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SOME RESULTS ON VALUE DISTRIBUTION OF
MEROMORPHIC FUNCTIONS IN
THE UNIT DISK

KAM-FOOK TSE

1. Let C and D be the unit circle and the open unit disk respectively.
We shall use p(z,2") to represent the non-Euclidean distance [3, p. 263] be-
tween the two points z and 2’ in D, and X(w,w’) to represent the chordal
distance between the two points w and @’ on the Riemann Sphere 2. If
2’e D, r>0, Di#',r)=1{z:p(z,2’) <r}. We denote by R(#) the radius at
¢ in D and R(9,¢), —r/2<¢ <=x/2, the chord at e¢i® making an angle ¢
with the radius R(0). If f(2) is a meromorphic function in D, F(f) and
F(f,w) will represent the set of all Fatou points [3, p. 264] of f(2) and the
set of all Fatou points of f(z) for which the corresponding Fatou values
[3, p. 264] are w respectively. A sequence of points {z,} in D, tending to
C, is said to be a sequence of p-points of f(z) (see Gavrilov [7] and Gau-
thier [6]) if for each >0 and each subsequence {z,} of {z,}, f(z) assumes
every value on £, infinitely often, perhaps except two, in the set moqlD(zm,r).
Finally, we denote by V(S,Z< M), 0=< M= o, the classes of hofomorphic
functions unbounded in D but bounded on a monotone spiral S with
ES = M [13, p. 160].

Remark 1. If f(z) belongs to the class V(S,Z= M), then there exists
[15, p. 431] a spiral S’ in D such that f(z) tends to infinity on S as |z]
—1. Obviously, £S’'< M.

The notion of a normal meromorphic function in D was first defined by
Noshiro [11, p. 149]. This idea was first formulated by Yosida [16, p. 227].
The latter defined the class of normal meromorphic functions in the finite
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complex plane. Lehto and Virtanen [9, p. 53], later in 1957, defined the
notion of a normal function in a domain G, which is similar to that
given by Yosida when G is the finite complex plane, and the same as that
given by Noshiro when G = D.

Noshiro [11, p. 154] decomposed the class of normal meromorphic func-
tions into two categories, the classes of normal meromorphic functions of the
first kind and those of the second. (See also [2, §2, p. 15].) He obtained
in his paper [11, p. 155] the following remarkable result: If f(z) is a nor-
mal meromorphic function of the first kind in D, then there exists a finite
positive number 7, such that for each z in D, f(z) assumes every value on
2, at least once, in the set D(z,#,).

In the second section of this paper, we shall generalize the above idea
of Noshiro’s in decomposing the set of all meromorphic functions in D into
two categories, the classes of meromorphic functions of the first kind and
those of the second kind. Roughly speaking, meromorphic functions of the
second kind behave mildly, while those of the first kind are comparatively
wild in the sense that the values which they assume do not attain any limit
on sequences of non-Euclidean disks of fixed non-Euclidean diameter in D
tending to C. We shall obtain, in this section, some necessary and suffi-
cient conditions for a meromorphic function in D to be of the first kind.

Section three deals with value distribution and boundary behavior of
meromorphic functions of the first kind in D. Among other theorems, we
shall prove a theorem similar to that of Noshiro [11, p.155, Theorem 7].

In section four, we generalize the notion of sequences of p-points to
that of sequences of pseudo-p-points. We shall prove, among many other
theorems, two identity theorems with this new definition.

Finally, in section five, we obtain two Plessner type theorems, one for

Tsuji functions and the other for Tsuji functions which are also of the first
kind.

2. Noshiro [11, p. 154] gave the following definition:

A normal meromorphic function f(z) in D is said to be of the first kind if
the family of functions {foS(z)} admits no constant limit in D, where S(z)
represents any 1—1 conformal mapping of D onto itself. A normal function
in D which is not of the first kind is said to be of the second kind.

