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SOME RESULTS ON VALUE DISTRIBUTION OF

MEROMORPHIC FUNCTIONS IN

THE UNIT DISK

KAM-FOOK TSE

1. Let C and D be the unit circle and the open unit disk respectively.

We shall use p(z,z') to represent the non-Euclidean distance [3, p. 263] be-

tween the two points z and zr in D, and X{w,wr) to represent the chordal

distance between the two points w and w' on the Riemann Sphere Ω. If

Z ' G Ξ A r > 0 , D{z',r) = {z: p{z,z') <r}. We denote by R{θ) the radius at

eiβ in D and R(θ, φ), —π/2 < φ < π/2, the chord at eiθ making an angle φ

with the radius R{θ). If f{z) is a meromorphic function in D, F{f) and

F{f,w) will represent the set of all Fatou points [3, p. 264] of f{z) and the

set of all Fatou points of f{z) for which the corresponding Fatou values

[3, p. 264] are w respectively. A sequence of points {zn} in D, tending to

C, is said to be a sequence of ^-points of f{z) (see Gavrilov [7] and Gau-

thier [6]) if for each r > 0 and each subsequence {zm} of {zn}, f(z) assumes
oo

every value on Ω, infinitely often, perhaps except two, in the set U D(zm,r).

Finally, we denote by V{S,μ^M), O ^ M ^ o o , the classes of holomorphic

functions unbounded in D but bounded on a monotone spiral S1 with

PS^M [13, p. 160].

Remark 1. If f(z) belongs to the class V(S,β^M), then there exists

[15, p. 431] a spiral S' in D such that f{z) tends to infinity on S' as \z\

->1. Obviously, βS'^M.

The notion of a normal meromorphic function in D was first defined by

Noshiro [11, p. 149]. This idea was first formulated by Yosida [16, p. 227].

The latter defined the class of normal meromorphic functions in the finite
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106 KAM-FOOK TSE

complex plane. Lehto and Virtanen [9, p. 53], later in 1957, defined the

notion of a normal function in a domain G, which is similar to that

given by Yosida when G is the finite complex plane, and the same as that

given by Noshiro when G = D.

Noshiro [11, p. 154] decomposed the class of normal meromorphic func-

tions into two categories, the classes of normal meromorphic functions of the

first kind and those of the second. (See also [2, §2, p. 15].) He obtained

in his paper [11, p. 155] the following remarkable result: If f(z) is a nor-

mal meromorphic function of the first kind in D, then there exists a finite

positive number r0 such that for each z in D, f{z) assumes every value on

Ωy at least once, in the set D{z, r0).

In the second section of this paper, we shall generalize the above idea

of Noshiro's in decomposing the set of all meromorphic functions in D into

two categories, the classes of meromorphic functions of the first kind and

those of the second kind. Roughly speaking, meromorphic functions of the

second kind behave mildly, while those of the first kind are comparatively

wild in the sense that the values which they assume do not attain any limit

on sequences of non-Euclidean disks of fixed non-Euclidean diameter in D

tending to C. We shall obtain, in this section, some necessary and suffi-

cient conditions for a meromorphic function in D to be of the first kind.

Section three deals with value distribution and boundary behavior of

meromorphic functions of the first kind in D. Among other theorems, we

shall prove a theorem similar to that of Noshiro [11, p.155, Theorem 7].

In section four, we generalize the notion of sequences of p-points to

that of sequences of pseudo-p-points. We shall prove, among many other

theorems, two identity theorems with this new definition.

Finally, in section five, we obtain two Plessner type theorems, one for

Tsuji functions and the other for Tsuji functions which are also of the first

kind.

2. Noshiro [11, p. 154] gave the following definition:

A normal meromorphic function f{z) in D is said to be of the first kind if

the family of functions {f°S(z)} admits no constant limit in D, where S(z)

represents any 1—1 conformal mapping of D onto itself. A normal function

in D which is not of the first kind is said to be of the second kind.

