SOME REMARKS ON A CLASS OF DISTRIBUTIVE LATTICES

T. P. SPEED

(Received 7 April 1967)

1. Introduction

Distributive pseudo-complemented lattices form an extensively studied class of distributive lattices. Examples are the lattice of all open sets of a topological space, the lattice of all ideals of a distributive lattice with zero and the lattice of all congruences of an arbitrary lattice. Lattices which are just pseudo-complemented have been studied in detail by J. Varlet [6], [7] where, however, the most interesting results require at least the assumption of modularity, sometimes distributivity.

In this note we introduce a new class of distributive lattices which includes the class of pseudo-complemented distributive lattices. We call these lattices distributive *-lattices and denote the set of all such lattices by Δ *. Several characterisations of Δ * are given, an example of a non-pseudo-complemented lattice in Δ * is given and some properties of the congruence R defined below are studied.

2. Definitions, Notation and Preliminary results

We refer to G. Birkhoff [1] for the elementary properties of distributive lattices. For $A \subseteq L$ in a distributive lattice $\mathscr{L} = \langle L; \vee, \wedge, 0 \rangle$ with zero we define $A^* = \{t \in L : t \land a = 0 \text{ for all } a \in A\}$. The principal ideal generated by $a \in L$ is written (a) and the principal dual ideal generated by a is written [a]. The congruence R is defined in a distributive lattice with zero by

 $(a, b) \in R$ if and only if $(a)^* = (b)^*$

An element $d \in L$ is called *dense* if $(d)^* = (0)$.

In a distributive lattice with zero the existence of minimal prime ideals can be readily proved and we denote the set of all such ideals by $\mathcal{M} = \mathcal{M}(\mathcal{L})$. For a subset $\mathcal{A} \subseteq \mathcal{M}$ we write $k(\mathcal{A}) = \bigcap \{A : A \in \mathcal{A}\}$ and for a subset $A \subseteq L$ we write $h(A) = \{M \in \mathcal{M} : A \subseteq M\}$. Also let $\mathcal{M}_x = \mathcal{M} \setminus h(x)$. Then if the family $\{\mathcal{M}_x : x \in L\}$ of subsets of \mathcal{M} is taken as an open basis the resulting topology is called the *hull-kernel* topology. If the family $\{h(x) : x \in L\}$ is taken as an open basis the resulting topology is called the *dual hull-kernel* topology. These ideas have been discussed in commutative semigroups by J. Kist [3] and in commutative rings by M. Henriksen & M. Jerison [2]. A detailed discussion of spaces of minimal prime ideals in distributive lattices will appear in the author's forthcoming thesis; for the present only those results which are used in the study of Δ^* will be stated.

We now give our basic definition, noting that the idea was suggested by the work of M. Henriksen & M. Jerison [2].

DEFINITION. Let $\mathscr{L} = \langle L; \vee, \wedge, 0 \rangle$ be a distributive lattice with zero. Then $\mathscr{L} \in \Delta^*$ if and only if for all $x \in L$, $(x)^{**} = (x')^*$ for some $x' \in L$.

3. Characterisation of Δ^*

The results of this section begin with a topological characterisation of Δ^* . We shall need some preliminary results which are distributive lattice analogues of results from [2] and [3]. For this reason we state them without proof.

LEMMA 3.1. For a distributive with zero $\mathscr{L} = \langle L; \lor, \land, 0 \rangle$ the following hold.

(i) A prime ideal M is minimal if and only if $(x)^* \setminus M \neq \Box$ for any $x \in M$.

(ii)
$$\mathcal{M}_x = h((x)^*)$$

(iii)
$$h(x) = h((x)^{**})$$

- (iv) $(z)^* = (x)^* \cap (y)^* \Leftrightarrow h(z) = h(x) \cap h(y)$
- (v) $(x \wedge y)^{**} = (x)^{**} \cap (y)^{**}$
- (vi) $(x)^{**} = (y)^* \Leftrightarrow h(x) = h((y)^*)$

If we write \mathcal{T}_h for the hull-kernel topology on \mathcal{M} and \mathcal{T}_d for the dual hull-kernel topology on \mathcal{M} we have

PROPOSITION 3.2. If $\mathscr{L} = \langle L; \lor, \land, 0 \rangle$ is a distributive lattice with zero, the following are equivalent:

I
$$\mathscr{L} \in \mathscr{A}^*$$
 i.e. for any $x \in L$, $(x)^{**} = (x')^*$ for some $x' \in L$.

II $\mathcal{T}_{h} = \mathcal{T}_{d}$ i.e. the two topologies on \mathcal{M} coincide.