We shall generalize this notion to general meromorphic functions.
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DerFiNITION 1. A meromorphic function f(z) in D is said to be of the
second kind if there exists a sequence of points {z,} in D, |z,] =1, such
that the sequence

[fate) = r (22 2), &

1—2Za2

tends uniformly to a constant limit in some closed neighborhood of z =0.
A meromorphic function f(z) in D is said to be of the first kind if it
is not of the second kind.

Remark 2. Since f(z) is merely assumed to be meromorphic in D, for
any arbitrary sequence of points {z,} in D tending to C, the sequence of
functions (1), unlike the case when f(z) is normal in D, may not converge
in any neighborhood of z =0. »

It is obvious that every normal function of the first kind in D is a
meromorphic function of the first kind. By a result of Bagemihl [1, Theo-
rem 1, p. 3], no normal holomorphic function in D is of the first kind.
But there are surely examples of holomorphic functions of the first kind.
In fact, every function which belongs to the class V(S,Z = 0) is a function
of the first kind. Because for every sequence of non-Euclidean disks {D,}
in D, of fixed non-Euclidean diameter, tending to C, for sufficiently large
n, D, would intersect both S and S’ (see Remark 1). Since f(z) is bound-
ed on S and tends to infinity on S’, it can not tend to any limit in
nDL;.JlD,,, as |z] =1, i.e. the sequence of functions (1), where 2z, is the non-
Euclidean center of D,, for n =1, 2, «--, does not tend to a constant limit
in any neighborhood of z =0. In other words, f(2) is of the first kind.

THEOREM 1. A meromorphic function f(z) in D is of the first kind if, and
only f, for each r,>0

tim inf || Tlflé( I v dr do) =5,(r) >0, (2)

2)
la]>1 fa(2)]%)

jaj<1  PEO<r

where  fu( f( a—z )

1—az

Proof. The condition is sufficient, for if f(z) belonged to the second
kind, then there exists a sequence of points {z,} in D, |z,] =1, such that
the sequence of functions (1) tends to a constant limit in each compact sub-
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set of a neighborhood D(0,7,) of z=0. It is easy to see that the sequence
of real-valued functions

(e

tends to zero there too. This implies that for all 0 <r <7,
i B ) . -
tim e dr a0 =o. (4)

0(2,0)<7

This contradicts (2).

The condition is also necessary. Indeed, suppose on the contrary, that
f(z) is of the first kind and that there exists » > 0, with a sequence of points
{z.} in D, |z,] =1, such that the sequence of functions (1) has the property
that the equation (4) holds. We shall show that {z,} is a sequence of »-
points of f(z). For if this were not the case, then there exists a finite
positive number ¢ such that f(z) omits three distinct values in the set
mOQlD(zm, t), where {z,} is an infinite subsequence of {z,}. Hence, the
sequence of functions

{nle) = £ (25 50)] ®)
omits three distinct values in the set D(0,¢), and thus forms a normal family
there. This implies that the sequence of functions (5) possesses an infinite
subsequence {f,(z)} such that lim f,(z) = g(z), where g(z) is a meromorphic

function in D(0,¢). Since we supposed that f(z) is of the first kind, g(z) %
constant. On the other hand,

_ 1@ ©

uniformly in each compact subset of D(0,?), so that

: | f5(2)]? _ lg’(z)]?
lim SS AR gy ap = SS e T dr dos (@)
p(0,2)<7 p(0,2)<7

= Area of image on 2 of the set {z: p(z,0) <7} under the mapping g(z)
(which is positive). This contradicts (4). Thus {z,} should be a sequence
of p-points of f(z). However, if this were true, then (4) can not hold
again. This contradiction completes our proof.
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TuEOREM 2. A meromorphic function f(z) in D is of the first kind if, and
only if, for each r >0,

im i g2 @
hgzl?f {P(Ela%)ér (1 Izl ) 1+ ‘f(z)l ] 52(7) > 0. (8)

Proof. By a similar argument as we employed in Theorem 1, we see
that f(z) is of the second kind if, and only if, there exists a sequence of
points {z,}, [2,] =1, such that the sequence of functions (1) would tend to
a constant limit in some neighborhood D(0,7,) of z=0, for some 7,> 0.
Moreover, the sequence of real-valued functions (3) also tend to zero there.
Thus, if » <7, for any sequence of points {w,} in D, w, € D(z,,7/2),
for n=1,2, --., there exists #>0, such that D(w,,t) € D(z,,7r), for
n=1, 2,