We shall generalize this notion to general meromorphic functions.
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DEFINITION 1. A meromorphic function f(z) in D is said to be of the

second kind if there exists a sequence of points {zn} in D, \zn\ ->1, such

that the sequence

tends uniformly to a constant limit in some closed neighborhood of z = 0.

A meromorphic function f[z) in D is said to be of the first kind if it

is not of the second kind.

Remark 2. Since f(z) is merely assumed to be meromorphic in D, for

any arbitrary sequence of points {zn} in D tending to C, the sequence of

functions (1), unlike the case when f(z) is normal in D, may not converge

in any neighborhood of z = 0.

It is obvious that every normal function of the first kind in D is a

meromorphic function of the first kind. By a result of Bagemihl [1, Theo-

rem 1, p. 3], no normal holomorphίc function in D is of the first kind.

But there are surely examples of holomorphic functions of the first kind.

In fact, every function which belongs to the class V{S, β = 0) is a function

of the first kind. Because for every sequence of non-Euclidean disks {Dn}

in D, of fixed non-Euclidean diameter, tending to C, for sufficiently large

n, Dn would intersect both S and S' (see Remark 1). Since f(z) is bound-

ed on S and tends to infinity on S', it can not tend to any limit in
oo

Ό Dn, as 12|->1, i.e. the sequence of functions (1), where zn is the non-

Euclidean center of Dn, for n — 1, 2, , does not tend to a constant limit

in any neighborhood of z — 0. In other words, f[z) is of the first kind.

THEOREM 1. A meromorphic function f{z) in D is of the first kind if and

only if for each r0 > 0

(Λ lfΆZ)}l\2\2 r d r d θ } = d1(r0) > 0, (2)

where /.(β) = / ( ^ | _

Proof The condition is sufficient, for if f(z) belonged to the second

kind, then there exists a sequence of points {zn} in D, | s n | - > 1 , such that

the sequence of functions (1) tends to a constant limit in each compact sub-
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108 KAM-FOOK TSE

set of a neighborhood D(Q, rt) of z = 0. It is easy to see that the sequence

of real-valued functions

tends to zero there too. This implies that for all 0 < r < ru

ilffiΐm* rdrdθ = 0. (4)ss
This contradicts (2).

The condition is also necessary. Indeed, suppose on the contrary, that

f(z) is of the first kind and that there exists r > 0, with a sequence of points

[zn] in D, \zn\ ~>1, such that the sequence of functions (1) has the property

that the equation (4) holds. We shall show that [zn] is a sequence of ap-

points of f(z). For if this were not the case, then there exists a finite

positive number t such that f(z) omits three distinct values in the set

U D(zm, t), where {zm} is an infinite subsequence of {zn}. Hence, the
tn=l

sequence of functions

omits three distinct values in the set D(0, t), and thus forms a normal family

there. This implies that the sequence of functions (5) possesses an infinite

subsequence [fp(z)} such that lim fp{z) = g(z), where g(z) is a meromorphic

function in D(0, t). Since we supposed that f(z) is of the first kind, g(z) ̂

constant. On the other hand,

\fί(z)\ _ W{z)\ (β)

uniformly in each compact subset of D{0, t), so that

um ss T Λ Γ ' * * - ss
p(0,z)<r

— Area of image on Ω of the set [z: p{z,0)<r} under the mapping g(z)

(which is positive). This contradicts (4). Thus {zn} should be a sequence

of p-points of f(z). However, if this were true, then (4) can not hold

again. This contradiction completes our proof.
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THEOREM 2. A meromorphic function f(z) in D is of the first kind if and

if for each r > 0,

lίm inf ( max (1 - |z | 2 ) ' ^ L l = δ2(r) > 0. (8)

f. By a similar argument as we employed in Theorem 1, we see

that f(z) is of the second kind if, and only if, there exists a sequence of

points {zn}9 | z J - H , such that the sequence of functions (1) would tend to

a constant limit in some neighborhood D(0,rQ) of 2 = 0, for some ro>O.

Moreover, the sequence of real-valued functions (3) also tend to zero there.

