Y. Kitaoka Nagoya Math. J. Vol. 70 (1978), 173-181

TENSOR PRODUCTS OF POSITIVE DEFINITE QUADRATIC FORMS III

YOSHIYUKI KITAOKA

In the previous papers [2], [3] we treated the following two questions. Let L, M, N be positive definite quadratic lattices over Z:

- (i) If L, M are indecomposable, then is $L \otimes M$ indecomposable?
- (ii) Does $L \otimes M \cong L \otimes N$ imply $M \cong N$?

In this paper we discuss the uniqueness of decompositions with respect to tensor products. Our aim is to prove the following two theorems.

THEOREM 1. Let L_i , M_i be indecomposable positive definite binary quadratic lattices with $L_i = \tilde{L}_i$, $M_i = \tilde{M}_i$, $m(L_i) = m(M_i) = 1$. For any isometry $\sigma : \bigotimes_{i=1}^n L_i \cong \bigotimes_{i=1}^n M_i$, we have $\sigma = \bigotimes_{i=1}^n \sigma_i$ where σ_i is an isometry from L_i on M_i , changing the suffix if necessary.

THEOREM 2. Let L_i, M_i be positive definite quadratic lattices with $[L_i: \tilde{L}_i] < \infty$, $[M_i: \tilde{M}_i] < \infty$. Assume that

- (i) L_i (resp. M_i) is of E-type except at most one,
- (ii) $sL_i = sM_i = Z$, and $m(L_i), m(M_i)$ are prime numbers, and
- (iii) \tilde{L}_i, \tilde{M}_i are indecomposable.

Then for any isometry $\sigma: \bigotimes_{i=1}^{n} L_i \cong \bigotimes_{i=1}^{m} M_i$ we have n = m and $\sigma = \bigotimes \sigma_i$, where σ_i is an isometry from L_i on M_i , changing the suffix if necessary.

We must explain the notations and terminologies in two theorems. By a positive definite quadratic lattice we mean a lattice in a positive definite quadratic space over the rational number field Q. For any quadratic space we use the same letter Q, B which are the corresponding quadratic form and bilinear form (2B(x, y) = Q(x + y) - Q(x) - Q(y)). Let L be a positive definite quadratic lattice; then sL denotes $\{\sum B(x_i, y_i);$ $x_i, y_i \in L\}$ and we put $m(L) = \min Q(x)$ where x runs over non-zero elements of L. $\mathfrak{M}(L)$ stands for $\{x \in L; Q(x) = m(L)\}$, and \tilde{L} is the sub-

Received June 21, 1977.

module of L spanned by elements of $\mathfrak{M}(L)$. L is called E-type if every element of $\mathfrak{M}(L \otimes M)$ is of the form $x \otimes y$ ($x \in L$, $y \in M$) for any positive definite quadratic lattice M. If either $sL \subseteq Z$, $m(L) \leq 6$ or rank $L \leq 42$, then L is of E-type [1].

§1. In this section we define a weighted graph and prove some properties.

DEFINITION. Let A be a finite set, and [,] be a mapping from $A \times A$ into $\{t; 0 \le t \le 1\}$ such that

- (i) [a, a'] = 1 if and only if a = a', and
- (ii) [a, a'] = [a', a] for a, a' in A.

Then we call (A, [,]) or simply A a weighted graph. A weighted graph A is called connected if for any x, y in A there are elements z_i of A such that $x = z_1, y = z_r$ and $[z_i, z_{i+1}] \neq 0$ $(i = 1, \dots, r-1)$. For weighted graphs A, B we define the direct product $A \times B$ by [(a, b), (a', b')] = [a, a'][b, b'] $(a, a' \in A, b, b' \in B)$; then $A \times B$ is clearly a weighted graph. It is also clear that the direct product of connected weighted graphs is connected. A bijection f from A on B is called an isometry if f satisfies [f(a), f(a')] = [a, a'] for $a, a' \in A$.

LEMMA 1. Let A, B, C be connected weighted graphs, and let σ be an isometry from $A \times B$ on $A \times C$. If there are $b_0 \in B$, $c_0 \in C$ such that $\sigma(x, b_0) = (f(x), c_0)$ for every x in A, then f is an isometry from A on A and there is an isometry g from B on C with $\sigma(x, y) = (f(x), g(y))$ $(x \in A, y \in B)$.