Consider the sequence of functions

{020 = £ ({2222 ). (©)

1——'w 2

Using the same argument as above, we have that the sequence of real-
valued functions

lga(2)]
o) 1o

tends to zero uniformly in each compact subset of D(0,#). An easy calcu-
lation shows that for n=1,2, - -,

~lgn®)] _ | folw)]
(L~ 1z]%) 14 [g.(2)[F = (1= lwl )Tﬁn_wu‘))‘lz_' ()
(e.g. see [9, Theorem 2]), where z = 1”’_:‘ ;_;——"—;7 . Thus, we have
; _ 2 | falws)| _ 1 [g(0)] - ;
lim (1 — Jw,!? TH [ 7, 0E = Iim T+ g, 0T =0. Le.,

f(z) is of the second kind if, and only if|

- e @
hgzlinf Jmax (1= 29 ] <o, (12)

for some »>0. This is equivalent to the conclusion of our theorem.
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CoRrOLLARY 2. 1. If f(2) is a meromorphic function in D, and tends to a
limit w as 2| > 1, in the set D,= UID(z,,,r), r>0, where {z,} is a sequence
n=

of points in D with |z,| —1, then

im(l— 21y @1
Tl%an‘{(l 12]2) ¥ [7()]? 0. (13)

Remark 3. The above corollary generalizes a classic result that if the
limit w in the above theorem is a finite complex number, then we have

lim (1 — 29[ f'()] = 0. (14)
Tz1>1

3. In this section, we will discuss the value distribution and boundary
behavior of meromorphic functions of the first kind.

THEOREM 3.  Suppose that f(z) is a meromorphic function in D belonging to

the first kind and that B is a boundary path in D for which Ililrn1 f(z) = a, where

zeB
a is finite or infimite. If {2,} is a sequence of points in D, |z,| =1, such that

lim p(z,, B) << M, where M is a finite positive number, then for each M’ > M, f(z)
assumes every value on Q infinitely often, except perhaps two, in the union of the non-
Euclidean disks LilD(z,,,, M),

Proof. Suppose on the contrary, that f(z) assumes some three distinct
values in U D(zn, M') at most a finite number of times. We may, indeed,
without loss of generality, assume that f(z) omits the three values there.

We shall use arguments similar to those of [9, pp. 52-53] and [3, Theo-
rem 3, p. 266), Consider the sequence of functions (1) corresponding to the
above given sequence of points {z,}. It is easy to see that (1) forms a normal
family in D(0,M’). Thus, there exists a subsequence of function {f,(z)}
of (1) such that {f,(2)} tends to a meromorphic function g¢(z), uniformly
on each compact subset of D(0,M’). Let B, = BN D(z,, M), for m=1,2,

Then for sufficiently large m, B, # ¢, because lim p(z, B) << M < M".
Let also B¥ = S,.(B,) < D(O,M’), for n =1, 2, -+ ., where

Sp(2) = Fn—"?% | (15)

It is now easy to see (e.g. see [9, pp.52-53] and [3, p. 266]) that
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B*=1lim sup B} is a non-degenerated continuum (a connected compact
set consisting of more than one point) in D(0,M’). Thus for each ¢ e B*
there exists an infinite sequence of points {¢m.}, tm, € Bj,, for k=1,2,+. -,
such that ¢m, ¢ as k=, Now if we let ¢, = S,(t,), then ¢, B*, and
lim |#;,] =1. Thus for each ¢ e B* g(f) = lim fum.(tm.) = im f(¢,,) = a, i.e.
g9(z)=a. In other words, the sequence of functions {f,(z)} tends to the
constant a uniformly in each compact subset of D(0, M’), which contradicts
our assumption that f(z) belongs to the first kind.

