ON A PROPERTY OF THE BOUNDARY COR-RESPONDENCE UNDER QUASICONFORMAL MAPPINGS

KAZUO IKOMA

Let w = f(z) be a quasiconformal mapping, in the sense of Pfluger [5]-Ahlfors [1], with maximal dilatation K, which will be simply referred to a K-QC mapping. As is well known, any K-QC mapping w = f(z) of Im $z \ge 0$ onto Im $w \ge 0$ can be extended to a homeomorphism from Im $z \ge 0$ onto Im $w \ge 0$ and hence it transforms any set of logarithmic capacity zero on Im z = 0into a set with the same property on Im w = 0.

According to Beurling-Ahlfors [2], there exist a set E of linear measure zero on Im z = 0 and a K-QC mapping w = f(z) of Im z > 0 onto Im w > 0such that the image set f(E) of E under w = f(z) is of positive linear measure.

The purpose of this note is to prove the following theorem which is of some interest in contrast with the above theorem of Beurling-Ahlfors.

THEOREM. There exists on the real axis a closed set E which is of linear measure zero and of positive logarithmic capacity and whose image set f(E) under any K-QC mapping w = f(z) of Im z > 0 onto Im w > 0 is of linear measure zero.

1. Take a closed segment S_1 with length l_1 on the real axis and delete from S_1 an open segment T_1 with length $\frac{l_1}{p_1}$ $(p_1 > 1)$ such that the set $S_2 = S_1 - T_1$ consists of two closed segments $S_2^{(j)}$ (j = 1, 2) with equal length l_2 . In general, we delete from the set S_{m-1} open segments $T_{m-1}^{(i)}$ $(j = 1, 2, \ldots, 2^{m-2})$ such that each $T_{m-1}^{(j)}$ has length $\frac{l_{m-1}}{p_{m-1}}$ $(p_{m-1} > 1)$ and the set $S_m = S_{m-1} - \bigcup_{j=1}^{2^{m-2}} T_{m-1}^{(j)}$ consists of closed segments $S_m^{(j)}$ $(j = 1, 2, \ldots, 2^{m-1})$ with equal length l_m . It is obvious that the total length of the set S_m is $2^{m-1} l_m = 2^{m-2} l_{m-1}$ $\left(1 - \frac{1}{p_{m-1}}\right) = l_1 \prod_{n=1}^{m-1} \left(1 - \frac{1}{p_n}\right), S_m \subset S_{m-1}$ and $\bigcap_{m=1}^{\infty} S_m$ is a non-empty perfect closed

Received November 27, 1959.

K. IKOMA

set. We denote the Cantor set $\bigcap_{m=1}^{\infty} S_m$ by $E(p_1, p_2, \ldots)$.

If we put $p_n = \frac{e^n}{e^n - 1}$ (>1), n = 1, 2, ..., then it holds the following relations:

$$(\alpha) \qquad \qquad \prod_{n=1}^{\infty} \left(1 - \frac{1}{p_n}\right) = 0,$$

(
$$\beta$$
)
$$\sum_{n=1}^{\infty} \frac{\log\left\{1/\left(1-\frac{1}{p_n}\right)\right\}}{2^n} < \infty,$$

$$(\gamma) \qquad \qquad 2 p_{n+1} > p_n - 1,$$

because $\sum_{n=1}^{\infty} \frac{1}{p_n} = \sum_{n=1}^{\infty} \left(1 - \frac{1}{e^n}\right) = \infty$, $\sum_{n=1}^{\infty} \left\{\log 1 / \left(1 - \frac{1}{p_n}\right)\right\} / 2^n = \sum_{n=1}^{\infty} n/2^n < \infty$ and $2 p_{n+1} - p_n + 1 = \left\{(2 e^n - 3) e^{n+1} + 1\right\} / (e^{n+1} - 1) (e^n - 1) > 0$. Hence we can see that the Cantor set $E(p_1, p_2, \ldots)$, where $p_n = \frac{e^n}{e^n - 1}$, is of linear measure zero by (α) and is of positive logarithmic capacity by (β) (cf. R. Nevanlinna [4]).

