ALGEBRAIC CRITERION ON QUASICONFORMAL
EQUIVALENCE OF RIEMANN SURFACES

MITSURU NAKAI

Introduction

1. Various strides have been done to characterize the conformal structure
of Riemann surfaces by the algebraic structure of some appropriate function
algebras on them (cf. Bers [2], Rudin [29], Royden [26], [28], Heins [7], Kaku-
tani [12], Wermer [33] etc.). In this paper we discuss, corresponding to the
above, the problem to determine the quasiconformal structure of Riemann

surfaces by the algebraic structure of some function algebras on them.

2. Quasiconformal equivalence. Following Pfluger-Ahlfors-Mori ([21], [1],
[141), we say that a mapping T of a Riemann surface R onto another Riemann
surface R' is a quasiconformal mapping of R onto R' if it is a topological
mapping of R onto R’ and if its maximal dilatation K(T) is finite. Here K(T)
is defined by the following: K(T)=inf{ ; A 'mod @ < mod TQ < imod § for
all @ in Q(R)}, where Q(R) denotes the totality of quadrilaterals on R and mod
@ denotes the modulus of Q.

Now consider two Riemann surfaces R and R'. If there exists a quasi-
conformal mapping of R onto R’, then R and R' are said to be quasiconformally

equivalent or to have the same quasiconformal structure.

3. Royden’s algebra. Let R be a Riemann surface and M(R) be the
totality of complex-valued functions f on R satisfying the following three con-

ditions :

(M.1) f is absolutely continuous in the sense of Tonelli";

Received October 29, 1959.

Y A function F(x, y) on a rectangle [a, b; ¢, d] is called absolutely continuous in the
sense of Tonelli (abbreviated as a.c.T.) if F(x, y) is absolutely continuous in x varying
in [a, 6] for almost all fixed values y in [¢, d] and if the corresponding fact holds by
interchanging x and y and, further, if F» and F, are locally integrable. (For details,
refer to [22, 30, 34].) This notion is carried over Riemann surfaces by using local
parameters.
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(M.2) f is bounded on R in the absolute value;
(M. 3) Dirichlet integral of f over R is finite.

We define the algebraic operations in M(R) as usual, that is, for f and g in
M(R) and for a complex number a, (f+ g)(p) =7(p) +g(p), (f@)(p) =f(p)g(p)
and (af)(p) = a(f(p)) at every point p in . Then M(R) becomes an algebra
over the complex number field. This function algebra M(R) is called Royden’s
algebra associated with R® Some applications of Royden’s algebra to the func-
tion theory were given by Royden [24], [25], [26], S. Mori [15], [16], Mori-Ota
[17] and the present author [18], [19]. '

4. Main theorems. The main result of this paper is that the algebraic
structure of the Royden’s algebra M(R) associated with a Riemann surface R
determines the quasiconformal structure of R,® namely :

TueoreM. Two Riemann surfaces R and R' are quasiconformally equivalent
if and only if their Roydew's algebras M(R) and M(R') are algebraically iso-
morphic.

The Royden’s algebra M(R) can be normed by

171 = sup 171+ /{ Igradsiaray.

Using this norm, we can state®

TueoreM. Two Riemann surfaces R and R' are conformally” equivalent if
and only if M(R) and M(R') are normed algebraically isomorphic.”

5.7 In Chapter I, we give a general theorem on some subalgebra of bounded

continuous function algebra. Our main tool is the notion of unremovability of

2 The original definition of Royden’s algebra due to Royden [24] is as follows: let
BD(R) be the totality of the complex-valued bounded piecewise smooth functions defined
on R with finite Dirichlet integrals. Then BD(R) can be normed by [f]l=sup]|f|

R

/ S
~i-‘/legradf[2dxdy. Then the completed algebra of BD(R) by this norm is called
Royden’s algebra. As for the coincidence of both definitions, refer to [18].

3 An improvement of the author’s previous result, Theorem 4 in [18].

4) An extension of the author’s previous result in [19], in which this was proved under
the condition that R and R’ are compact.

) Including both of direct and indirect ones.

6 i.e., this means that M(R) and M(R’) are algebraically isomorphic and this iso-
morphism preserves the norm ||f].