CoroLLARY 3. 1. If f(2) is a meromorphic function of the first kind in D
and B is any boundary path in D such that |lilm1 f(#) = a, where a is finite or infi-

zeB

nite, then B is a strong-p-path of f(z).t

TuEOREM 4.  Suppose that f(z) is meromorphic and tis of the first kind in
D, {z,} is a sequence of points in D, |z,] =1, and {r,} any sequence of positive
numbers such that r,1co. If A, denotes the set of values that f(z) omits in the
set D(2gy7y), for m=1,2, «+«, then for any infinite subsequence {A,} of {A,},
lim inf A, 't consists of at most two points.

Proof. Suppose, on the contrary, that there exists an infinite sub-
sequence {A4,} of {A,}, such that lim inf A4,, consists of three distinct values
wy, wy; and w; Then there exists a subsequence of sets {4;} of {4,} such
that lim A, 2 {w,, w,, w;}, and in fact, without loss of generality, we may
assume for each k=1,2,3, - -, that A, is a set consisting of at least three
points. We shall refer to the sequence of sets {A4;} as {4,} again.

Consider the sequence of functions (9) corresponding to the above
sequence of points {2,}. Then f(D(24 7)) = fa(DO,7,). We shall first
show that there exists a subsequence {fu(2)} of {f.(2)} such that {f(2)}
tends to a meromorphic function g(z), uniformly on each compact subset of
D. Moreover g(z) omits the three values w,, w,, w; in D.

Since 7,1, for n=1,2, --., the function f,(2) omits the set of
values A, in D(0,r,). Since lim A, 2 {w,, w,,w;}, by a theorem of Montel
[10, p. 73, §38], {f.(2)} forms a normal family in D(0,r,). Thus there exists
a subsequence of functions {f,(2)} of {f.(2)}, where n(1)=n, for n =1,2,

t A boundary path in D is said to be a strong-p-path of a meromorphic function f(z)
if every sequence of points on it tending to C is a sequence of p-points of f(z).
tt For definition, see Topology by Hocking and Young (Addison-Wesley) pp. 100-101,
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-, such that {f,y(?)} tends to a meromorphic function g,(z), uniformly
on each compact subset of D(0,7,). Since f(z) is of the first kind, by
Hurwitz’s theorem, g¢,(z) is not identically constant and in fact omits the
three values w,, w,, w,; in D(0,7,).

Now, for n(1)=2, the function f,;)(z) omits the set of values A, in
D(0,7,). Thus by the same argument, there exists a subsequence of func-
tions {fn(®)} of {famn(®)} such that {f,,(2)} tends to a non-constant mero-
morphic function g,(z), uniformly on each compact subset of D(0,7,). More-
over, g,(z) omits the three values in D(0,7,). Since {f,(2)} is a subsequence
of {fam(2)}, we obtain g,(2) =g,(z) in D(0,7,).

In general, for each ¢> 0, there exists an infinite subsequence of func-
tions {faqen(®)} of {fug(®)} such that {f,q.1,(2)} tends to a non-constant
meromorphic function g,,,(2), uniformly on each compact subset of D(0,7,,).
Moreover, g,.,(2) =g,(2) in D(0,7,), and g,,,(z) omits the three values wj, j=
1, 2, 3, in D0, #g+y).

We now define the function g(z) as follows: g(z) = g,(z) if z € D(0,7,).
It is easy to see that g(z) also omits the three values w;j=1,2,3. For
if it were not the case, then g(z) would assume, say, w, at a point z, in
D. Suppose z, € D(0,r,), for some 7, then g(z,) = g,(2,) = w;, which con-
tradicts the fact that g,(2) omits w, in D(0,7,). By the diagonal method,
we can extract a subsequence of functions {fi(2)} of {f.(2)} such that
{fi(2)} tends to g¢(z) uniformly on each compact subset of D. We shall
refer to {fi(2)} as {f.(2)} again.