Proof. Since σ is a bijection and A is a finite set, f is a bijection of A. Moreover for a, a' in A we have $[a, a'] = [(a, b_0), (a', b_0)] =$ $[(f(a), c_0), (f(a'), c_0)] = [f(a), f(a')]$. This means that f is an isometry of A. Multiplying $f^{-1} \times \operatorname{id}_C$ to σ , we have only to prove the lemma in case of f = 1. Put $S = \{\tilde{B} \subset B; \sigma(a, b) = (a, c) \text{ for every } a \in A \text{ and } b \in \tilde{B},$ where c is only dependent of $b\}$. S is not empty since $S \ni \{b_0\}$. Take an element B' in S such that $\#B' \ge \#\tilde{B}$ for \tilde{B} in S. If B' = B, then we have $\sigma(a, b) = (a, g(b))$ for $a \in A, b \in B$. It is easy to see that g is an isometry from B on C, and this completes the proof. Now we assume $B' \neq B$. We have to show that this implies a contradiction. Define a subset C' by $\sigma(A, B') = (A, C')$. Put $m = \max[b, b']$ where $b \in B', b' \notin B'$, and we may assume $m \ge \max[c, c']$ where $c \in C', c' \notin C'$, taking σ^{-1} instead of σ if necessary. Since B is connected, m is positive. QUADRATIC FORMS

Put m = [b, b'] $(b \in B', b' \notin B')$ and take any element x of A. Put $\sigma(x, b') = (x', c_1)$; then c_1 is not in C' since $c_1 \in C'$ implies $(x, b') \in \sigma^{-1}(A, C') = (A, B')$. Putting $\sigma(x, b) = (x, c)$, we have $m = [b, b'] = [(x, b), (x, b')] = [(x, c), (x', c_1)] = [x, x'][c, c_1]$. If $x \neq x'$, then 0 < [x, x'] < 1 implies a contradiction $m < [c, c_1] \le m$. Hence x' = x follows. Thus we get $\sigma(x, b') = (x, c(x)) (c(x) \in C)$ for every x in A. For x, y in A with $[x, y] \neq 0$, [x, y] = [(x, b'), (y, b')] = [(x, c(x)), (y, c(y))] = [x, y][c(x), c(y)] implies [c(x), c(y)] = 1, and so c(x) = c(y). Since A is connected, this yields that c(x) in C is independent of x in A, and then it implies a contradiction $B' \cup \{b'\} \in S$ and $\# (B' \cup \{b'\}) > \# B'$.

LEMMA 2. Let L be a positive definite quadratic lattice. For x, y in L we put [x, y] = |B(x, y)|/m(L). Then $(\mathfrak{M}(L)/\pm 1, [,])$ is a weighted graph and it is connected if and only if \tilde{L} is indecomposable.

Proof. Take x, y in $\mathfrak{M}(L)$; then $x = \pm y$ if and only if |B(x, y)| = m(L). Moreover $B(x, y)^2 \leq Q(x)Q(y) = m(L)^2$ implies that $\mathfrak{M}(L)/\pm 1$ is a weighted graph. The latter part is obvious.

We say that $(\mathfrak{M}(L)/\pm 1, [,])$ is a weighted graph associated to L.

§2. Let L_i, M_j be positive definite quadratic lattices and let σ be an isometry from $\bigotimes_{i=1}^n L_i$ on $\bigotimes_{j=1}^m M_j$. Suppose that

(i) $\mathfrak{M}(\otimes L_i) = \otimes \mathfrak{M}(L_i), \ \mathfrak{M}(\otimes M_j) = \otimes \mathfrak{M}(M_j),$

(ii) $[L_i: \tilde{L}_i], [M_j: \tilde{M}_j] < \infty$ for every i, j, j

(iii) $\mathfrak{M}(L_i)/\pm 1$, $\mathfrak{M}(M_j)/\pm 1$ are connected weighted graphs for every i, j.

Let A, B, A_i, B_i be weighted graphs associated to $\otimes L_i, \otimes M_i, L_i, M_i$ respectively. Then σ induces an isometry from $A = \prod_{i=1}^{n} A_i$ on $B = \prod_{i=1}^{m} B_i$ which is denoted by the same letter σ .

THEOREM. If it follows that n = m, $\sigma = \prod_{i=1}^{n} \sigma_i$ where σ_i is an isometry from A_i on B_i , changing the suffix if necessary, then we have $\sigma = \bigotimes_{i=1}^{n} \mu_i$ where μ_i is an isometry from L_i on M_i , changing the suffix if necessary.