Thus, if r<r09 for any sequence of points {wn} in D, wn e D{zn9rj2)9

for n = 1, 2, , there exists t > 0, such that D{wn91) £ D(zn9r)9 for

n = 1, 2,

Consider the sequence of functions

(9)

Using the same argument as above, we have that the sequence of real-

valued functions

tends to zero uniformly in each compact subset of Z)(0, t). An easy calcu-

lation shows that for n = 1, 2, ,

( I -
1

\f'n(w)\

"7^

(e.g. see [9, Theorem 2]), where z — Wn 1 w . Thus, we have

l imd- 1M, 1̂  I/»(«>») I - l i m lgή(O)l _ 0 ; el imn |wj ) χ + | Λ ( w J | ϊ - lim - Ϊ + I ^ O ) , , - - 0. i.e.,

/(«) is of the second kind if, and only if,

lim inf ( max (1 - |z|2) J / . ^ ' ) = 0, (12)

|* |<l

for some r > 0. This is equivalent to the conclusion of our theorem.
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COROLLARY 2. 1. If f(z) is a meromorphic function in D, and tends to a
oo

limit w as | z | - > l , in the set DQ = U D(zn,r), r > 0 , where {zn} is a sequence
n=l

of points in D with \zn\ - > 1 , then

- i z | ! ) = 0

Remark 3. The above corollary generalizes a classic result that if the

limit w in the above theorem is a finite complex number, then we have

l i m ( l - \z\η\f'(z)\ = 0. (14)
ZEΞD0

3. In this section, we will discuss the value distribution and boundary

behavior of meromorphic functions of the first kind.

T H E O R E M 3. Suppose that f(z) is a meromorphic function in D belonging to

the first kind and that B is a boundary path in D for which lίm f(z) = a, where
JLB

a is finite or infinite. If {zn} is a sequence of points in D, \zn\-+l, such that

lim p(zn, B) ^ M, where M is a finite positive number, then for each M'> M, f(z)

assumes every value on Ω infinitely often, except perhaps two, in the union of the non-
oo

Euclidean disks U D{zn,M').
l

n=l

Proof Suppose, on the contrary, that f(z) assumes some three distinct
oo

values in U D(zn,M') at most a finite number of times. We may, indeed,

without loss of generality, assume that f{z) omits the three values there.

We shall use arguments similar to those of [9, pp. 52-53] and [3, Theo-

rem 3, p. 266]. Consider the sequence of functions (1) corresponding to the

above given sequence of points {zn}. It is easy to see that (1) forms a normal

family in D{0,M'). Thus, there exists a subsequence of function {fm{z)}

of (1) such that {fm(z)} tends to a meromorphic function g(z), uniformly

on each compact subset of D(09M'). Let Bm = B Π D{zm9M'), for m= 1,2,

• . Then for sufficiently large m, Bmψ φ, because lim p(z,B)^M<M\

Let also £* = Sn(Bn) c Z)(0,ΛΓ), for n = 1, 2, , where

SΛ(s) = -f»-=4-. (15)
1 — ZZ

It is now easy to see (e.g. see [9, pp. 52-53] and [3, p. 266]) that
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B*= lim sup B%, is a non-degenerated continuum (a connected compact

set consisting of more than one point) in D{09M'). Thus for each t e B*9

there exists an infinite sequence of points {tmk}9 tmk e B%tk9 for k = 1,2, ,

such that tmk-+t as &->oo. Now if we let t'n = Sn{tn)9 then t'n<a B%9 and

lim \t'n\ = 1 . Thus for each t e i3*, #(£) = lim/m f̂™*) = lim/(ί4J = #> i e.

g(z) = a. In other words, the sequence of functions {fm(z)} tends to the

constant a uniformly in each compact subset of D(09 M)9 which contradicts

our assumption that f(z) belongs to the first kind.