Since ¢(z) omits three distinct values in D, by a theorem of Bagemihl
[1, Theorem 1, p. 3], the set of Fatou points of g(z) is dense on C. Let
¢i be a Fatou point of g(z) with Fatou value w, and let A be a symmetric
Stolz angle at ¢i® so large that at each point ¢ on R(6), D(t,—L) cA. We

now choose a sequence of positive numbers {R;} such that

1) RkT 1’

2) For each k=1,2, «+-, lg&)—wl =, fz€4 {z: lz] =RJ. (16)
For each k=1, 2, - - -, choose R/ such that

1) 0<R,<R;<],

2) in each set By = {z: |R,| <2z <|R;|}, we can find a point #, on R(f)
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such that D(tk, —%—) c B,

3) By S D(0,7n,u) for some integer m(k).

On the other hand, since {f,(2)} tends to ¢(z) uniformly on each com-
pact subset of D, for each k=1, 2, - - -, there exists a natural number n(k),
such that for all # =un(k) and all z € By,

| Fad) = gl2)]| < - (a7)

Let p(k) = max{m(k), n(k)}, and consider the following functions:

_ _ Pyl 18
z = Sp(k)(t) =1= zp(k)t ’ ( )
fp(k)(z) =f Sp(k)(z)~ (19)
And let
2o = Spa(t) (20)
ie.
D<z1/1(k)’ %) = Sp(k)<D (tlc’ %))- (21)

Consider also the functions

2= Tpm(F) 1~ 7 (22)
Npiay(F) = F(T o). (23)

We shall show that f,u(») tends to the constant limit » in D(0,1/2) in
the z-plane and this will contradict the fact f(z) is of the first kind in D.
To this end, let ¢ = D(0,1/2) in the s-plane and let

oy = Tp(k)(a)9 (24)

£ = Soin(@5a)s (25)

then p(2hy, 2hw) = p(a,0) <1/2, ie. 25, € D(h, 1/2), and p(t%, 1) = p(2hw,
Zpao) <1/2, i.e. t3 € D(ty 1/2) or ti € AN {z: |2]| =R} N By,
Now, hp(k)(a) = f(Tp(Ic)(a)) = f(@ha) = F(Spm(th) = fp(k)(t?:)o Hence,

[Bpar(@) — wl = | fp(th) — wl < | fpuw(th) — g(tD)] + 19(#8) — wl. (26)
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The first absolute value of the last expression in equality (26) is less than
—%—k by (17) and the last term is less than %k by (16). Thus, | A,u(@)—w|<1/k,
for each k=1, 2, + -+, ie. lim#a,u(@) =w, for each a& D(0,1/2) in the -
plane and that completes our proof.

CoRrROLLARY 4. 1.  Suppose that f(2) is a meromorphic function of the first
kind in D. If {2,} is a sequence of points in D, |z,] =1, and {r,} is a sequence
of positive numbers such that r,*t oo, then f(z) assumes every value on 2 infinitely
often, except perhaps two, in the set SID(Z,,,, 7)o

n=

Remark 4. It is natural to ask whether meromorphic functions of the
first kind in D possess the stronger property like the one proved by Noshiro
[11, Theorem 7, p. 155] for normal functions of the first kind in D.
Obviously, we can not obtain an equally strong theorem, for as we men-
tioned in Remark 2 that every holomorphic function f(z) in the class
V(S, = 0) is of the first kind and omits the values infinity.

4.  With the help of Theorem 4, we shall generalize the notion of sequences
of p-points as follows;

DeriniTiON 2. A sequence of points {z,} in D, |2,| =1, is called a se-
quence of pseudo-p-points of a meromorphic function f(z) in D if for each
sequence of positive number {r,}, r,*1 o, f(z) assumes every value on  infi-
nitely often, except perhaps two, in the set U D(zn,7,), for each subsequence

m=1
{zn} of {z.}.

With this definition, we can restate Corollary 4. 1 as follows:

CoroLLARY 4. la. If f(2) is a meromorphic function of the first kind in D,
then every sequence of points {z,} in D, |z,| =1, is a sequence of pseudo-p-points.

TrEOREM 5.  Let f(2) be a meromorphic function in D and let {z,} be a
sequence of points in D, |z,| =1, which possesses no subsequence of pseudo-p-points
of f(2).  Then there exists no sequence of p-points of f(z) in the set nCJ;D(z,,,, 7)
Jor any r < co,

Proof. Trivial.

