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TENSOR PRODUCTS OF POSITIVE DEFINITE
QUADRATIC FORMS III

YOSHIYUKI KITAOKA

In the previous papers [2], [3] we treated the following two questions.
Let L, M, N be positive definite quadratic lattices over Z:

(i) If L,M are indecomposable, then is L ® M indecomposable?

(ii) Does LM = LQ®N imply M = N?

In this paper we discuss the uniqueness of decompositions with
respect to tensor products. Our aim is to prove the following two
theorems.

THEOREM 1. Let L;,M,; be indecomposable positive definite binary
quadratic lattices with L; = Ly, M; = M,, m(L;) = m(M,) =1. For any
isometry o: K7, L; = Q?_, M;, we hawe ¢ = X}, 6; where a; 18 an isometry
from L; on M;, changing the suffix if necessary.

THEOREM 2. Let L;,, M, be positive definite quadratic lattices with
[L;: L] < oo, [M;: M) < co. Assume that

(i) L; (resp. M,) is of E-type except at most one,

(ii) sL; = sM, = Z, and m(L,), m(M,) are prime numbers, and

(iil) L;, M, are indecomposable.
Then for any isometry o: @7, L; = Q™. M; we have n = m and ¢ = Q gy,
where o; 1S an isometry from L; on M;, changing the suffix if necessary.

We must explain the notations and terminologies in two theorems.
By a positive definite quadratic lattice we mean a lattice in a positive
definite quadratic space over the rational number field Q. For any
quadratic space we use the same letter @, B which are the correspond-
ing quadratic form and bilinear form 2Bz, ) = Q(x + ) — Q(x) — QW)).
Let L be a positive definite quadratic lattice; then sL denotes {3 B(x;, ¥:);
x;,¥; €L} and we put m(L) = min Q(x) where % runs over non-zero
elements of L. (L) stands for {x e L; Q(x) = m(L)}, and L is the sub-
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module of L spanned by elements of IN(L). L is called E-type if every
element of M(L ® M) is of the form x ® y (x € L, y € M) for any positive
definite quadratic lattice M. If either sL C Z, m(L) < 6 or rank L < 42,
then L is of E-type [1].

§1. In this section we define a weighted graph and prove some
properties.

DEFINITION. Let A be a finite set, and [,] be a mapping from
A X A into {t; 0 <t < 1} such that

(i) [a,a’] =1 if and only if @ = a’, and

(i) [a,a’] = [0/,a] for a,a’ in A.
Then we call (4,[, ]) or simply A a weighted graph. A weighted graph
A is called connected if for any 2,y in A there are elements z, of A
suchthat x =2, ¥y =2, and [2,,2,,] # 0@ =1,.-..,» —1). For weighted
graphs A,B we define the direct product A X B by [(a,b), (¢/, )] =
[a,a’1[b,b1 (a,a’ €A, b,b" e B); then A X B is clearly a weighted graph.
It is also clear that the direct product of connected weighted graphs is
connected. A bijection f from A on B is called an isometry if f sat-
isfies [f(a), f(a)] = [a,a’] for a,a’ € A.

LEMMA 1. Let A,B,C be connected weighted graphs, and let ¢ be
an isometry from A X B on A X C. If there are bye B, ¢, C such that
a(z, by) = (f(x), ¢c,) for every x in A, then f is an isometry from A on
A and there is an isometry g from B on C with o(x, ) = (f(x), 9(v))
(xeA, yeB).