COROLLARY 3. 1. If f(z) is a meromorphic function of the first kind in D

and B is any boundary path in D such that lim f(z) = a9 where a is finite or infi-

nite, then B is a strong-p-path of /(is).1"

THEOREM 4. Suppose that f(z) is meromorphic and is of the first kind in

D9 {zn} is a sequence of points in D, | z j - > l , and {rn} any sequence of positive

numbers such that r Λ t °°. If An denotes the set of values that f(z) omits in the

set D{zn,rn)9 for n — 1, 2, , then for any infinite subsequence {Am} of {An}9

lim inf AmΉ consists of at most two points.

Proof. Suppose, on the contrary, that there exists an infinite sub-

sequence {Am} of {An}9 such that lim inf Am consists of three distinct values

wl9 w29 and w3. Then there exists a subsequence of sets [Ak] of {Am} such

that lim AkΏ. {wί9 w29 wz}9 and in fact, without loss of generality, we may

assume for each k = 1, 2, 3, , that Ak is a set consisting of at least three

points. We shall refer to the sequence of sets [Ak] as [An] again.

Consider the sequence of functions (9) corresponding to the above

sequence of points {zn}. Then f(D(zn9rn)) = fn(D(09rn)). We shall first

show that there exists a subsequence {fk(z)} of {/«(«)} such that [fk{z)}

tends to a meromorphic function g(z), uniformly on each compact subset of

D. Moreover g(z) omits the three values wί9 w29 w3 in D.

Since rn t °°, for n = 1, 2, , the function fn(z) omits the set of

values An in D{09 rλ). Since lim^4rt Ώ. {wί9w2,w3}, by a theorem of Montel

[10, p. 73, §38], {fn{z)} forms a normal family in D(β9r1). Thus there exists

a subsequence of functions {fnW{z)} of {fn(z)}9 where n(l)I>w, for n = l,2,

t A boundary path in D is said to be a strong- p-path of a meromorphic function f(z)
if every sequence of points on it tending to C is a sequence of p-points of f(z).

tt For definition, see Topology by Hocking and Young (Addison-Wesley) pp. 100-101.
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• , such that {/Λ(i)(z)} tends to a meromorphic function gx(z)9 uniformly

on each compact subset of Z)(0, rx). Since f(z) is of the first kind, by

Hurwitz's theorem, gx(z) is not identically constant and in fact omits the

three values w19 w2, w3 in D(0, rx).

Now, for w(l);>2, the function fHλ)(z) omits the set of values An{1) in

D(0,r2). Thus by the same argument, there exists a subsequence of func-

tions {/Λ(2)(z)} of {/»(!)(«)} such that {/Λ(2)(3)} tends to a non-constant mero-

morphic function #2(z)> uniformly on each compact subset of D(0,r2). More-

over, g2(z) omits the three values in D{0,r2). Since {fnti2){z)} is a subsequence

of {/n(i)(s)h we obtain g2{z)=gί(z) in D(09rλ).

In general, for each g > 0, there exists an infinite subsequence of func-

tions {fn(q+i){z)} of {/n(g)(2)} such that {/n(g+i)(2)} tends to a non-constant

meromorphic function 0̂ +1(2), uniformly on each compact subset of D{0, rq+1).

Moreover, gq+ι(z) = gq(z) in D{0,rq), and gq+1{z) omits the three values wj9 j —

1, 2, 3, in D(0,rfl+1).

We now define the function g(z) as follows: g(z) = gq{z) if 2εD(0,r g),

It is easy to see that g{z) also omits the three values wj9 j = 1, 2, 3. For

if it were not the case, then g(z) would assume, say, w1 at a point z0 in

D. Suppose z0 e D{09rq)9 for some rρ, then ^( 0̂) = gq{z0) = wl9 which con-

tradicts the fact that gq(z) omits wx in D(09rq). By the diagonal method,

we can extract a subsequence of functions {fk{z)} of {/»(&)} such that

{/*(«)} tends to flr(2) uniformly on each compact subset of D. We shall

refer to {/*(«)} as {/„(«)} again.