TrEOREM 6.  Let f(2) be meromorphic in D and let {z,} be a sequence of
points in D which possesses no subsequence of pseudo-p-points of f(z). If Limyf(z,)=uw,

https://doi.org/10.1017/50027763000024478 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024478

VALUE DISTRIBUTION OF MEROMORPHIC FUNCTIONS 115

where w is an omitted value of f(z), then f(z) tends to w as |z| =1, uniformly in
the set U D(2,,7), jor each r < co,
n=1

Proof. Suppose, on the contrary, that there exists a sequence of points
{w,} in the set EJOD(z,,, 7). Suppose further that w, € D(z,,7), for m=1,
2, +++, where {nzzml} is a subsequence of {z,}. By a theorem of Gavrilov
[7, Theorem 5], there exists a sequence of p-points of f(z) in the set
motle(zm, r), which contradicts our assumption that {z,} possesses no sub-

sequence of pseudo-p-points. (See also Theorem 5.)

COROLLARY 6. 1. Let f(z) be a holomorphic function in D, and let {z,} be
a sequence of points in D which possesses no subsequence of pseudo-p-points of f(z).
Then, for each r < oo, we have:
1) If lim f(z,) = oo, then f(z) tends to infinity as |z|\ =1, uniformly in the set
U Dz, 7).

2) If |f(z)| <K, for some finite constant K, and for n =1,2, - - -, then f(z)
s bounded on the set olilD(z,., 7).  Here, the bound is dependent on 7.

DeriniTION 3. A boundary path Bis called a pseudo-p-path of a mero-
morphic function f(z) in D if there exists a sequence of pseudo-p-points on
B. It is called a strong pseudo-p-path of f(z) if every sequence of points
on B tending to C is a sequence of pseudo-p-points of f(z).

TureorEM 7. Let f(z) be a meromorphic function in D, and B be a boundary
path in D but not a pseudo-p-path of f(z). If im f(2) = w, where w is finite or
wnfinite, then f(z) lends to w uniformly in the set {z: p(z, B) < M} for each M < oo,

Proof. By a theorem of Gauthier [6, (2.8), p. 13], f(z) tends to w
uniformly in the set {z: p(z, B) < M}, for each M < M,(f), where 0<<M,(f)<o.
Moreover, if M,(f) <o, f(2) possesses a sequence of p-points on the set
{z: p(2, B) = My(f)}. Thus, under our assumption that B is not a pseudo-
p-path and by Theorem 5, it is easy to see that f(z) tends to w uniformly
in the set {z: p(z, B) <M} for each M < co,

THEOREM 8. Let f(2) be a holomorphic function in D, and let {2,} be a
sequence of points in D satisfying :
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1) 1im p(zn, 2asr) < M,
2) the limit points of {z,} on C contains an open arc ap of C,
3) no subsequence of {z,} is a sequence of pseudo-p-points of f(z),

4) lim f(z,) = w, where w+ oo,

If, in addition, there exist two points e and e on af such that f(z) pos-
sesses radial limits along R(0,) and R(0,), then f(z)=w.

Proof. Consider the boundary path B by joining the consecutive points

2, to 2,4, with a non-Euclidean straight line. By Theorem 7 and condition

1), we have ‘li|m1 f(z) = w. Since the radii R(#,) and R(6,) intersect B
z|—

zeB
infinitely often, the radial limits of f(z) at both ¢¥: and eif: are w. Since

w# oo, by the Maximum Modulus Principle, we see that f(z) is bounded
by w in the sector determined by the radii R(f,) and R(f,). By an easy
modification of Fatou’s Theorem (e.g. see [12, p. 5]), we see that the set of
Fatou points of f(z) on «f has positive Lebesgue measure and their corres-
ponding Fatou values are w. By the standard Luzin and Privalov’s uni-
queness theorem [12, p. 72], we have f(z)=w.