Proof. Since ¢ is a bijection and A is a finite set, f is a bijection
of A. Moreover for a,a/ in A we have [a,a’] = [(a, by, (&, b)] =
[(f (@), ¢p), (f (@), c)] = [f(a), f(a))]. This means that f is an isometry of
A. Multiplying f~! X id; to ¢, we have only to prove the lemma in case
of f=1. Put S={BcB;a@b)=(ac) for every acA and bebB,
where ¢ is only dependent of b}. S is not empty since Ss{b,}. Take
an element B’ in S such that # B’ > #B for B in S. If B’ =B, then
we have o¢(a, b) = (a, g(b)) for ac A, beB. It is easy to see that g is
an isometry from B on C, and this completes the proof. Now we as-
sume B’ =+ B. We have to show that this implies a contradiction.
Define a subset C’ by ¢(4,B) = (A4,C"). Put m = max[b,d’] where
beB’, b’e¢B’, and we may assume m > max[c,¢’] where ceC’, ¢ ¢/,
taking ¢! instead of ¢ if necessary. Since B is connected, m is positive.
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Put m = [b,b"] (beB’, b’ ¢ B’) and take any element z of A. Put o(x, 0’
= (', ¢;); then ¢, is not in C’ since ¢, € C’ implies (x,b)co ¥ (4,C) =
(A, B). Putting o(x,b) = (x,c), we have m = [b, 0] = [(x, b), (x, )] =
[(z, ¢), @/, ¢)] = [z, 2'llc,¢,]. If = £ «, then 0 <[x,2’] <1 implies a
contradiction m <[¢,¢] < m. Hence z' =2z follows. Thus we get
a(x, ) = (x, e(x)) (c(x) € C) for every z in A. For z,y in A with [z, y]
# 0, [z,y] = [(z, D), (¥, D] = [(z, c(@)), W, cY)] = [z, ylle(x), c(y)] implies
[e@),c(y)] =1, and so e(x) = ¢(y). Since A is connected, this yields
that c¢(z) in C is independent of x in A, and then it implies a con-
tradiction B’ U {b’}eS and $ (B’ U {b'}) > ¢ B'.

LEMMA 2. Let L be a positive definite quadratic lattice. For z,y
in L we put [z,y] = |B@, y)|/m(L). Then (ML) +1,[,]) is a weighted
graph and it is connected if and only if L is indecomposable.

Proof. Take z,y in I(L); then & = +y if and only if |B(z,y)| =
m(L). Moreover B(z,y)? < Q@)Q(y) = m(L)* implies that M(L)/+£1 is a
weighted graph. The latter part is obvious.

We say that ((L)/x£1,[, 1) is a weighted graph associated to L.

§2. Let L; M, be positive definite quadratic lattices and let o be
an isometry from ®7., L; on Q7, M, Suppose that

(i) ML) =Q@D(Ly), MM, =& DM ),

(ii) [Ls: Lg, IM,: M,;] < co for every i,j,

(i) M@L)/x£1l, MM)/+1 are connected weighted graphs for
every 1,7.

Let A, B, A, B, be weighted graphs associated to ® L,, ® M,, L,, M,
respectively. Then ¢ induces an isometry from A = [[7, 4; on B= [[,B;
which is denoted by the same letter o.

THEOREM. If it follows that n=m, ¢ = [[}.,0; where o; is an
isometry from A, on B,, changing the suffix if necessary, then we have
o = Qi u, where p; is an isometry from L, on M;, changing the suffiz
if necessary.

Proof. We may assume ¢ = [[ o; Where ¢; is an isometry from A,
on B;. By the same letter ¢; we denote a mapping from IN(L,) on IM(M,)
which induces an isometry ¢, from A; = P(L;)/+1 on B, = M(M,)/£1.
Fix any element ¢; in M(L,) (1 >2). Then ¢(e®e,® -+ ®e,) = +a,e)
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®a:(e) ® - - - ®anle,) holds for every e in M(L,). Putting +a,(e) = p(e),
then s(e®e, ® --- Qe,) = m(e) ®ay(e) @ - -+ Danle,) for any e in D(L,).
This means that g, is an isometry from L, onto M,. Since M,® o,(e,)
® -+ ®ayle,) is a direct summand of ® M, and [L,: L] < co, g is an
isometry from L, into M, Similarly we get an isometry p; from L,
into M, so that d(e,® --- ®e,)) = +ule) ® - -+ @ pnle,) for e; in M(L,),
where 4 may depend on the choice of e¢;. Since IM(L,)/=+1 is connected
and moreover 6 = ¢ if a(,® -+ R e,) = dm(e) ® -+ ® pn(€,), (el ® ---
Q) =dumE)® --- Q pyle;) are not orthogonal, + does not depend on
the choice of e;. Thus we get ¢ = ® p;, taking —p, if necessary. Since
g is an onto-mapping, p; is an isometry from L, on M,. This completes
the proof.