Now, take the systems $R_n = \{R_n^{(j)}\}_{j=1}^{2n} (n = 1, 2, ...)$ constructed by Kuroda [3], consisting of concentric circular annuli such that the interior and exterior circles $C_n^{(j)}$ and $\Gamma_n^{(j)}$ of $R_n^{(j)}$ have the center at the middle point of $S_{n+1}^{(j)}$, and $C_n^{(j)}$ has the radius $r_n = \frac{l_n}{4} \left(1 + \frac{1}{p_{n+1}}\right) \left(1 - \frac{1}{p_n}\right)$ and $\Gamma_n^{(j)}$ has the radius $\rho_n = \frac{l_n}{4} \left(1 + \frac{1}{p_n}\right)$. Then, it can be verified by using the preceding relation (γ) that the segment $S_{n+1}^{(j)}$ lies inside the interior circle $C_n^{(j)}$ of $R_n^{(j)}$ and the exterior circle $\Gamma_{n+1}^{(j)}$ of $R_{n+1}^{(j)}$ lies inside some one of the interior circles of R_n . Further, we obtain as to the modulus of $R_n^{(j)}$ that

(1)
$$\mod R_n^{(j)} = \log \frac{1 + \frac{1}{p_n}}{\left(1 + \frac{1}{p_{n+1}}\right) \left(1 - \frac{1}{p_n}\right)} \\ \ge \log \frac{1}{2\left(1 - \frac{1}{p_n}\right)} = n - \log 2,$$

which is valid for $j = 1, 2, \ldots, 2^n$.

2. Let w = f(z) be any K-QC mapping stated in our theorem. If we define w = f(z) in Im z < 0 by $\overline{f(\overline{z})}$, then it is well known that w = f(z) can be extended to a K-QC mapping in the whole plane. In this case, we may as-

186

187

sume without loss of generality that the point at ∞ corresponds to each other under w = f(z). Let E be the Cantor set $E(p_1, p_2, \ldots)$, where $p_n = \frac{e^n}{e^n - 1}$ ($n = 1, 2, \ldots$), lying on Im z = 0 and let $R_n = \{R_n^{(j)}\}_{j=1}^{2^n}$ ($n = 1, 2, \ldots$) be the systems constructed in 1. Denote by \tilde{E} and $\tilde{R}_n = \{\tilde{R}_n^{(j)}\}_{j=1}^{2^n}$ ($n = 1, 2, \ldots$) the images of E and $R_n = \{R_n^{(j)}\}_{j=1}^{2^n}$ ($n = 1, 2, \ldots$) under w = f(z) respectively. Then it is evident that \tilde{E} is also closed and that \tilde{R}_n ($n = 1, 2, \ldots$) are the systems of doubly connected domains separating $w = \infty$ from \tilde{E} in the domain obtained by excluding \tilde{E} from the whole w-plane. It is well known that

$$\frac{1}{K} \mod R_n^{(j)} \leq \mod \widetilde{R}_n^{(j)} \ (j=1,\ 2,\ \ldots,\ 2^n).$$

Next, denote by $\tilde{C}_n^{(j)}$ and $\tilde{\Gamma}_n^{(j)}$ the images of $C_n^{(j)}$ and $\Gamma_n^{(j)}$ under w = f(z). Then, $\tilde{C}_n^{(j)}$ and $\tilde{\Gamma}_n^{(j)}$ are the interior contour and the exterior contour bounding $\tilde{R}_n^{(j)}$ and are both symmetric with respect to the real axis Im w = 0. Moreover, we denote by $\tilde{r}_n^{(j)}$ the largest distance of the image point of the center of $R_n^{(j)}$ from the contour $\tilde{C}_n^{(j)}$, and denote by $\tilde{\rho}_n^{(j)}$ the smallest distance from the contour $\tilde{\Gamma}_n^{(j)}$. Then, by Teichmüller's theorem [6], we have

mod
$$\tilde{R}_n^{(j)} \leq \log \Psi\left(\frac{\tilde{\rho}_n^{(j)}}{\tilde{r}_n^{(j)}}\right) \qquad (j=1, 2, \ldots, 2^n),$$

where log $\Psi(P)$ is the modulus of Teichmüller's extremal domain whose two complementary continua are $\{w; -1 \le Re \ w \le 0, \text{ Im } w = 0\}$ and $\{w; P \le Re \ w \le +\infty, \text{ Im } w = 0\}$.