Since g(z) omits three distinct values in D, by a theorem of Bagemihl

[1, Theorem 1, p. 3], the set of Fatou points of g{z) is dense on C. Let

eiθ be a Fatou point of g{z) with Fatou value w, and let A be a symmetric

Stolz angle at eiθ so large that at each point t on R(0)9 D\t9-^-\ Q A. We

now choose a sequence of positive numbers {Rk} such that

l)

2) For each fc = 1, 2, , 13(3) - w | <ς J i - , i f ^ G ^ { ^ : \z\^Rk}. (16)

For each k = 1, 2, , choose # £ such t h a t

1) 0<Rk<R'k<l9

2) in each set Bk = [z: \Rk\ <z < \Rk\], we can find a point ίfc on R(θ)
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such that D(tk, -—-) c Bk,

3) 5 t c D ( o , r Λ ( t ) ) for some integer m{k).

On the other hand, since {fn(z)} tends to #(z) uniformly on each com-

pact subset of D, for each k = 1, 2, , there exists a natural number n(&),

such that for all n^n(k) and all 2 e Bk,

\f»(z)-g(z)\^-±-k. (17)

Let p(ft) = max{m(&), w(ifc)}, and consider the following functions:

fpW(z) = f SpW{z). (19)

And let

zf = S (t ) (20)

i.e.

(21)

Consider also the functions

$
 ( 2 2 )

(23)

We shall show that / p ( t ) (/) tends to the constant limit w in D(0,1/2) in

the ^-plane and this will contradict the fact /(«) is of the first kind in D.

To this end, let β e D(0,1/2) in the ̂ -plane and let

*Jc» = 3Γ,w(β), (24)

/* —

then /»(z*<t>, «£α>) = ι"(a,0) < 1/2, i.e. zj ( i, e D{z'pίk), 1/2), and ^(fj, ί t) = p(z*a:ι,

r?t \ < ^ 1 / 9 i f * t* pz- T ) ( t Λ lf?\ r\v f* c^ A Π ί ̂  1 ^ 1 ~ > / ? 1 Π R

Now, /^(β) = f(Tm)(a)) = / (4cJ = f(SP(k){tt)) = Λ(*)(ί*). Hence,

— w|. (26)
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The first absolute value of the last expression in equality (26) is less than

-o~ft by (17) and the last term is less than -̂ -ft by (16). Thus, \hp(k){a) — w\^llk,
£i Li

for each ft = 1, 2, , i.e. lim hp(k){a) = w, for each a G Z>(0,l/2) in the JP-

plane and that completes our proof.

COROLLARY 4. 1. Suppose that f(z) is a meromorphic function of the first

kind in D. If{zn} is a sequence of points in D, \zn\ ->1, and {rn} is a sequence

of positive numbers such that r Λ t°°> then f(z) assumes every value on Ω infinitely
CO

often, except perhaps two, in the set U D(zn, rn).

Remark 4. It is natural to ask whether meromorphic functions of the

first kind in D possess the stronger property like the one proved by Noshiro

[11, Theorem 7, p. 155] for normal functions of the first kind in D.

Obviously, we can not obtain an equally strong theorem, for as we men-

tioned in Remark 2 that every holomorphic function f(z) in the class

V{S9 P = 0) is of the first kind and omits the values infinity.

4. With the help of Theorem 4, we shall generalize the notion of sequences

of p-points as follows;

DEFINITION 2. A sequence of points {zn} in D, \zn\ ->1, is called a se-

quence of pseudo-p-points of a meromorphic function f(z) in D if for each

sequence of positive number {rn}, rn\ oo, f(z) assumes every value on^infi-
oo

nitely often, except perhaps two, in the set U D(zm,rm), for each subsequence

{zm} of {zn}.

With this definition, we can restate Corollary 4. 1 as follows:

COROLLARY 4. la. If f(z) is a meromorphic function of the first kind in D,

then every sequence of points {zn} in D, \zn\-+l9 is a sequence of pseudo-p-points.

THEOREM 5. Let f{z) be a meromorphic function in D and let {zn} be a

sequence of points in D, \ zn \ -> 1, which possesses no subsequence of pseudo-p-points
oo

of f{z). Then there exists no sequence of p-points of f(z) in the set U D{zn,r)

for any r < oo.

Proof Trivial.