Proof. We may assume $\sigma = \prod \sigma_i$ where σ_i is an isometry from A_i on B_i . By the same letter σ_i we denote a mapping from $\mathfrak{M}(L_i)$ on $\mathfrak{M}(M_i)$ which induces an isometry σ_i from $A_i = \mathfrak{M}(L_i)/\pm 1$ on $B_i = \mathfrak{M}(M_i)/\pm 1$. Fix any element e_i in $\mathfrak{M}(L_i)$ $(i \ge 2)$. Then $\sigma(e \otimes e_2 \otimes \cdots \otimes e_n) = \pm \sigma_1(e)$

 $\otimes \sigma_2(e_2) \otimes \cdots \otimes \sigma_n(e_n)$ holds for every e in $\mathfrak{M}(L_1)$. Putting $\pm \sigma_1(e) = \mu_1(e)$, then $\sigma(e \otimes e_2 \otimes \cdots \otimes e_n) = \mu_1(e) \otimes \sigma_2(e_2) \otimes \cdots \otimes \sigma_n(e_n)$ for any e in $\mathfrak{M}(L_1)$. This means that μ_1 is an isometry from \tilde{L}_1 onto $\tilde{\mathcal{M}}_1$. Since $M_1 \otimes \sigma_2(e_2) \otimes \cdots \otimes \sigma_n(e_n)$ is a direct summand of $\otimes M_i$ and $[L_1: \tilde{L}_1] < \infty$, μ_1 is an isometry from L_1 into M_1 . Similarly we get an isometry μ_i from L_i into M_i so that $\sigma(e_1 \otimes \cdots \otimes e_n) = \pm \mu_1(e_1) \otimes \cdots \otimes \mu_n(e_n)$ for e_i in $\mathfrak{M}(L_i)$, where \pm may depend on the choice of e_i . Since $\mathfrak{M}(L_i)/\pm 1$ is connected and moreover $\delta = \delta'$ if $\sigma(e_1 \otimes \cdots \otimes e_n) = \delta \mu_1(e_1) \otimes \cdots \otimes \mu_n(e_n)$, $\sigma(e_1' \otimes \cdots \otimes e_n') = \delta' \mu_1(e_1') \otimes \cdots \otimes \mu_n(e_n)$, $\sigma(e_1' \otimes \cdots \otimes e_n') = \delta' \mu_1(e_1') \otimes \cdots \otimes \mu_n(e_n')$, are not orthogonal, \pm does not depend on the choice of e_i . Thus we get $\sigma = \otimes \mu_i$, taking $-\mu_1$ if necessary. Since σ is an onto-mapping, μ_i is an isometry from L_i on M_i . This completes the proof.

§3. First we discuss the case of Theorem 1. Let L be an indecomposable binary positive definite quadratic lattice with $L = \tilde{L}$, m(L) = 1. Then L has a basis $\{e_1, e_2\}$ so that $Q(e_1) = Q(e_2) = 1$, $0 < B(e_1, e_2) \leq \frac{1}{2}$, and moreover we have $\mathfrak{M}(L) = \{\pm e_1, \pm e_2, \pm (e_1 - e_2)\}$ $(\pm (e_1 - e_2)$ happens only when $B(e_1, e_2) = \frac{1}{2}$. Let A_L be a weighted graph associated to L; then A_L is connected. $\#A_L$ is two for $B(e_1, e_2) < \frac{1}{2}$. If $B(e_1, e_2) = \frac{1}{2}$, then $\#A_L = 3$ and $[a_i, a_j] = \frac{1}{2}$ for $i \neq j$ where we put $A_L = \{a_1, a_2, a_3\}$.

Let L_i, M_i, σ be as in Theorem 1; then L_i, M_i are of *E*-type, and define A, A_i, B, B_i and σ as in §2; then we have

LEMMA 3. $\sigma = \prod \sigma_i$ where σ_i is an isometry from A_i on B_i , changing the suffix if necessary.