§3. First we discuss the case of Theorem 1. Let L be an inde-
composable binary positive definite quadratic lattice with L = L, m(L)
=1. Then L has a basis {e,, e} so that Q(e) = Q(e) =1, 0 < B(e, e)
< %, and moreover we have IM(L) = {*e, =6, +(e — e)} (F(e;, — )
happens only when B(e, ¢, = 4). Let A; be a weighted graph associated
to L; then A; is connected. # A, is two for B(e,e,) < 3. If B(e,e,)
= 4, then $ A, = 3 and [a;, a,] = } for i # j where we put 4, = {a,, a,, a}.

Let L;,,M;, 0 be as in Theorem 1; then L, M, are of E-type, and
define A, A;,B,B; and ¢ as in §2; then we have

LEMMA 3. ¢ = [] 0; where g, is an isometry from A, on B,;, changing
the suffix if necessary.

Proof. We prove this by the induction with respect to # A. Put
m = max [a, ¢’] = max[b, b’] where a,a’c A, a + o’ and b,b’eB, b+ b'.
Since A4;, B; are indecomposable, we get 0 <m < 1. Take a+ o in A
with [a,a’] = m. Putting ¢ = []a;, o = ][]e, m=1]] [a;a] follows.
Noting [a;, a]] < 1 for a; # ], the maximality of m implies that there
is an index j such that [a;,a]]l =1, i.e., a; = a; for 7+ 7, and a; # o
We may assume j =1, and similarly o(a) = [] b;, o(@’) = [] b}, b; = b;
for ¢ >1 and b, # b,. Then m = [a,, a]] = [b, b]] follows. If m <4,
then A, = {a,, 0]}, B, = {b,, b7} and ¢(A4,; X [[}-.a) = B, X [[?-.b;. Hence
Lemma 1 and the assumption of the induction completes the proof.
Suppose m = %; then there is an element a;’ in A4, so that 4, = {a,, i, a1}
and [ay, 0] = [0, a1 = 4. Put o’ X [[i..a) = [] b; then [a,a]] =
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la}, a1'] = % implies [b,, b7] []7.. [07, b1 = [b], b)'] []7-.[b7, b,] = §. Suppose
.= by; then []2,[b/,b] =14, and so [b],b)] =1, that is, b] = by = b,.
This is a contradiction. Hence we have b, # b7, and then [b,, )] = }.
Therefore b = b; for ¢ >2 and ¢(4, X [[L.,a;) = B, X [[?.,b;- This
completes the proof as above.
Now Theorem 1 follows from Theorem in §2.
Next we discuss the case of Theorem 2.

LEMMA 4. Let a;,0,€¢Z and 0 < b; < a;, and let a, be prime. Put
. (b;/a) =0bla, (a,b) =1. Then a > a; for some i if n > 2.

Proof. We may suppose ¢, < --- < @,, and assume o < a; for any
4. Since a divides [] a;, we have a =a,. b, [[~,(D;/a) =b and a; b,
imply [[%.a;|[[?-.b:;. This contradicts 0 < b; < a,.

LEMMA 5. Let A, B, be connected weighted graphs with $A; > 1,
$B;, > 1, and let p;, q; be primes. Suppose

{le,y]; x,yc A} C {a/p:;;0=0,1, .-+, 05}
and

{[w,y]; 2, ye B} C{b/q;; b=10,1,--+,q;}.

If ¢ is an isometry from [[?.,A; on [[™, B, then n=m and o = [] o,
where a; is an isometry from A; on B, changing the suffix if necessary.