THEOREM 6. Let f(z) be meromorphic in D and let {zn} be a sequence of

points in D which possesses no subsequence of pseudo-p-points of f{z). If limf(zn) = w,
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where w is an omitted value of f(z), then f{z) tends to w as \z\ - > 1 , uniformly in
oo

the set U D(zn9r), for each r < oo.
w = l

/V00/. Suppose, on the contrary, that there exists a sequence of points
oo

{wm} in the set U D(zn9r). Suppose further that wm e D(zm9r), for m = 1,
n=l

2, , where {zm} is a subsequence of {zn}. By a theorem of Gavrilov
[7, Theorem 5], there exists a sequence of p-points of f(z) in the set

oo

U D(zm9 r), which contradicts our assumption that {zn} possesses no sub-

sequence of pseudo-p-points. (See also Theorem 5.)

COROLLARY 6. 1. Let f(z) be a holomorphic function in D, and let [zn] be

a sequence of points in D which possesses no subsequence of pseudo-p-points of f(z).

Then, for each r < oo, we have:

1) If limf{zn) = oo, then f[z) tends to infinity as \z\ - > 1 , uniformly in the set

U D(zn,r).
n=l

2) If \f{zn)\ <K, for some finite constant K, and for n = 1, 2, , then f(z)
CO

is bounded on the set U D(zn9 r). Here, the bound is dependent on r.

DEFINITION 3. A boundary path B is called a pseudo-p-path of a mero-
morphic function f{z) in D if there exists a sequence of pseudo-p-points on
B. It is called a strong pseudo-p-path of f(z) if every sequence of points
on B tending to C is a sequence of pseudo-p-points of f(z).

THEOREM 7. Let f(z) be a meromorphic function in D, and B be a boundary

path in D but not a pseudo-p-path of f(z). If l im/(z) = w, where w is finite or

infinite, then f(z) tends to w uniformly in the set {z: p{z,B) < M] for each M< oo.

Proof By a theorem of Gauthier [6, (2. 8), p. 13], f(z) tends to w
uniformly in the set {z: p(z,B) < M}, for each M<M0{f), where 0<M0(/)^co.
Moreover, if M0{f) < oo, f(z) possesses a sequence of p-points on the set
{z: p(z,B) = Mo(/)} Thus, under our assumption that B is not a pseudo-
p-path and by Theorem 5, it is easy to see that f(z) tends to w uniformly
in the set {z: p(z9B) < M] for each M< oo.

THEOREM 8. Let f(z) be a holomorphic function in D, and let {zn} be a

sequence of points in D satisfying:
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1) lim p{zn9zn+1) <M,

2) the limit points of [zn] on C contains an open arc aβ of C,

3) no subsequence of {zn} is a sequence of pseudo-p-points of f(z),

4) lim f{zn) = w, where w ψ oo.

If in addition, there exist two points eiθl and eiθ* on aβ such that f(z) pos-

sesses radial limits along R{θx). and R(θ2), then f{z) Ξ= W.

Proof Consider the boundary path B by joining the consecutive points

zn to zn+1 with a non-Euclidean straight line. By Theorem 7 and condition

1), we have lim f(z) = w. Since the radii R{θx) and R{02) intersect B
\z\-*l
Z€ΞB

infinitely often, the radial limits of f(z) at both eiθ^ and eiθ* are w. Since

tv ψ oo, by the Maximum Modulus Principle, we see that f(z) is bounded

by w in the sector determined by the radii i?(^) and R(θ2). By an easy

modification of Fatou's Theorem (e.g. see [12, p. 5]), we see that the set of

Fatou points of f{z) on aβ has positive Lebesgue measure and their corres-

ponding Fatou values are w. By the standard Luzin and Privalov's uni-

queness theorem [12, p. 72], we have f(z) == w.

T H E O R E M 9. Let f(z) be meromorphic in D and omit two distinct values wx

and w2 there, and let [zn] be a sequence of points in D satisfying the conditions:

1) ]imp(zn,zn+1) <M9

2) the limit points of {zn} on C contain an open arc aβ of C,

3) no subsequence of {zn} is a sequence of pseudo-p-poinis of f{z)

4) ]imf{zn) = w.

