is
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unramified of degree p if and only if f — epjp — 1 and the polynomial Xp + vX —

xf is irreducible over Ro, where v is the element of U(R) defined by vπe = p.

Troof Recall (see Prop. 1.1 of [5]) that a pth root β of an element b of

£/(1) satisfies an equality of the form (β — l)p = (b — 1) + uvπe(β — 1) where u

is an element of the i?-module R(l, β, , βp~2) which satisfies the congru-

ence u = — 1 mod (p, β — l)/?Ej8], and υ is the element of U{R) defined by vπe

=p. The proceeding equality shall be used for establishing the asserted

relationships between / and the ramification-theoretic character of K D fc.

First we shall prove that if / is relatively prime to p, then K z> k is

wild of degree p by constructing a prime element Π of the integral closure

S of R in K. By applying the division algorithm to / and p we may

obtain (unique) integers q and t such that / = qp + / where O^t<p.

Observe that q^ O because f>l, and that 0 < t because (/, p) = 1. The

element Θ of K defined by Θ = (β — l)πq shall be useful for constructing Π

We proceed to show that θ is a non-unit of S and that θp is in πιU(S).

Consider the element x of U(R) defined by b — 1 = xπf. The definition of

θ and the equality (β — l)p = (b — 1) + uvπe(β — 1) yield the equality θp = xπι

+ uve~qp+qθ by an easy computation. Observe that e — qp + q>t. For, e

— qp + q^l if and only if q < ejp — 1, which holds if and only if qp < epj

p — 1; therefore the inequalities qp < f < epjp — 1 imply that e — qp + q> 1.

The above expression for θp now shows that θ satisfies a monic polynomial

with coefficients in S, from which it follows that θ is itself in S. Observe

moreover that θ is a non-unit of S because /;>1 and e — qp + q^il. In

order to show that θp is in πιU(S), it sufficies to show that e — qp + q^t

since θ is a non-unit of 5. Now e — qp + q^. t if and only if f^e + q if

and only if fp^ep + / — t if and only if f^{ep/p — 1) — t\p — 1. Since

0 < tjp — 1 ̂  1, we now have that t < e — qp + q if and only if / < (βp/p —

1) — 1 if and only if / < epjp — 1. The assumption that (/, p) = 1 guarantees

that / < epip — 1, and so we may conclude at last that t <e — qp + q.

The equality θp = xπι + uvπe~qp+Qθ, together with the inequality e — qp + q^.

t and the fact that θ is a non-unit, now implies that θp is in ^U(S) be-

cause x is in U(R). Now we may show that K D A; is wild of degree p by

showing that KID k has ramification index p. Since we have assumed that

/ and p are relatively prime, we may consider integers m and n such that

mp Λ- nt — 1. An easy computation shows that the element Π of K defined

by Π = 0nπm has the property that ΓP is in πU(S), from which it follows
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104 SUSAN WILLIAMSON

that Π is an element of S, that K D & has ramification index p, and that

K D A; is wild of degree p.

The next step is to show that if / is divisible by p and less than epj

p — 1, then if z> fc is fiercely ramified of degree p. Consider the element Θ

of K defined by θ = (β — l)/π* where # = //p, and observe that l^q < e/p —

1. In order to prove the assertion we shall show that θ is an element of

5 with the property that R{θ) 3 R is purely inseparable of degree p. Let x

denote the element of U(R) defined by ft — 1 = xπf and observe that x = xf.

The equality (β — l)p = (6 — 1) + uυπe(β — 1) (see the beginning of the proof)

together with the definition of θ implies that θp = x + uυπe~qp+qθ, where

e — pq + q > 0 because q < e/p — 1 therefore θ is in 5 because it satisfies a%

monic polynomial equation with coefficients in 5. Since ft is in normal

form by assumption, the fact that p divides / implies that Xp — xf is irre-

ducible over ^o = R Therefore R(θ) 3 R is purely inseparable of degree p

because θp = x = xf. We may now conclude that S = R(θ) and that K z> k

is fierce of degree p. (Moreover, S = R[θ~[ according to part iii) of Lem.

2.4 of [5].)

We show finally that if / = epjp — 1 then K D IC is unramified and we

establish necessary and sufficient conditions for Kz>k to have degree p.

Consider the element θ defined by θ = (β — l)jπe/p~ι and observe that K = k[θ).

We shall show that θ is in S, and that S = R(θ) with θ separable over R.