III $\mathcal{M}(\mathcal{L})$ is compact in the hull-kernel topology.

PROOF. I \Rightarrow II. Assume I and take an arbitrary $x \in L$. Then $\mathscr{M}_x = h((x)^*)$ by 3.1 (ii) $= h((x')^{**})$ since $(x)^{***} = (x)^*$ and by I = h(x') by 3.1 (iii). Similarly

$$h(y) = h((y)^{**})$$
 by 3.1 (iii)
= $h((y')^{*})$ by I
= $\mathcal{M}_{y'}$ by 3.1 (ii).

Thus $\{\mathcal{M}_x : x \in L\} = \{h(x) : x \in L\}$ and so the two topologies coincide.

II \Rightarrow III. Assume II and consider a centred family of closed sets in \mathscr{M} (with the hull-kernel topology). Since the family $\{\mathscr{M}_x : x \in L\}$ is a closed basis when the two topologies coincide, the centred family may be taken to be of the form $\{\mathscr{M}_t : t \in T\}$. Hence we have

$$\bigcap_{i=1}^{n} \mathscr{M}_{t_{i}} \neq \Box \text{ for all finite } \{t_{1}, t_{2}, \cdots, t_{n}\} \subseteq T.$$

This implies that T is a subset of L with the property

 $t_1 \wedge t_2 \wedge \cdots \wedge t_n \neq 0$ for any finite $\{t_1, \cdots, t_n\} \subseteq T$.

From this fact, we may enclose the dual ideal [T] generated by T in a prime dual ideal F whose complement $L \setminus F$ in L is a minimal prime ideal not meeting T. Now $T \cap (L \setminus F) = \Box$ implies that $t \notin L \setminus F$ for all $t \in T$ i.e. $L \setminus F \notin \mathcal{M}_t$ for all $t \in T$.

Thus $L \setminus F \in \bigcap_{t \in T} \mathscr{M}_t$ and the compactness of \mathscr{M} in the hull-kernel topology is proved.

III \Rightarrow I. Assume that \mathscr{M} is compact in the hull-kernel topology. Then h(x) is a closed subset of \mathscr{M} and so is compact in the relative topology. Now

$$\square = h(x) \cap h((x)^*) = h(x) \cap \bigcap \{h(t) : t \in (x)^*\}$$

and so, by the compactness of h(x), there is $\{t_1, t_2, \dots, t_n\} \subseteq (x)^*$ such that

$$\Box = h(x) \cap h(t_1) \cap \cdots \cap h(t_n).$$

On taking complements in \mathcal{M} we find that

$$\mathcal{M} = \mathcal{M}_x \cup \mathcal{M}_{t_1} \cup \cdots \cup \mathcal{M}_{t_n}$$

But the map $\mu: x \to \mathcal{M}_x$ is an homomorphism and so we have

$$\mathscr{M} = \mathscr{M}_x \cup \mathscr{M}_{\vee t_i}$$

and

$$\mathscr{M}_{x} \cap \mathscr{M}_{\vee t_{i}} = \mathscr{M}_{x \wedge \vee t_{i}} = \Box.$$

Thus putting $x' = \bigvee_{i=1}^{n} t_i$ we have

$$\mathcal{M}_{x'} = \mathcal{M} \setminus \mathcal{M}_x = h(x)$$

i.e. $h((x')^*) = h(x) = h((x)^{**})$ which, by 3.1 (vi) gives us the required result $(x)^{**} = (x')^*$.

REMARK. The final implication is exactly as in the commutative ring case and is thus due to M. Henriksen & M. Jerison [2].

The congruence R was defined in §2 and we will now state how it relates to Δ^* .

PROPOSITION 3.3. Let $\mathscr{L} = \langle L; \vee, \wedge, 0 \rangle$ be a distributive lattice with zero. Then $\mathscr{L} \in \Delta^*$ if and only if $\mathscr{L}|R$ is a Boolean lattice.

PROOF. This result can be proved algebraically by the methods of [4] but we prefer to give an alternative proof here using the topological ideas. J. Kist [3] has proved that in a commutative semigroup S, the semi-lattice formed by $\{\mathcal{M}_x : x \in S\}$ is isomorphic to S/R. His proof carries over to the distributive lattice case and so $\mathcal{L}/R \cong \mu(\mathcal{L}) = \langle \{\mathcal{M}_x : x \in L\}; \cup, \cap, \Box \rangle$.