Proof. We prove by the induction with respect to # [[2, 4,. Since
A; is connected and #A; > 1, for any element o in A, there is an
element o’ in A; such that 0 <[a,a’] <1. If [a,a'] #0,1 for a,a’ in
A;, then the denominator of [a,a’] is a prime p;,. Without loss of gen-
erality we may assume p, = - =0, <P <+ <Dy =" =@,
<@pu<-<qn Put A=1]2,4, B=[]r,B; and fix any element
a =[] a; of A. Suppose that the minimal value of the denominator of
[a,a’] with [a,a’] #0,1 (a’c A) is taken by o' = [[a;eA. Then the
above remark and Lemma 4 imply a; = a; for 7+ j, and o} # a; for
some j and so the minimal value is obviously p,, and 7 < k. On the
other hand, by virtue of Lemma 4 and the connectedness of A;, it is
easy to see that 4, X --+ X Ay X @y X +++ X @, is a subset of A con-
sisting of elements z such that there are elements z, =a,-.--,2, =2 of
A satisfying that the denominator of [z;,2;,,] is p, for ¢ =1,..-,7 — 1.
From the similar argument for o(e) = [[ b; in B follows that the
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corresponding minimal denominator is ¢,, and the corresponding subset
of B for q,, o(a) instead of p,a is B; X -+ X By X by X +++ X by
Since ¢ is an isometry, we have p, = q,, and 80 (4, X -+ X A, X Q.
X o+ X)) =B X+« XB, X by, X -+ X by, by their definitions. This
implies that A, X --- X A, and B, X --+- X B, are isometric. Therefore
Lemma 1 and the assumption of the induction completes the proof if
n > k. Thus we may suppose #=~k. Then o¢(4) = [[L,B; X bpy X
«++ X b, implies &~ = m. Moreover we have n = m since the maximal
value of the denominators of [a, a’] (a,a’ € A) (resp. [b,d’] (b,b’ e B)) is
p? (resp. p™), and they are equal. For simplicity we put p, = p in the
following.
(i) Assume that 4, contains distinct three elements zx, 2, x; such
[, 2%, )l 2] = 0. Fix any element a; in A; (¢ >2), and put
(@, [172 @) = [[%1 be,; (by,; € By); then [z, 2] = 7., [bs,5, by, ;1 0. Since
0 < [by,; bs;] <1 and the denominator of [b;;, byl is p if b;; # iy
compairing the denominators of both sides, we have b;; = b, ; for any
7 except one index if i # k. Without loss of generality we may assume
by # by, b1y =b,; (1 >2). Similarly we may assume b,, = b, for
k=t Ift>2 then b, ;=0,;=>b,; for j + 1,t. This implies [x,, 2]
= [b11, b3 1[0y, bs] = [y, b,.1[D;ss b5 ]. The denominator of the left
(resp. right) side is p (resp. p® since b,, # b,y b, # b;,. This is a
contradiction. Hence we get t =1, and so b,, # bs,, b,; = b, ; (j > 2).
Thus we may put o(x, X [[%2¢) = ¥ X [[220: WreB,b;eB;). Take
an element «;, in A4, such that [a,,a;] #+ 0,1. Similarly we get o(z; X
753 0 X 07) = 25 X []4.;0; for some z, in B; and b; in B,. Suppose
7+ 1, then [a,, o] =[x, X [[7 00 % X [[251 @ X @] = [y, b1[D,, 2] X
ITee1,5 [04, Bl. We note that the denominator of the left side is p. If
b; # b; for i+ 1,7, then [y,, b]] =1, and so ¥y, = ¥, = ¥;,- This implies
a contradiction x, = x, = x,. Hence b; = b] for i #+ 1,7. b] #* v, implies
b; =2, (#2,2), and so we get y, =y, = b}, taking ¥ =2 or 3. This is
a contradiction. Hence we have b; = ¥,, and similarly b; = y,. This
contradicts x, + x,. Hence j equals 1, and we may put o(x, X []35: a;
X @) =2 X [[120] (2x € By, bj e By). oy X [[%s @) =Yi X [, b, implies
[, 5[0, 0] = [Yy, 2,) []7-2[Ds, b7]. Putting k& = h, and compairing the
denominators we have b; = b, for any 7> 2 except at most one iq.
Putting k& # h, the denominator of the left hand equals p?. Hence the
exceptional suffix exists. Then putting k= h again, we have ¥, = 2,
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for £ =1,2,3. Thus we have o(z; X [[255 a; X @) =¥y, X [|7;b;. Doing
the similar operations for a;, a;,, we have a(x; X [[’-;A) C Y X [[%: B
since A, is connected. Similarly o '(y; [[5: 0 = @ [[7-20; and [y, ¥.]
X W ¥sllys, w1l # 0 imply o7'(y [[7., B) C @ X [, Ay and so o2, X

2 A) =y X [1%-, B;. This implies []%.,A; = []%,B;, and then Lem-
ma 1 and the assumption of the induction completes the proof.