Proof. We prove this by the induction with respect to # A. Put $m = \max[a, a'] = \max[b, b']$ where $a, a' \in A$, $a \neq a'$ and $b, b' \in B$, $b \neq b'$. Since A_i, B_i are indecomposable, we get $0 \leq m \leq \frac{1}{2}$. Take $a \neq a'$ in A with [a, a'] = m. Putting $a = \prod a_i$, $a' = \prod a'_i$, $m = \prod [a_i, a'_i]$ follows. Noting $[a_i, a'_i] \leq 1$ for $a_i \neq a'_i$, the maximality of m implies that there is an index j such that $[a_i, a'_i] = 1$, i.e., $a_i = a'_i$ for $i \neq j$, and $a_j \neq a'_j$. We may assume j = 1, and similarly $\sigma(a) = \prod b_i$, $\sigma(a') = \prod b'_i$, $b_i = b'_i$ for i > 1 and $b_1 \neq b'_1$. Then $m = [a_1, a'_1] = [b_1, b'_1]$ follows. If $m < \frac{1}{2}$, then $A_1 = \{a_1, a'_1\}$, $B_1 = \{b_1, b'_1\}$ and $\sigma(A_1 \times \prod_{i=2}^n a_i) = B_1 \times \prod_{i=2}^n b_i$. Hence Lemma 1 and the assumption of the induction completes the proof. Suppose $m = \frac{1}{2}$; then there is an element a''_1 in A_1 so that $A_1 = \{a_1, a'_1\} = \frac{1}{2}$. Put $\sigma(a''_1 \times \prod_{i=2}^n a_i) = \prod b''_i$; then $[a_1, a''_1] = \frac{1}{2}$.

QUADRATIC FORMS

 $[a'_1, a''_1] = \frac{1}{2}$ implies $[b_1, b''_1] \prod_{i=2}^n [b''_i, b_i] = [b'_1, b''_1] \prod_{i=2}^n [b''_i, b_i] = \frac{1}{2}$. Suppose $b_1 = b''_1$; then $\prod_{i=2}^n [b''_i, b_i] = \frac{1}{2}$, and so $[b'_1, b''_1] = 1$, that is, $b'_1 = b''_1 = b_1$. This is a contradiction. Hence we have $b_1 \neq b''_1$, and then $[b_1, b''_1] = \frac{1}{2}$. Therefore $b''_i = b_i$ for $i \ge 2$ and $\sigma(A_1 \times \prod_{i=2}^n a_i) = B_1 \times \prod_{i=2}^n b_i$. This completes the proof as above.

Now Theorem 1 follows from Theorem in $\S 2$.

Next we discuss the case of Theorem 2.

LEMMA 4. Let $a_i, b_i \in \mathbb{Z}$ and $0 < b_i < a_i$, and let a_i be prime. Put $\prod_{i=1}^{n} (b_i/a_i) = b/a$, (a, b) = 1. Then $a > a_i$ for some *i* if $n \ge 2$.

Proof. We may suppose $a_1 \leq \cdots \leq a_n$, and assume $a \leq a_i$ for any *i*. Since a divides $\prod a_i$, we have $a = a_1$. $b_1 \prod_{i=2}^n (b_i/a_i) = b$ and $a_i \not\mid b_1$ imply $\prod_{i=2}^n a_i \mid \prod_{i=2}^n b_i$. This contradicts $0 < b_i < a_i$.

LEMMA 5. Let A_i, B_i be connected weighted graphs with $\#A_i > 1$, $\#B_i > 1$, and let p_i, q_i be primes. Suppose

$$\{[x, y]; x, y \in A_i\} \subset \{a/p_i; a = 0, 1, \dots, p_i\}$$

and

$$\{[x, y]; x, y \in B_i\} \subset \{b/q_i; b = 0, 1, \dots, q_i\}$$

If σ is an isometry from $\prod_{i=1}^{n} A_i$ on $\prod_{i=1}^{m} B_i$, then n = m and $\sigma = \prod \sigma_i$ where σ_i is an isometry from A_i on B_i , changing the suffix if necessary.

Proof. We prove by the induction with respect to $\# \prod_{i=1}^{n} A_i$. Since A_i is connected and $\# A_i > 1$, for any element a in A_i there is an element a' in A_i such that 0 < [a, a'] < 1. If $[a, a'] \neq 0, 1$ for a, a' in A_i , then the denominator of [a, a'] is a prime p_i . Without loss of generality we may assume $p_1 = \cdots = p_k < p_{k+1} \le \cdots \le p_n$, $q_1 = \cdots = q_h < q_{h+1} \le \cdots \le q_m$. Put $A = \prod_{i=1}^{n} A_i$, $B = \prod_{i=1}^{m} B_i$, and fix any element $a = \prod a_i$ of A. Suppose that the minimal value of the denominator of [a, a'] = 0, 1 ($a' \in A$) is taken by $a' = \prod a'_i \in A$. Then the above remark and Lemma 4 imply $a'_i = a_i$ for $i \neq j$, and $a'_j \neq a_j$ for some j and so the minimal value is obviously p_1 , and $j \le k$. On the other hand, by virtue of Lemma 4 and the connectedness of A_i , it is easy to see that $A_1 \times \cdots \times A_k \times a_{k+1} \times \cdots \times a_n$ is a subset of A consisting of elements z such that there are elements $z_1 = a, \dots, z_r = z$ of A satisfying that the denominator of $[z_i, z_{i+1}]$ is p_1 for $i = 1, \dots, r - 1$. From the similar argument for $\sigma(a) = \prod b_i$ in B follows that the