Firstly assume $\mathscr{L} \in \varDelta^*$. The for any $x \in L$

$$\mathscr{M} \setminus \mathscr{M}_{x} = h(x) = h((x)^{**}) = h((x')^{*}) = \mathscr{M}_{x'}$$

Thus $\mu(\mathscr{L})$ is complemented and so is a Boolean lattice.

For the converse assume that \mathscr{L}/R , and so $\mu(\mathscr{L})$, is a Boolean lattice. I.e. for any $x \in L$, $\mathscr{M} \setminus \mathscr{M}_x = \mathscr{M}_{x'}$ for some $x' \in L$. Then

$$h(x) = h((x)^{**}) = h((x')^{*})$$

and so, by 3.1 (vi) $(x)^{**} = (x')^*$ follows.

The proposition is thus proved.

We now give two algebraic conditions on \mathscr{L} which are equivalent to membership of Δ^* . Condition II was kindly supplied to me by J. Varlet. Let the set of all dense elements of \mathscr{L} be denoted by D.

PROPOSITION 3.4. If $\mathscr{L} = \langle L; v, \wedge, 0 \rangle$ is a distributive lattice with zero, the following are equivalent:

I $\mathscr{L} \in \Delta^*$ i.e. for any $x \in L$, $(x)^{**} = (x')^*$ for some $x' \in L$.

II For any $x \in L$ there is $x' \in L$ such that $x \wedge x' = 0$, $x \vee x' \in D$.

III For any ideal I of \mathscr{L} such that $I \cap D = \Box$, there is a minimal prime ideal $M \supseteq I$.

PROOF. I \Rightarrow II. Assume $\mathscr{L} \in \Delta^*$. Then clearly $x \wedge x' = 0$. We shall see that $x \lor x' \in D$.

$$(x \wedge x')^* = (x)^* \cap (x')^* = (x)^* \cap (x)^{**} = (0)$$

and so the result follows.

II \Rightarrow III. Assume II and observe that since $I \cap D = \Box$, D can be extended to a dual ideal F maximal with respect to not meeting I. By well known results of M. H. Stone F is a prime dual ideal and also $L \setminus F$ is a prime ideal of \mathscr{L} . For any $x \in L \setminus F$ we note that $x' \notin L \setminus F$ since $x \wedge x' \in D$.

Thus $(x)^* \setminus (L \setminus F) \neq \Box$ and so, by 3.1 (i), $L \setminus F$ is a minimal prime ideal containing I.

III \Rightarrow I. Assume \mathscr{L} satisfies III. Then since $(x) \lor (x)^*$ cannot be contained in any minimal prime ideal M, for otherwise $(x)^* \backslash M$ would be empty, we deduce that $((x) \lor (x)^*) \cap D \neq \Box$. Suppose $d \in D$ is an element of $(x) \lor (x)^* - i.e. d = a \lor b$ where $a \in (x)$ and $b \in (x)^*$, then $x \lor b \in D$ also. We shall show that taking b = x' will satisfy I. Clearly $b \land x = 0$ and so $(b) \subseteq (x)^*$ or $(b)^* \supseteq (x)^{**}$. Let $t \in (b)^*$ and $s \in (x)^*$, and observe that $t \land s \land b = 0$ and $t \land s \land x = 0$. Thus $t \land s \land (b \lor x) = 0$ whence $t \land s = 0$ since $b \lor x \in D$. The reverse inclusion $(b)^* \subseteq (x)^{**}$ is now proved and so $(x)^{**} = (b)^*$.

All of these results are collected in the following theorem.

THEOREM 1. Let $\mathscr{L} = \langle L; \lor, \land, 0 \rangle$ be a distributive lattice with zero. Then the following are equivalent:

I $\mathscr{L} \in \Delta^*$ i.e. for any $x \in L$, $(x)^{**} = (x')^*$ for some $x' \in L$.

II $\mathcal{T}_h = \mathcal{T}_d$ i.e. the two topologies on \mathcal{M} coincide.

III *M* is compact in the hull-kernel topology.

IV \mathscr{L}/R is a Boolean lattice.

V For any $x \in L$ there is $x' \in L$ such that $x \wedge x' = 0$, $x \vee x' \in D$.

VI For any ideal I of \mathscr{L} with $I \cap D = \Box$, there is a minimal prime ideal $M \supseteq I$.

4. An Example

We give an example of a distributive lattice belonging to Δ^* which is not pseudo-complemented. Let $I^+ = \{0, 1, 2, 3, \dots, n, \dots\}$ denote the chain of non-negative integers, and **2** denote the two element chain. Consider the lattice (cardinal product)

$$L = (\mathbf{2} \times I^+) \cup \{u\}$$

with a unit u adjoined. The lattice has a zero (0, 0) and we shall see that for any $x \in L$, $(x)^{**} = (x')^*$ for some $x' \in L$.