THEOREM 9. Let f(2) be meromorphic in D and omit two distinct values w,
and w, there, and let {z,} be a sequence of points in D satisfying the conditions:

1) lim 0(Zns 2ns1) < M,

W

)

) the limit points of {z,} on C contain an open arc ap of C,

) no subsequence of {z,} is a sequence of pseudo-p-points of f(z)
)

4) lim f(z,) = w.

If, in addition, there exist two points et and %> on aB such that f(z) pos-
sesses radial limits along R(0,) and R(6,), then

1) w# w, wE w,

2) flz)=w.

Proof. Without loss of generality, we may suppose that w, =0, and
w, = oo, for otherwise, we may consider the function g¢(z)= (f(2) — w,)/
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(f(2) — w,) instead. By the same argument as we used in Theorem 8 with
both Maximum and Minimum Modulus Principles, we can easily show that
f(z)=w, and since w, and w, are omitted values, we have w= w, and
w = Wy

5. Tsuji [13] had defined a sub-class of meromorphic functions which satisfy
the following condition:

o 1Sf(retf)]
o ) ey 40 < e
Collingwood and Piranian in one of their papers [5, p. 246] reviewed the
properties of the functions in the subclass defined by Tsuji and called them
Tsuji functions. We now start to prove two theorems for Tsuji functions
and Tsuji functions which are also of the first kind.

TrEOREM 10. If f(2) is a Tsujt function in D, then C=E U F U G, where
(1) meas (E) =0, (2) F is the set of Falou points of f(z), and (3) every chord at
each point of G is a p-patht of f(z).

Proof.  Since f(z) is a Tsuji function, then C= A U B [14, p. 53], where
meas (4) = 0, and for each point ¢i® of B, f(2) tends to the same asympto-
tic limit w(d) along almost all chords at e,

Let E= AU A’, where A’ is the set of points on C which are neither
Plessner points nor Fatou points. By the Plessner Theorem [12, p. 70],
meas (A’) =0, and thus meas(E)=0. Let F be the set of Fatou points of
f(z) on C and let G=C—(EUF). Since G < B, we see that for each
point ¢ on G and for almost all ¢, —=x/2<<g¢ <z/2, f(z) approaches an
asymptotic value w(d) on the chords R(6,¢4). By a theorem of Gauthier
[6, (2.8), p. 13], f(2) tends to w(f) uniformly in the set {z: p(2, R(9, ¢)) < M},
for all M < My(f), where 0<<M(f)<<o.  Moreover, if My(f) <o, f(2)
possesses a sequence of p-points on the set {z: p(2z, R(0, 8)) = M,(f)}.

If My(f)= co, then ¢ is a Fatou point of f(z), if 0 <M,(f) <o, then
¢’ is not a Fatou point nor a Plessner point of f(2). Thus if e € G,
My(f) =0, i.e. almost all chords at each point of G are p-paths. Since these
chords are dense in any Stolz angle at ¢’%, by another theorem of Gauthier

t A boundary path in D is said to be a p-path of a meromorphic function of f(z) if it
contains a sequence of p-points of f(z).
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[6, (2. 1), p. 101, it is easy to see that every chord at each point of G is a
p-path of f(z).

TuroreM 11.  If f(z) is a Tswi function which is also of the first kind in
D, then every chord at almost all points of C is a strong-p-path of f(2). (See also
Corollary 3. 1.)

Proof. By Theorem 10, C=E U F UG, where meas(E)=0. Since
f(z) is of the first kind, F = ¢, so that meas(G)= 2z, moreover, at each
point ei? of G, there exists a set H(#) S (— r/2, =/2), such that

1) meas(H) ==

2) for each ¢ € H, f(z) attains an asymptotic limit w(6) on B(d, ¢).

By the Corollary of Theorem 3, we have for each ¢ € H, R(0,¢) is a
strong-p-path. By a theorem of Gauthier [6, (2. 1), p. 10], since H is dense
in (—=x/2,7/2), it is easy to see that for each e’ € G, R(¢,0) is a strong-
p-path of f(z). (Note that meas(G) = 2r.) And this completes our proof.
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