corresponding minimal denominator is q_1 , and the corresponding subset of B for q_1 , $\sigma(a)$ instead of p_1 , a is $B_1 \times \cdots \times B_h \times b_{h+1} \times \cdots \times b_m$. Since σ is an isometry, we have $p_1 = q_1$, and so $\sigma(A_1 \times \cdots \times A_k \times a_{k+1} \times \cdots \times a_n) = B_1 \times \cdots \times B_h \times b_{h+1} \times \cdots \times b_m$ by their definitions. This implies that $A_1 \times \cdots \times A_k$ and $B_1 \times \cdots \times B_h$ are isometric. Therefore Lemma 1 and the assumption of the induction completes the proof if n > k. Thus we may suppose n = k. Then $\sigma(A) = \prod_{i=1}^{n} B_i \times b_{h+1} \times \cdots \times b_m$ implies h = m. Moreover we have n = m since the maximal value of the denominators of [a, a'] $(a, a' \in A)$ (resp. [b, b'] $(b, b' \in B)$) is p_1^n (resp. p_1^m), and they are equal. For simplicity we put $p_1 = p$ in the following.

(i) Assume that A_1 contains distinct three elements x_1, x_2, x_3 such $[x_1, x_2][x_2, x_3][x_3, x_1] \neq 0$. Fix any element a_i in A_i $(i \ge 2)$, and put $\sigma(x_k \prod_{i=2}^n a_i) = \prod_{j=1}^n b_{k,j} (b_{k,j} \in B_j); \text{ then } [x_i, x_k] = \prod_{j=1}^n [b_{i,j}, b_{k,j}] \neq 0. \text{ Since}$ $0 < [b_{i,j}, b_{k,j}] \le 1$ and the denominator of $[b_{i,j}, b_{k,j}]$ is p if $b_{i,j} \neq b_{k,j}$, compairing the denominators of both sides, we have $b_{i,j} = b_{k,j}$ for any j except one index if $i \neq k$. Without loss of generality we may assume $b_{1,1} \neq b_{2,1}$, $b_{1,i} = b_{2,i}$ $(i \ge 2)$. Similarly we may assume $b_{2,k} = b_{3,k}$ for $k \neq t$. If $t \geq 2$, then $b_{1,j} = b_{2,j} = b_{3,j}$ for $j \neq 1, t$. This implies $[x_1, x_3]$ $= [b_{1,1}, b_{3,1}][b_{1,t}, b_{3,t}] = [b_{1,1}, b_{2,1}][b_{2,t}, b_{3,t}].$ The denominator of the left (resp. right) side is p (resp. p^2) since $b_{1,1} \neq b_{2,1}$, $b_{2,t} \neq b_{3,t}$. This is a contradiction. Hence we get t = 1, and so $b_{2,1} \neq b_{3,1}$, $b_{2,j} = b_{3,j}$ $(j \ge 2)$. Thus we may put $\sigma(x_k \times \prod_{i=2}^n a_i) = y_k \times \prod_{i=2}^n b_i$ $(y_k \in B_1, b_i \in B_i)$. Take an element a'_n in A_n such that $[a_n, a'_n] \neq 0, 1$. Similarly we get $\sigma(x_k \times$ $\prod_{i=2}^{n-1} a_i \times a'_n = z_k \times \prod_{i \neq j} b'_i$ for some z_k in B_j and b'_i in B_i . Suppose $j \neq 1$, then $[a_n, a'_n] = [x_k \times \prod_{i=2}^n a_i, x_k \times \prod_{i=2}^{n-1} a_i \times a'_n] = [y_k, b'_1][b_j, z_k] \times [a_j + a_j]$ $\prod_{i\neq 1,j} [b_i, b'_i]$. We note that the denominator of the left side is p. If $b_i \neq b'_i$ for $i \neq 1, j$, then $[y_k, b'_1] = 1$, and so $y_1 = y_2 = y_3$. This implies a contradiction $x_1 = x_2 = x_3$. Hence $b_i = b'_i$ for $i \neq 1, j$. $b'_1 \neq y_1$ implies $b_j = z_1 \ (\neq z_2, z_3)$, and so we get $y_2 = y_3 = b'_1$, taking k = 2 or 3. This is a contradiction. Hence we have $b'_1 = y_1$, and similarly $b'_1 = y_2$. This contradicts $x_1 \neq x_2$. Hence *j* equals 1, and we may put $\sigma(x_k \times \prod_{i=2}^{n-1} a_i)$ $(x_k \times a'_n) = z_k \times \prod_{i=2}^n b'_i \ (z_k \in B_i, b'_i \in B_i). \quad \sigma(x_k \times \prod_{i=2}^n a_i) = y_k \times \prod_{i=2}^n b_i \text{ implies}$ $[x_k, x_h][a_n, a'_n] = [y_k, z_h] \prod_{i=2}^n [b_i, b'_i]$. Putting k = h, and compairing the denominators we have $b_i = b'_i$ for any $i \ge 2$ except at most one *i*. Putting $k \neq h$, the denominator of the left hand equals p^2 . Hence the exceptional suffix exists. Then putting k = h again, we have $y_k = z_k$