Elements of Type
$$(0, n)$$
: $\{(0, 0)\}^* = L = \{u\}^{**}$
 $\{(0, 1)\}^* = \{(0, 0), (1, 0)\}$
 $\{(0, 2)\}^* = \{(0, 0), (1, 0)\}$
and, generally,
Elements of Type $(1, n)$: $\{(1, 0)\}^* = \{(0, 0), (0, 1), \dots, (0, n), \dots\}$
and, generally,
 $\{(1, n)\}^* = \{(0, 0)\}.$

T. P. Speed

Thus the elements of type (0, n) for $n = 1, 2, \cdots$ all have

$$\{(0, n)\}^{**} = \{(1, 0)\}^{*}$$

In fact, they are all pseudo-complemented with

$$(0, n)^* = (1, 0)$$

The elements of type (1, n) for $n = 1, 2, \cdots$ all have

$$\{(1, n)\}^{**} = \{(0, 0)\}^{*}.$$

They also are pseudo-complemented with $(1, n)^* = (0, 0)$ i.e. they are all dense.

Finally $(0, 0)^* = u$ exists but (1, 0) is not pseudo-complemented, since the join of all elements (0, n) does not exist. However

$$\{(1, 0)\}^{**} = \{(0, 0), (1, 0)\} = \{(0, 1)\}^{*}.$$

5. Some Properties of Δ^*

We begin this section with a simple result which determines when elements of Δ^* are Boolean. A distributive lattice with zero is said to be *disjunctive* if for any pair x and y with x < y there is z such that

$$0=x\wedge z\neq y\wedge z.$$

THEOREM 2. Let $\mathscr{L} = \langle L; \vee, \wedge, 0, 1 \rangle \in \Delta^*$. Then the following are equivalent:

I L is a Boolean lattice

II L is a disjunctive lattice

III 1 is the only dense element of \mathcal{L} .

PROOF. I \Rightarrow II. II is a known property of Boolean lattices.

II \Rightarrow III. Since any $x \in L$ must satisfy x < 1 or x = 1 II implies that if $x \neq 1$ there is at least one element $z \neq 0$ with $x \wedge z = 0$. Thus 1 remains as the only dense element.

III \Rightarrow I. If 1 is the only dense element, then V of Theorem 1 tells us that for any $x \in L$ there is an $x' \in L$ with

$$x \wedge x' = 0 \ x \vee x' = 1$$

i.e. \mathscr{L} is complemented and hence a Boolean lattice.

Our remaining results concern the congruence R in lattices $\mathscr{L} \in \Delta^*$. Recall that for any dual ideal F of \mathscr{L} , the least congruence with F as a congruence class is the congruence $\Theta[F]$ defined by

 $(x, y) \in \Theta[F]$ if and only if $(x \lor y) \land f = x \land y$ for some $f \in F$.

The following Proposition can be considered as an extension of Theorem 16 p. 148 of G. Birkhoff [1].

PROPOSITION 5.1. Let $\mathscr{L} = \langle L; \vee, \wedge, 0, 1 \rangle \in \Delta^*$. Then for $a, b \in L$

- (i) If $a \wedge d = b \wedge d$ for some $d \in D$, we have $(a, b) \in R$
- (ii) If $(a, b) \in R$ there is $d \in D$ such that $a \wedge d = b \wedge d$.

PROOF. (i) If $a \wedge d = b \wedge d$ we may use 3.1 (v) to obtain

$$(a)^{**} = (a)^{**} \cap (d)^{**} = (a \wedge d)^{**} = (b \wedge d)^{**} = (b)^{**} \cap (d)^{**} = (b)^{**}$$

since $(d)^{**} = L$. Thus $(a)^{***} = (b)^{***}$ or $(a)^* = (b)^*$ which gives us the result $(a, b) \in \mathbb{R}$.

(ii) Suppose $(a, b) \in R$ i.e. $(a)^* = (b)^*$. Then since $\mathscr{L} \in \Delta^*$ we know a' and b' exist and have the required properties. In fact we may take a' = b'.

Now consider $d = (a \land b) \lor a'$.

$$(d)^* = (a \wedge b)^* \cap (a')^* = (a)^* \cap (a)^{**} = (0)$$
 and so $d \in D$.