" The result stated in this paper was published in [20] without proofs,

https://doi.org/10.1017/50027763000007625 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007625

ALGEBRAIC CRITERION ON QUASICONFORMAL EQUIVALENCE 159

a point for a family of functions with some property. In Chapter II, a quantity
is defined for some topological mapping and we characterize the quasiconfor-
mality of this topological mapping by using this quantity. In Chapter III, the
results above mentioned are proved. By using the algebra M"(R) consisting
of all functions in M(R) which are n-fold continuously differentiable (n=1, 2,
., o), similar results as above are proved for M"(R) instead of M(R).

The author wishes to express here his hearty thanks to Prof. K. Noshiro

for his kind encouragements and guidances, and also to Prof. T. Kuroda for his

valuable discussions.

1. Some subalgebras of continuous function algebras

1. In this chapter we treat the problem characterizing a given topological
space S by an algebra of some continuous functions defined on S. It is well
known that the total algebra C(S) of all continuous functions defined on S
determines S if S is a compact Hausdorff space (Cech [5]). As an extension,
Hewitt [8] and Shirota [32] proved that C(S) determines S if and only if S is
a @Q-space. For arbitrary spaces S and for arbitrary subalgebras P(S) of C(S).
it is not always true that P(S) determines S. But under some conditions on S
and on the structure of P(S), it is known that the same holds (cf. Pursell [23],
Isiwata [10]).

In this chapter we shall only consider the locally compact Hausdorff spaces
S. For locally compact spaces S, Shanks [31] and Ishii [9] proved that the
subalgebra Co(S) of C(S) consisting of all functions with compact carriers
determines S. Some generalization of this was given by Isiwata [11].

We shall consider some appropriate property P on functions of C(S) and
we shall prove that the algebra P(S) consisting of functions in C(S) with a
property P determines S if S has no removable point with respect to the property
P. These discussions play important roles to study Royden’s algebra.

2. A property on continuous functions. We denote by S ={S} the totality
of locally compact Hausdorff spaces S. Let f be a complex-valued continuous
function defined on S. We consider the totality C of such a pair (f, S), ie.,
C={(f,S); Sisin S and f is a continuous function defined on S}. Let P be
a subfamily of C. We say that a continuous function f defined on S has a

property P if (f, S) belongs to P and that P is a property on continuous func-
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tions. By P(S) we denote the set {f; (f, S) belongs to P}. Now we consider
the following conditions (P.1)-(P.7) on a property P:

(P.1) P(S) is an algebra over the complex number field with the constant
JSunction 1;

(P.2) P(S) segparates points in S strongly, i.e., for any neighborhood V of
any point p in S, there exists a function f in P(S) such that f=0 on S—-V
and 1 on a neighborhood of p contained in V';

(P.3) P(S) is inverse-closed, ie., if fis in P(S) and inf|f| >0, then the
function 1/f belongs to P(S);

(P.4) P(S) is self-adjoint, ie., if f belongs to P(S), then f* belongs to
in S,
(P.5) every function f in P(S) is bounded in the absolute value;

(P.6) P is monotone, i.e., if S’ belongs to S and S is an open subset of S,
if (f, S) belongs to P and if f vanishes on a neighborhood of the relative
boundary of S with respect to S’, then (f’, S') also belongs to P, where f'= f
on Sand f'=0on S'—S. Conversely, (f, S) belongs to P if (f, S') belongs
to P.

We say that a topological mapping T of S onto S’ has property P when
(foT™', S') belongs to P if and only if (f, S) belongs to P. A mapping ¢ of
P(S) onto P(S') is said to be induced by a topological mapping T locally’if T
is a topological mapping of an open subset S; of S onto an open subset Si of S’
and 7(Tp) =£(p) holds for any p in S; and for any f in P(S), where f° is the
image of f by the mapping s. By using these terminologies, our additional con-
dition is stated as follows:

(P.7) if (P.1) is satisfied and if an algebraic isomorphism of P(S) onto
P(S") is induced by a topological mapping T locally, then T has the property P.

We shall say that a property P satisfying the conditions (P.1), (P.2), (P.3),
(P.4), (P.5), (P.6) and (P.7) is an admissible property on continuous functions.