If in addition, there exist two points eiθi- and eiθ* on aβ such that f(z) pos-

sesses radial limits along R(θx) and R{02), then

1) w ¥= wl9 wψ w2

and

2) f(z) = w.

Proof Without loss of generality, we may suppose that w1 = 0, and

w2 = oo, for otherwise, we may consider the function g(z) = {f{z) — wx)l
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(/(z) — w2) instead. By the same argument as we used in Theorem 8 with

both Maximum and Minimum Modulus Principles, we can easily show that

f(z)~w, and since wγ and w2 are omitted values, we have w=f=wι and

w ψ w2.

5. Tsuji [13] had defined a sub-class of meromorphic functions which satisfy

the following condition:

sup I π

 Λ )f ^ζf /JXI9 r dθ < oo. (27)

r<\ Jo 1 + \f(reιθ)\2

Collingwood and Piranian in one of their papers [5, p. 246] reviewed the

properties of the functions in the subclass defined by Tsuji and called them

Tsuji functions. We now start to prove two theorems for Tsuji functions

and Tsuji functions which are also of the first kind.

THEOREM 10. If f{z) is a Tsuji function in D, then C = E U F U G, where

(1) meas (E) = 0, (2) F is the set of Fatou points of f(z), and (3) every chord at

each point of G is a p-patfr of f(z).

Proof Since f(z) is a Tsuji function, then C = A I) B [14, p. 53], where

meas (A) = 0, and for each point eiθ of B, f{z) tends to the same asympto-

tic limit w{θ) along almost all chords at eiθ.

Let E = A U A', where Ar is the set of points on C which are neither

Plessner points nor Fatou points. By the Plessner Theorem [12, p. 70],

meas {A') = 0, and thus meas (E) — 0. Let F be the set of Fatou points of

f(z) on C and let G = C — (E U F). Since G c B, we see that for each

point eiθ on G and for almost all φ, —πl2<φ<πl2, f{z) approaches an

asymptotic value w(θ) on the chords R(θ,φ). By a theorem of Gauthίer

[6, (2. 8), p. 13], f(z) tends to w{β) uniformly in the set {z: p{z,R{θ,φ)) < M},

for all M<M0(f), where 0 :< Λfo(/) ^ oo. Moreover, if MQ(f) < oo, f(z)

possesses a sequence of ^-points on the set {z: p{z,R{θ,φ)) — Mo(/)}.

If Mo(/) = oo, then eiθ is a Fatou point of f(z)9 if 0 < Mo(/) < oo, then

eiθ is not a Fatou point nor a Plessner point of f{z). Thus if eiθ e G,

MQ{/) = 0, i.e. almost all chords at each point of G are p-paths. Since these

chords are dense in any Stolz angle at eiθ, by another theorem of Gauthier

t A boundary path in D is said to be a p-path of a meromorphic function of f(z) if it
contains a sequence of p-points of f(z).
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[6, (2. 1), p. 10], it is easy to see that every chord at each point of G is a

p-path of f{z).

T H E O R E M 11. If f(z) is a Tsuji function which is also of the first kind in

D, then every chord at almost all points of C is a strong~p-path of f(z). (See also

Corollary 3. 1.)

Proof By Theorem 10, C = E U F U G, where meas (£) = 0. Since

f{z) is of the first kind, F = φ, so that meas (G) = 2π, moreover, at each

point eiθ of G, there exists a set H(θ) c (— ττ/2, τr/2), such that

1) meas (H) — JΓ

2) for each φ <E H, f(z) attains an asymptotic limit w(θ) on B{θ, φ).

By the Corollary of Theorem 3, we have for each φ e H, R(β, φ) is a

strong-p-path. By a theorem of Gauthier [6, (2. 1), p . 10], since H is dense

in (—7r/2, ?r/2), it is easy to see that for each eiθ e G, R{φ,θ) is a strong-

p-path of /(z). (Note that meas (G) = 2π.) And this completes our proof.
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