QUADRATIC FORMS

for k = 1, 2, 3. Thus we have $\sigma(x_k \times \prod_{i=2}^{n-1} a_i \times a'_n) = y_k \times \prod_{i=2}^n b'_i$. Doing the similar operations for a_i, a'_n , we have $\sigma(x_k \times \prod_{i=2}^n A_i) \subset y_k \times \prod_{i=2}^n B_i$ since A_i is connected. Similarly $\sigma^{-1}(y_k \prod_{i=2}^n b_i) = x_k \prod_{i=2}^n a_i$ and $[y_1, y_2] \times [y_2, y_3][y_3, y_1] \neq 0$ imply $\sigma^{-1}(y_k \prod_{i=2}^n B_i) \subset x_k \times \prod_{i=2}^n A_i$, and so $\sigma(x_k \times \prod_{i=2}^n A_i) = y_k \times \prod_{i=2}^n B_i$. This implies $\prod_{i=2}^n A_i \cong \prod_{i=2}^n B_i$, and then Lemma 1 and the assumption of the induction completes the proof.

(ii) Suppose that A_1 contains distinct four elements x_i such that $[x_1, x_2][x_1, x_3][x_1, x_4] \neq 0$, $[x_2, x_3] = [x_2, x_4] = [x_3, x_4] = 0$. Fix any element a_i in A_i $(i \geq 2)$. Put $\sigma(x_k \times \prod_{i=2}^n a_i) = \prod_{i=1}^n b_{k,i}$; then $[x_k, x_1] = \prod_{i=1}^n [b_{k,i}, b_{1,i}] \neq 0$. Since the denominator of the left hand is p for $k \neq 1$, there is a number t_k such that $b_{k,i} = b_{1,i}$ for $i \neq t_k$, and $b_{k,t_k} \neq b_{1,t_k}$.

a) Suppose that t_2, t_3, t_4 are distinct.

 $[x_3, x_4] = 0$ implies $[b_{3,i}, b_{4,i}] = 0$ for some *i*. Since $b_{k,j} = b_{1,j}$ for $j \neq t_2, t_3, t_4, i$ equals t_2, t_3 or t_4 . If $i = t_2$, then $b_{3,t_2} = b_{1,t_2} = b_{4,t_2}$ implies a contradiction $[b_{3,t_2}, b_{4,t_2}] = 1$. Similarly $i = t_3$ or $i = t_4$ implies a contradiction.

b) Suppose that $t_2 = t_3 \neq t_4$. $[x_3, x_4] = 0$ implies $[b_{3,i}, b_{4,i}] = 0$ for some *i*. $b_{k,j} = b_{1,j}$ for $j \neq t_k$ yields $i = t_2$ or t_4 . $i = t_2$ implies $b_{4,t_2} = b_{1,t_2}$, and so $[b_{3,i}, b_{1,i}] = 0$. This contradicts $[x_3, x_1] \neq 0$. Similarly $i = t_4$ is a contradiction.