For convenience of notation let x = xf = xepip-i Then the definition of θ

together with the equality (β — l)p = (ft — 1) + uvπe{β — 1) (see the beginning

of the proof) implies that θp = x + uvθ. It follows from the definition of θ

together with the fact that u is in the i?-module R(l, β, , βp'2) that u is

in i?(l, θ, ', θp~2); therefore, the equality θp — uυθ — x = 0 gives rise to a

monic polynomial f{X) in R[X] having θ as a root, from which it follows

that θ is in S. Observe that f(X) = Xp + ϋX — x in J?PQ because a = —1,

and that /(Z) is a separable polynomial because f'{X) = ^ ψ 0. We proceed

to show that [X : fc] = p if and only if f{X) is irreducible over R = ^ 0 , and

that K = k otherwise. If f(X) is reducible over R, then f{X) is reducible

over R by HenseΓs lemma because R is complete and /(X) is separable;

the reducibility of f(X) over R implies that degkθ < p from which it follows

that β is in k and that K = k. If, on the other hand, f(X) is irreducible

over R, then the separability of f{X) implies that K D k is unramified of

degree p (with S = R{θ) and S = R[θ]) according to Prop. 1 p. 25 of [2],
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The above observations combine to establish the truthfulness of the pro-

position.

Observe that the equation Xp + vX — x = 0 of Prop. 1.7 is essentially an

Artin-Schreier equation (see p. 80 of [4]). For, consider the elements v, υu

and v0 defined by vπe = py vxπ
elv~x = ζ ~ 1, and vo(ζ — I)37"1 = p where ζ

denotes as usual a primitive pth root of unity. An easy computation shows

that υ — vx

v~xv^ so that ϋ = —vx

v~ι because vo= —ϊ (see p. 158 of [1]). The

change of variable Y = X\vx yields the Artin-Schreier equation Yp — Y — x\

ϋx

p = 0.

The following expressions for the integral closure S of R in K follow at

once from the proof of Prop. 1.7.

Remark 1.8. Let b = 1 + Σ s^* denote an element of £/<'> - ί/</+1> (1 <

f^epjp — 1) in normal form. Consider the unique integers q and t for

which / = qp + t with 0 ^ t < p, and define θ = (β — l)lπq.

i) If / is relatively prime to p, then 5 = R[Y[] where \\ = θnπm for

integers m and n satisfying mp + nt = 1.

ii) If p divides /, then S = R[θ].

L E M M A 1.9. Consider elements bx and b2 of £7(1) in normal form, where bx is in

jjσx) _ f/cΛ+i) and b2 is in U^ - W'*+1\ If W * ) = A(^2

1/ί?), ^ Λ /i = U

Proof. Since k(bx

λlΊ>) = Jc(b2

1/P) by hypothesis, an application of Prop. 1.7

shows that /j and / 2 are both relatively prime to p, are both divisible by

p and less than epjp — 1, or are both equal to epjp — 1.

Consider an equality k(bx

1/p) = k(b2

1/p) with fx and f2 relatively prime to

p. We shall show that fx = f2 by contradiction. Assume that fx < f2.

Since k{bx

1/p) = k{b2

1/p), we may consider an element c of k such that bx =

c ^ 7 1 for some integer n relatively prime to p, (see Lem. 3 p. 90 of [2]).

Observe that cp is in t/<Λ> - ί/(/i+D because ^ is in EΛΛ> - ί/c/i+υ, ft; i s in

ί/^z), and /i < /2, so that fc(c) D A; is wild of degree p according to Prop.

1.7. This contradiction shows that fx = /2.

Now consider an equality k(bx

1/p) = k{b2

1/p) with /i and / 2 divisible by p

and less than ep/p — 1, and assume that fx < f2. Once again we consider

an element c in k such that bx = cpb2

n for some integer n relatively prime

to p. Since bn

2 is in £/(/2>, we have that cp == δj mod r̂ ̂ zi? from which it

follows that cp is of the form cp = 1 + i/π7! with £ = ^/x because /Ί < /2.
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The irreducibility of Xp — y over R now implies that k(c) 3 k is fierce of de-

gree p by Prop. 1.7. This contradiction shows that fx = /2, and this com-

pletes the proof.

The following proposition follows at once from the four lemmas established

above.