(ii) Suppose that A, contains distinet four elements z; such that
(21, 2,)[2,, 2], 2] = 0, [2,, 2] = [%,, 2] = [%s, 2] = 0. Fix any element
a;in A; (0>2). Put o(w, X [[2 @) =[]%1 Ds,¢; then [z, 2] = [[7=1 [b,45 b1,4]
+ 0. Since the denominator of the left hand is p for k + 1, there is
a number ¢, such that b, ; = b,; for ¢ # t;, and b, #* b,

a) Suppose that ¢,,¢,, ¢, are distinct.

[x;, 2,) = 0 implies [b,,, b, ;] =0 for some 4. Since b, ; =10b,; for j +
ty sty ¢ equals ¢, ¢ or ¢,. If ¢ =1¢, then b;,, =0,, = b,,; implies a
contradiction [b;, b,;,] = 1. Similarly ¢ =1¢, or ¢ =1¢, implies a con-
tradiction.

b) Suppose that ¢, =&, # ¢,.

[2;, ] = 0 implies [b,;, b,;] = 0 for some 4. b, ; =0, ; for j = ¢, yields
t=1t, or t, ¢==t, implies b,,, = b,,,, and so [b;4 b, ;] = 0. This con-
tradicts [x;, ;] = 0. Similarly ¢ = ¢, is a contradiction.

Similarly ¢, # ¢, = ¢, or t, = t, + ¢, implies a contradiction. Hence
we have ¢, =1t, =¢, =1 (say). Thus we may assume g(x, X [[7, @) =
Yi X [[=2b; WeeB, b,eB;). Take an element o, in A, with [a,, @]
# 0,1, and put a(x, X [[iora; X a,) = 2 [[4x;0; (€ By, bjeB). As-
sume j#1; then [z, X [[ias 2, X [[i5 @ X 7] = [@, ] X [ay, @7]
= [Yu, 0[5 2] [T1p1,5 05, 07). [y, 2,)[00, @7] % O implies [b,,2,]#0 (& =
1,2,8,4), [b, b]] #0 for i+ 1,7. Similarly [z, 2,] + 0 implies [y, b]
#*0 (k=1,2,8,4). This means [z, z,]la,, a,] # 0 for any k,¢ and con-
tradicts [x,, x;] = 0. Thus we have j =1, and [x, x,]. [a,, a,] = [¥;, 2]
X [1%-.[bs b7]. Since the denominator of the left hand for k=1, t =2
is p? there is at least one suffix ¢ such that b, # b,. Moreover the
denominator of the left side for ¥ =t is p. Hence there is no such
suffix except 4, and this yields [y, 2;] =1, i.e., ¥y, = #;. As the proof
of the case (i) we have a(x; X [[;4;) = ¥ X [][%.B; and complete the
proof for the case (ii) by the induction and Lemma 1.

For a weighted graph W we make a usual graph, joining two ele-
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ments x,y with [x,y] = 0. Then, by virtue of (i), (ii), we may assume

that A,, B, do not contain subgraphs A , T__o Hence A,, B; are

o—0
o—o0— .-+ —0 Or / N as graphs-

(iii) Suppose that A, contains three distinct elements z,, x,, z, such

that [, 2,] % 0, [, @] # 0, [, 2] =0, i.e,, % % Take any ele-

ment a, in 4;, and put o(z; [[2, ) = [[%, bk,s (b, € B). Compairing the
denominators of [x,, ®,] = []%, [bk,s, b;,1], there are numbers ¢,s so that
b,y =b,, for t#q, by, =0b,,; for 1 #s. q+ s implies b,; = b,; = b,
for ¢+ 4q,s, b,,=20,, and b, ,=0b,,, and then we have [z, ] =
1721 [B1,4 B3] = [By1,gr B3,gl[By 5, b6l = [By,q, Dgl[bsgy by, = 0. This contra-
dicts [z, 2,][x,, 4] = 0. Thus we may assume q =8 =1 (say), and
o(xy [[7-2@) = Y [[%20; WreB,, b;eB,;). Doing the similar thing for