Similarly $t_2 \neq t_3 = t_4$ or $t_2 = t_4 \neq t_3$ implies a contradiction. Hence we have $t_2 = t_3 = t_4 = 1$ (say). Thus we may assume $\sigma(x_k \times \prod_{i=2}^n a_i) =$ $y_k \times \prod_{i=2}^n b_i \ (y_k \in B_1, \ b_i \in B_i)$. Take an element a'_n in A_n with $[a_n, a'_n] \neq$ 0, 1, and put $\sigma(x_k \times \prod_{i=2}^{n-1} a_i \times a'_n) = z_k \prod_{i\neq j} b'_i \ (z_k \in B_j, \ b'_i \in B_i)$. Assume $j \neq 1$; then $[x_k \times \prod_{i=2}^{n-2} a_i, x_t \times \prod_{i=2}^{n-1} a_i \times a'_n] = [x_k, x_t] \times [a_n, a'_n] =$ $[y_k, b'_1][b_j, z_i] \prod_{i\neq 1,j} [b_i, b'_i]$. $[x_1, x_t][a_n, a'_n] \neq 0$ implies $[b_j, z_i] \neq 0$ (t =1, 2, 3, 4), $[b_i, b'_i] \neq 0$ for $i \neq 1, j$. Similarly $[x_k, x_1] \neq 0$ implies $[y_k, b'_1] \neq 0$ (k = 1, 2, 3, 4). This means $[x_k, x_t][a_n, a'_n] \neq 0$ for any k, t and contradicts $[x_2, x_3] = 0$. Thus we have j = 1, and $[x_k, x_t]$. $[a_n, a'_n] = [y_k, z_t] \times \prod_{i=2}^{n} [b_i, b'_i]$. Since the denominator of the left hand for k = 1, t = 2is p^2 , there is at least one suffix i such that $b_i \neq b'_i$. Moreover the denominator of the left side for k = t is p. Hence there is no such suffix except i, and this yields $[y_k, z_k] = 1$, i.e., $y_k = z_k$. As the proof of the case (i) we have $\sigma(x_k \times \prod_{i=2}^{n} A_i) = y_k \times \prod_{i=2}^{n} B_i$ and complete the proof for the case (ii) by the induction and Lemma 1.

For a weighted graph W we make a usual graph, joining two ele-

ments x, y with $[x, y] \neq 0$. Then, by virtue of (i), (ii), we may assume that A_i, B_i do not contain subgraphs $\bigwedge_{i \to 0}$, $\bigcup_{i \to 0}$. Hence A_i, B_i are $\circ - \circ - \cdots - \circ$ or $\swarrow_{i \to 0}$ as graphs.

(iii) Suppose that A_1 contains three distinct elements x_1, x_2, x_3 such that $[x_1, x_2] \neq 0$, $[x_2, x_3] \neq 0$, $[x_1, x_3] = 0$, i.e., $\begin{array}{c} x_1 & x_2 & x_3 \\ 0 & 0 & 0 \end{array}$. Take any element a_i in A_i , and put $\sigma(x_k \prod_{i=2}^n a_i) = \prod_{i=1}^n b_{k,i}$ ($b_{k,i} \in B_i$). Compairing the denominators of $[x_k, x_t] = \prod_{i=1}^n [b_{k,i}, b_{t,i}]$, there are numbers q, s so that $b_{1,i} = b_{2,i}$ for $i \neq q$, $b_{2,i} = b_{3,i}$ for $i \neq s$. $q \neq s$ implies $b_{1,i} = b_{2,i} = b_{3,i}$ for $i \neq q, s$, $b_{2,q} = b_{3,q}$ and $b_{1,s} = b_{2,s}$, and then we have $[x_1, x_3] =$ $\prod_{i=1}^{n} [b_{1,i}, b_{3,i}] = [b_{1,q}, b_{3,q}][b_{1,s}, b_{3,s}] = [b_{1,q}, b_{2,q}][b_{2,s}, b_{3,s}] = 0.$ This contradicts $[x_1, x_2][x_2, x_3] \neq 0$. Thus we may assume q = s = 1 (say), and $\sigma(x_k \prod_{i=2}^n a_i) = y_k \prod_{i=2}^n b_i$ $(y_k \in B_1, b_i \in B_i)$. Doing the similar thing for $x_2 \xrightarrow{x_3} x_4$, we have $\sigma(x_k \times \prod_{i=2}^n a_i) = z_k \prod_{i \neq j} b'_i$ $(z_k \in B_j, b'_i \in B_i)$ for k = 2, 3, 4. Compairing the case k = 2, 3, we get $z_2 = b_j = z_3$ if $j \neq 1$. This is a contradiction, and so j = 1. This means $b'_i = b_i$ for $i \ge 2$ and $\sigma(x_4 \prod_{i=2}^n a_i) = z_4 \prod_{i=2}^n b_i$. Since A_1 is $\circ - \circ - \cdots - \circ$ or $\circ - \cdots - \circ$, we have $\sigma(x \times \prod_{i=2}^{n} a_i) = f(x) \times \prod_{i=2}^{n} b_i$ for any x in A_1 , that is, $\sigma(A_1 \times \prod_{i=2}^{n} a_i)$ $\subset B_1 \times \prod_{i=2}^n b_i$. Similarly we have $\sigma^{-1}(B_1 \times \prod_{i=2}^n b_i) \subset A_1 \times \prod_{i=2}^n a_i$ and so $\sigma(A_1 \times \prod_{i=2}^n a_i) = B_1 \times \prod_{i=2}^n b_i$. Lemma 1 and the induction complete

the proof. (iv) By virtue of (i), (ii), (iii) we have only to prove the case that $\# A_i = \# B_i = 2$. Put $m = \max [a, a']$ $(a, a' \in A, a \neq a')$ and assume m =