PROPOSITION 1.10. Let k denote the quotient field of a complete discrete rank

one valuation ring R containing a primitive pth root of unity, where p = char R, and

consider a Galois extension Kz>k of degree p. Then there exists a unique integer f

{—l^f-^eplp — 1) such that K~Dk is one of the following forms:

i) K= k(b1/p) for some element b of W" with / = - 1

ii) K = k{b1/p) for some element b of U<" with f = 0 for which Xp - b is ir-

reducible over R

iii) K = k{b1/p) for some element b of Uσ) — t/ ( / + 1 ) in normal form, (where 1 <

f^epjp — 1).

DEFINITION. The unique integer / satisfying —l^Lf^epjp — l defined

for each Galois extension K 3 k of degree p by Prop. 1.10 is called the

absolute field exponent of K 3 k and is denoted by f(K/k).

The following theorem has now been established.

THEOREM 1.11. Let f = f{Kjk) denote the absolute field exponent of a Galois

extension Kz^k of degree p. Then

i) KzDk is wildly ramified if and only if f is relatively prime to p

ii) K^> k is fiercely ramified if and only if p divides f and f < ep/p — 1

iii) K 3 k is unramified if and only if f — ep/p — 1.

We terminate this section with some observations concerning the rela-

tionship between the field exponent x = x(Kjk) (see Section 1 of [5]) and the

absolute field exponent / = f{Kjk) of a Galois extension Kz>k of degree p.

These observations follow at once from the definitions of x and /. Recall

that — l^x^p and that — l<f<eplp — 1.

Remark 1.12. Let x denote the field exponent and / the absolute field

exponent of a Galois extension K 3 k of degree p.

i) If e = p — 1, then x = /.

ii) If - 1 ^ / ^ p , then x = /.
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iii) If — 1 :< x < p — 1, then x = f.

2. The ramification number, the absolute field exponent, and

the conductor number . As usual, Kz) k denotes a Galois extension of

degree p where k is the quotient field of a complete discrete rank one

valuation ring R which contains a primitive pth root of unity and whose

residue class field has characteristic p. In Section 2 of [5], the author has

assigned to each such extension K3 k an integer g with 0^g^(e/p — 1) — 1

called the conductor number of K 3 k. Prop. 3.1 of [5] presents expressions

for the ramification number i of K 3 k in terms of its conductor number g.

The purpose of this section is to determine the relationships between

the absolute field exponent of an extension and its ramification and con-

ductor numbers.

PROPOSITION 2.1. Let f denote the absolute field exponent of a Galois extension

Kz) k of degree p, and let i denote the ramification number of Kz> k.

i) If f' = —1, then i = epjp — 1.

ii) If p divides / , then i = (ejp — 1) — fjp — 1.

iii) If / > 0 and (/, p) = 1, then i = (ep/p - 1) - / .

Proof Let x = x{Kjk) denote the field exponent of K 3 k (see Section

1 of [5]). If / = —1, then x = —1 (see Remark 1.12). According to part ii)

of Prop. 3.1 of [5], i = epjp — 1 when x = —1, and this proves statement i).

(Or, the reader may refer to Exer. 4 p. 79 of [4]).

To prove statement ii) we first consider the case when p divides / and

/ < eplp — 1 in this case K D k is fierce and the integral closure S of R in

K is given by S = R[θ] where θ = (β — ΐ)jπq and q = f\p (see Prop. 1.7 and

Remark 1.8). Consider some primitive pth root of unity ζ and let σ denote

the element of the Galois group G(K/k) defined by σ(β) = ζβ; observe that σ

is in the ith ramification group Gt of KZD k if and only if σ{θ) == θ mod πί+1S.

An easy computation shows that σ((β — l)jπq) ^={β — l)lπq mod πί+1S if and

only if the element ζ — 1 is in πi+q+1S, which in turn holds if and only if

πe/P-i i s i n πί+Q+is because ζ-1 is in πel*-ιU{S). The fact that π*'*'1 is in

πί+q+1S if and only if i < (e/p — l) — q — l shows that σ is in Gt if and only

if i < (ejp - 1) - q - 1.

In the case when / = eplp — 1, the extension K 3 k is unramified ac-

cording to Prop. 1.7. It is well known that the ramification number of an

https://doi.org/10.1017/S0027763000014793 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014793


108 SUSAN WILLIAMSON

unramified extension is —1. The observation that (e/p — 1) — f/p — 1 = — 1

when / = epjp — 1 completes the proof of statement ii).