Also

$$a \wedge d = a \wedge ((a \wedge b) \vee a')$$

= $(a \wedge b) \vee (a \wedge a')$
= $a \wedge b$

and

$$b \wedge d = b \wedge ((a \wedge b) \vee a')$$

= $(b \wedge a) \vee (b \wedge a')$
= $a \wedge b$

Thus $a \wedge d = b \wedge d$ for some $d \in D$ and our proposition is proved.

REMARK. Proposition 5.1 can be considered as saying: For $\mathscr{L} \in \Delta^*$ $R = \Theta[D]$. This is easily seen, for if $(a \lor b) \land d = a \land b$ for $d \in D$, $(a, b) \in R$ follows readily. Similarly if $(a, b) \in R$ take $d = (a \land b) \lor a'$ and we find $(a \lor b) \land d = a \land b$.

It is known that the largest congruence on \mathscr{L} with a given dual ideal F as congruence class is the congruence R'_F defined by

$$(x, y) \in R'_F$$
 if and only if $(x; F)^{\dagger} = (y; F)^{\dagger}$

where $(a; F)^{\dagger} = \{t \in L : a \lor t \in F\}$. Our next proposition relates this congruence to R when F = D.

PROPOSITION 5.2. Let $\mathscr{L} = \langle L; \lor, \land, 0, 1 \rangle \in \Delta^*$, then $R = R'_D$.

PROOF. We must show that $(a)^* = (b)^*$ if and only if $(a; D)^{\dagger} = (b; D)^{\dagger}$. But since it is known that $R \leq R'_D$ in the partial ordering of congruences we need only prove the if assertion. Suppose $t \lor a \in D$ when and only when $t \lor b \in D$. I.e.

$$(t \vee a)^* = (t)^* \cap (a)^* = (0) \Leftrightarrow (t)^* \cap (b)^* = (0)$$

This gives us, since $\mathscr{L} \in \varDelta^*$

$$(t')^{**} \cap (a')^{**} = (0) \Leftrightarrow (t')^{**} \cap (b')^{**} = (0)$$

By 3.1 (v) this is equivalent to

$$(t' \wedge a')^{**} = (0) \Leftrightarrow (t' \wedge b')^{**} = (0)$$

or

$$t' \wedge a' = 0 \quad \Leftrightarrow t' \wedge b' = 0$$

Now any element of L is of the form t' and so this last result tells us that $(a')^* = (b')^*$, and finally

$$(a)^* = (b)^*.$$

Hence $(a, b) \in R$ and $R'_{D} \leq R$. The result is now proved.

We can combine the last two results in

THEOREM 3. Let $\mathscr{L} = \langle L; \lor, \land, 0, 1 \rangle \in \Delta^*$. Then $\Theta[D] = R = R'_D$ i.e. R is the unique congruence with the dual ideal of dense elements as a congruence class.

It should be remarked that Theorem 3 was suggested by a result of J. Varlet [7] for pseudo-complemented modular lattices. The method of proof however, is entirely different from that used in [7].

Our final result is also an analogue of a result of J. Varlet [6] first proved for pseudo-complemented modular lattices. Since the proof in this case is similar to that of [6] we omit it.

PROPOSITION 5.3. Let $\mathscr{L} = \langle L; \vee, \wedge, 0, 1 \rangle \in \Delta^*$ and suppose D is principal i.e. D = [d] where $d \in D$. Then

 $(a, b) \in R$ if and only if $a \wedge d = b \wedge d$ and $\mathscr{L}/R \cong (d)$.

For further results about lattices in Δ^* , especially ones involving Stone lattices, we refer to [5].

References

- [1] G. Birkhoff, 'Lattice Theory'. Amer. Math. Soc. Colloq. (1948).
- [2] M. Henriksen and M. Jerison, 'The space of minimal prime ideals of a commutative ring'. Trans. Amer. Math. Soc. 115 (1965), 110-130.
- [3] J. Kist, 'Minimal prime ideals in commutative semigroups'. Proc. Lond. Math. Soc. Ser 3 13 (1963), 31-50.
- [4] T. P. Speed, 'A note on commutative semigroups' J. Aust. Math. Soc. 8 (1968), 731-736.
- [5] T. P. Speed, 'On Stone lattices' J. Aust. Math. Soc. 9 (1969), 297-307.
- [6] J. Varlet, 'Contributions à l'étude des treillis pseudo-complémentés et de treillis de Stone'. Mem. Soc. Roy. des Sci. de Liege 5 ser. 8 (1963), 1-71.
- [7] J. Varlet, 'Contributions a l'étude des treillis pseudo-complémentés et de treillis de Stone'. Thesis: Univ. de Liège (1964).