From the two relations stated above, we have

(2)
$$\frac{1}{K} \mod R_n^{(j)} \leq \log \Psi\left(\frac{\tilde{\rho}_n^{(j)}}{\tilde{r}_n^{(j)}}\right) \qquad (j=1, 2, \ldots, 2^n).$$

3. First, note that if $P \ge 8 + 6\sqrt{2}$, then $16 P + 8 \le P^2$, and hence $\Psi(P) < P^2$ from Teichmüller's inequality $\Psi(P) < 16 P + 8$.

Now, put $\log \Psi(8+6\sqrt{2}) = m_3$. For any $K(1 \le K < \infty)$, choose an integer n_K which is not less that $Km_0 + \log 2$. Then, for $n \ge n_K$,

(3)
$$m_0 \leq \frac{1}{K} (n - \log 2).$$

If we combine (3) with (1) and (2), then we have for $n \ge n_K$,

$$m_0 = \log \Psi(8 + 6\sqrt{2^{-}}) \leq \log \Psi\left(\frac{\widetilde{\rho}_n^{(j)}}{\widetilde{r}_n^{(j)}}\right) \qquad (j = 1, 2, \ldots, 2^n).$$

Since $\Psi(P)$ is an increasing function of P, it follows that $8 + 6\sqrt{2} \leq \tilde{\rho}_n^{(j)}/\tilde{r}_n^{(j)}$. Therefore, we obtain for $n \geq n_{\mathcal{K}}$,

$$m_0 \leq \log \Psi\left(\frac{\widetilde{\rho}_n^{(j)}}{\widetilde{r}^{(j)}}\right) < 2 \log \frac{\widetilde{\rho}_n^{(j)}}{\widetilde{r}_n^{(j)}},$$

or

$$\widetilde{r}_n^{(j)} e^{m_0/2} \leq \widetilde{\rho}_n^{(j)} \qquad (j=1, 2, \ldots, 2^n).$$

Summing up these, we have, for $n \ge n_K$,

 $e^{m_0/2} \leq \widetilde{\rho}_n / \widetilde{r}_n,$

where $\tilde{\rho}_n = \sum_{j=1}^{2^n} \tilde{\rho}_n^{(j)}$ and $\tilde{r}_n = \sum_{j=1}^{2^n} r_n^{(j)}$.

Further, by a geometric consideration it is not difficult to see that

$$\widetilde{\rho}_n \leq \widetilde{r}_{n-1}.$$

Consequently, we have, for $n \ge n_K$,

$$e^{m_0/2} \leq \widetilde{r}_{n-1}/\widetilde{r}_n,$$

so that

$$\prod_{n=n_{K}}^{N} e^{m_{0}/2} \leq \prod_{n=n_{K}}^{N} \frac{\widetilde{r}_{n-1}}{\widetilde{r}_{n}},$$

or

$$e^{m_0/2(N-n_K+1)} \leq rac{\widetilde{r}_{n_K-1}}{\widetilde{r}_N}$$
.

Thus we have $\lim_{N\to\infty} \tilde{r}_N = 0$. This shows that the image set \tilde{E} of E is of linear measure zero, and hence the Cantor set $E = E(p_1, p_2, \ldots)$, where $p_n = \frac{e^n}{e^n - 1}$, is a required example.

References

- [1] L. Ahlfors: On quasiconformal mappings, Journ. d'Anal. Math., 3 (1953/54), 1-58.
- [2] A. Beurling-L. Ahlfors: The boundary correspondence under quasiconformal mapping, Acta Math. 96 (1956), 125-142.
- [3] T. Kuroda: A criterion for a set to be of 1-dimensional measure zero, to appear in Jap. Journ. Math.
- [4] R. Nevanlinna: Eindeutige analytische Funktionen, Springer Verlag, 2 Aufl. (1953).
- [5] A. Pfluger: Quelques theorems sur une classe de fonctions pseudo-analytiques, C. R. 231 (1950), 1022-1023.
- [6] O. Teichmüller: Untersuchungen über konforme und quasikonforme Abbildung, Deutsche Math. 3 (1938), 621-678.

Department of Mathematics Yamagata University

https://doi.org/10.1017/S0027763000007637 Published online by Cambridge University Press

188