In the case when / > 0 and (/, p) = 1, the extension K z> k is wild ac-

cording to Prop. 1.7. Let θ = (β — l)/πq where q is defined by / = qp + t

with 0<t < p. Recall (Remark 1.8) that the integral closure S of R in K

is given by S = Λ[Π] where Π = θnπm for integers m and n satisfying mp +

nt = 1. Once again let ζ denote a primitive pth root of unity and σ the

element of G(K/k) for which σ(β) = ζβ. Observe that σ is in the ith ramifica-

tion group Gt of Kz)k if and only if σ(Π)/Π = l m o d ΓPS. By substituting

({β - l)/πq)nπm for Π one can obtain the equality <τ(Π)/Π = (σ(β - l)/(j8 - l))n,

so that σ is in Gt if and only if (σ(β — l)/(β — l))n Ξ= 1 mod ITS. We proceed

to show that (σ(β - l)/(β - l))n - 1 is in Π ( e p / p"1 )"/t/(S). First observe that

β-1 is in ΠfU(S). For3 θ is in U'U(S) because θp is in π£ί/(S), (see para-

graph two of the proof of Prop. 1.7), and so the definition β — l = θπq

implies that j8 - 1 is in Tίqp+tU{S) = TίfU{S). Since σ{β - 1) - (β - 1) is in

JΊep/p-iu(S) and β-1 is in ΓK^S), we have that σ(β - l)/(j3 - 1) - 1 is in

Π ^ / ^ - 1 ) - / ^ ) . Therefore (σ{β - 1)1 (β - l))n - 1 is in YI«P'P-»-'U(S) because n is

relatively prime to p. The above observations combine to give us that σ

is in Gt if and only if YH'p'p-v-f is in Π'S, i.e. σ is in Gt if and only if

i < (epjp — 1) — /, and this completes the proof of part iii).

It remains to study the relationship between the absolute field exponent

/ and the conductor number g. For this the following definition is useful.

DEFINITION. Let / denote the absolute field exponent of a Galois ex-

tension Kuk of degree p. If />:0, then the quotient number q and the re-

mainder number t of K 3 k are the unique integers q and t such that f — qp

+ t with 0<t < p; if / = —1, we define q = 0 and f = 1.

PROPOSITION 2.2. Z#ί g denote quotient number and g the conductor number of

a Galois extension Ki)k of degree p. If Kz)k is unramified then q = g-\-l.

Otherwise, q = g.

Proof If K D k is unramified, then / = epjp — 1 (Thm. 1.11) and so

q = e/p — 1. On the other hand, g = {ejp — 1) — 1 (Cor. 2.7 of [5]) therefore

q—ejp--l = g-\-l in the unramified case.

We shall make use of Prop. 2.1 to prove that q = g when Rzik is

fiercely ramified or wildly ramified.

If KID k is fierce, then the ramification number / of KID k is given on

https://doi.org/10.1017/S0027763000014793 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014793


RAMIFICATION THEORY 109

the one hand by i = {ejp — 1) — q — 1 (Prop. 2.1), and on the other hand by

i = (e/p — 1) — g — 1 (Prop. 3.1 of [5]), from which it follows that q = g.

Now let x denote the field exponent of a wildly ramified extension

K Z) k. If / = - 1 , then q = 0 = g. For, x = - 1 when / = - 1 (Remark 1.12)

so that gr = 0 (see p. 155 of [5]) and q = 0 when / = —1 according to the

above definition of q. If f ψ —1, then i = (ep/p — 1) — / by Prop. 2.1; and,

the fact that xψ — 1 when fψ—1 (Remark 1.12) implies that i = {epjp — 1)

— gp — h where 1 < h < p — 1 (Prop. 3.1 of [5]). The equalities i = (ep/p —

1) — qp — t and z = (ep/p — 1) — gp — h together with the inequalities 1 < h, t

:<; p — 1 imply that # = # (and h = t).

REFERENCES

[ 1 ] E. Artin and J . Tate, Class field theory, Benjamin, (1967).
[2 ] J.W.S. Cassels and A. Frolich, Algebraic Number Theory, Thompson, (1967).
[ 3 ] M. Nagata, Local Rings, Wiley, (1962).
[ 4 ] J . -P. Serre, Corps Locaux, Paris, Hermann, (1962).
[ 5 ] S. Williamson, Ramification theory for extensions of degree p, Nagoya Math. J . Vol. 41 (1971),

pp. 149-168.

Regis College
Weston, Massachusetts

https://doi.org/10.1017/S0027763000014793 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000014793