 $\# A_i = \# B_i = 2$. Put $m = \max[a, a']$ $(a, a' \in A, a \neq a')$ and assume m = [a, a'] for $a = \prod_{i=1}^{n} a_i$, $a' = \prod_{i=1}^{n} a'_i$. Since $[a_i, a'_i] < 1$ if $a_i \neq a'_i$, by the definition, there is a suffix t so that $a_i = a'_i$ for $i \neq t$ and $a_t \neq a'_i$. Putting $\sigma(a) = \prod b_i$, $\sigma(a') = \prod b'_i$, there is a suffix s so that $b_i = b'_i$ for $i \neq s$, and $b_s \neq b'_s$. Without loss of generality we may assume t = s = 1; then $A_1 = \{a_1, a'_1\}, B_1 = \{b_1, b'_1\}$ and $[a_1, a'_1] = [b_1, b'_1] = m$. Hence $A_1 \cong B_1$ and $\sigma(A_1 \times \prod_{i=2}^{n} a_i) = B_1 \times \prod_{i=2}^{n} b_i$. Lemma 1 and the assumption of the induction complete the proof of Lemma 4.

To complete the proof of Theorem 2 we need only to prove that the cardinalities of weighted graphs associated to L_i, M_i are not 1. It follows immediately from the assumption (ii).

Let L be an indecomposable positive definite quadratic lattice, and

180

put $A = \mathfrak{M}(L)/\pm 1$ and we consider A as a weighted graph by [x, y] = |B(x, y)|/m(L) for $x, y \in \mathfrak{M}(L)/\pm 1$ as above. We call such a weighted graph a quadratic weighted graph associated to L. Then the following questions arise.

(i) Let A_i, B_i be connected quadratic weighted graphs and f be an isometry from $\prod_{i=1}^{n} A_i$ on $\prod_{i=1}^{m} B_i$. What is a sufficient condition to the following assertion?

n = m and $f = \prod f_i$ (changing the suffix if necessary), where f_i is an isometry from A_i on B_i .

(ii) Let L be an indecomposable positive definite quadratic lattice with $L = \tilde{L}$, and let A be an associated quadratic weighted graph. If $A \cong B \times C$ where B, C are quadratic weighted graphs, then is there a decomposition $L \cong M \otimes N$ so that B (resp. C) is a quadratic weighted graph associated to M (resp. N)?

Remark 1. For
$$M \cong \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
, $N \cong \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix}$, associated quad-

ratic graphs are isometric but M, N are not isometric.

Remark 2. Let L be a positive definite quadratic lattice with $L = \tilde{L}$, m(L) = 1, and assume that $\mathfrak{M}(L)/\pm 1 = A \times B$ where A, B are weighted graphs with #A, #B > 1. Put $\mathfrak{M}(L)/\pm 1 = \{e_i\}$ and $e_i = (a_i, b_i)$ $(a_i \in A, b_i \in B)$. Suppose that there is a mapping s_1 (resp. s_2) from $A \times A$ (resp. $B \times B$) into $\{\pm 1\}$ so that $s_1(a, a) = s_2(b, b) = 1$ for every a in A and every b in B, and $B(e_i, e_j) = s_1(a_i, a_j)s_2(b_i, b_j)[a_i, a_j][b_i, b_j]$ for any i, j. Then we can show that there are positive definite quadratic lattices M, N such that $L \cong M \otimes N, M = \tilde{M}, N = \tilde{N}, m(M) = m(N) = 1$ and A, B are quadratic graphs associated to M, N respectively. The assumption on s_1, s_2 is not satisfied for a decomposable lattice $M \perp N$ in Remark 1.

REFERENCES

- [1] Y. Kitaoka, Scalar extension of quadratic lattices II, Nagoya Math. J. vol. 67 (1977), 159-164.
- [2] —, Tensor products of positive definite quadratic forms, Göttingen Nachr. Nr. 4 (1977).
- [3] -----, Tensor products of positive definite quadratic forms II, to appear.

[4] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1963.

Department of Mathematics Nagoya University