z ® .
o &Y, we have o, X [[h.@) = 2, [[1x; 0 (2. €B,, bieB) for

k=2,3,4. Compairing the case k¥ = 2,3, we get 2z, =0, =2, if j# 1.
This is a contradiction, and so 7 = 1. This means b; = b, for 7 > 2 and

o(@, [[7-, @) = 2, [[%, b;. Since A, is o—o—-— or /N, we have
o X [[i.a) = f(@) X [[t-. b, for any z in A,, that is, (4, X [, a;)
C B, X [[?-2b;. Similarly we have ¢7'(B; X [[7-. b)) € A; X [[?-, @, and
80 a(4, X [[?-2@) = B, X [[3,b;. Lemma 1 and the induction complete
the proof.

(iv) By virtue of (i), (ii), (iii) we have only to prove the case that
$#A;,=4#B,=2. Put m =maxla,a] (a,6’ €A, a+ o) and assume m =
[a,a] for @ = [, @ o = [[2,0a;. Since [a, 0] <1 if a; +# a], by the
definition, there is a suffix ¢ so that ¢, = a} for ¢ # ¢ and a, = a,. Putting
a(@) = [] by, (@) = [] i, there is a suffix s so that b, = b] for ¢+ s,
and b, # b,. Without loss of generality we may assume ¢ = s = 1; then
A, = {a,, 0}, B, = {b, b} and [a,,a] =[b,,b]] =m. Hence A, = B, and
a(A; X [[t-20) = B, X [, b,. Lemma 1 and the assumption of the in-
duction complete the proof of Lemma 4.

To complete the proof of Theorem 2 we need only to prove that
the cardinalities of weighted graphs associated to L,, M; are not 1. It
follows immediately from the assumption (ii).

Let L be an indecomposable positive definite quadratic lattice, and
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put A = ML)/ +1 and we consider A as a weighted graph by [z,y] =
|B(z, ¥)|/m(L) for z,yeM(L)/+1 as above. We call such a weighted
graph a quadratic weighted graph associated to L. Then the following
questions arise.

(i) Let A, B; be connected quadratic weighted graphs and f be
an isometry from [[r,A4; on [[7,B;. What is a sufficient condition to
the following assertion?

n = m and f = [] f; (changing the suffix if necessary), where f; is an
isometry from A; on B,.

(ii) Let L be an indecomposable positive definite quadratic lattice
with L = I, and let A be an associated quadratic weighted graph. If
A = B x C where B,C are quadratic weighted graphs, then is there a
decomposition L = M ® N so that B (resp. C) is a quadratic weighted
graph associated to M (resp. N)?

1 1 4 1 -1 4
ratic graphs are isometric but M, N are not isometric.

Remark 2. Let L be a positive definite quadratic lattice with L
=1L, m(L) =1, and assume that M(L)/+1=A x B where A,B are
weighted graphs with $ A, $ B > 1. Put MN(L)/+1 = {e;} and e, = (a, by)
(a; € A, b,eB). Suppose that there is a mapping s, (resp. s, from
A X A (resp. B X B) into {41} so that s/(a,a) = s,(b,b) =1 for every
e in A and every b in B, and B(e; e;) = s,(a;, a;)8,(b;, b)lay, a;1lbs, byl
for any ¢,7. Then we can show that there are positive definite quad-
ratic lattices M, N such that L= M Q®N, M =M, N = N, m(M) = m(N)
=1 and A, B are quadratic graphs associated to M, N respectively.

The assumption on s, s, is not satisfied for a decomposable lattice M | N
in Remark 1.

4 1 1 4 1 1
Remark 1. For M ={1 4 1|, N=|1 4 —1), associated quad-
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