Examples of admissible properties are B, B),, and B., where B=<{(f, S);
(f, S) is in C and f is bounded in the absolute value on S}, Bo={(f, S); (f, S)
is in C and f is constant outside a compact subset of S} and B.={(f, S); (f,S)
is in C and there exists a constant ¢y such that for any ¢ > 0 there exists a
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compact set outside which we have |/ —cy| < e}

3. P-removability. Let S be in S and P be a property on continuous func-
tions. A point p in S is said to be P-removable if the following condition is
satisfied: for any pair (f, S— {#}) belonging to P, there exists a pair (f/, S)
belonging to P such that f(q)= f'(g) holds for any g in S—{p}. In other
words, choosing a suitable value of f at p, we can extend f to the whole space
S such that (f, S) is contained in 2. We consider the subfamily Sy of 8§ defined
by the following: S is in Sp if and only if S has no P-removable point.

We state an example. Let S be in 8 and let S be non-compact. Let 3S be
the Cech compactification of S, i.e., the compact Hausdorff space containing S
as its open dense subset and every function in B(S) is extended over 8S so as
to be continuous on $S. Then each point of 8S— S is B-removable and 8S does
not belong to Sp. On the other hand, any manifold belongs to Sz or more

generally, each space in § whose each point is Gs belongs to Ss.

4. Tueorem 1.1. Let P be an admissible property on continuouns functions
and, S and S’ belong to Sp. Assume thal o is an algebraic isomorphism of P(S)
onto P(S'). Then there exists a topological mapping T of S onto S' such that
JUD) = f(T™HP)) for any point p in S' and for any function f in P(S), where
f° denotes the image of f under the mapping o.

5, P-compactification. For the proef of Theorem 1.1, we need same pre-
liminaries. Let P be a property satisfying (P.1), (P.2), (P.3), (P.4) and (P.5).
For each space S in § We associate a space S = Sp, which will be called P-

compactification of S, satisfying the following three conditions:

(8.1) § is a compact Hausdorf] space containing S as its topological sub-
space;

(8.2) S is open and dense in S;

(8.8) for each f belonging to P(S) there exists a continmous function f
defined on S such that f(p) = f(P) for any poini p in S, i.e., f can be extended

continuously to §.

We say that a complex-valued functional X on P(S) is a P-character on S
or simply a character on P(S) if it satisfies the following conditions: for func-

tions f and g in P(S) and for any complex numbers @ and b,
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(X.1) X =1;
(X.2) Xlaf+bg) =aX(f)+0X (), X(fg) =X(f)X(g);
(X.3) | X(N) € nly), where n(f) =3191p\fl.

A point p in S determines a character X, on P(S) defined by Xs(f) = f(p) on
P(S). By (P.2), p=q implies Xp= X,. We say that a character X is
determined by p. We denote by S*=S7 the totality of P-characters on S and

we call S the P-character space of S. First we prove the following fundamental

Lemma 1.1. For any locally compact space S, there exists a unique P-
compactification S of S

Proof. Let S be the set of points %, y, . . . containing S as its subset such
that there exists a one-to-one mapping i of the P-character space S* of S onto
S. Moreover, we assume that i(Xp) =p, where X is the character determined
by . We denote by P(S) the totality of functions f on S defined by 7 (x)
= (i{"(x))(f). Now we consider P(S) as a normed space with the norm »(f).
Then by (X.3), S* is contained in the dual space P(S)* of P(S) and further
S* is contained in the unit sphere of P(S)* It is easy to see that S* is closed
in P(S)* with respect to the weak topology «(P(S)* P(S)) of P(S)* as func-
tionals. Then the well known Tychonoff-Kakutani theorem yields the compact-
ness of S* Hence S* is a compact Hausdorff space. We introduce a topology
into S by 7 such that { is a homeomorphism between S* and S. It is easily
seen that the relative topology of S with respect to S is coincident with the
proper topology of S as a locally compact Hausdorff space. Hence we have
shown that (S.1) is satisfied by §. By this topology, it is clear that P(S) is
the family of functions 7 which are continuous on S. Moreover, 7 (p) =f(d)

on S and 7(f) = n(f), where #(f) = sup |7 (x)|. Thus # is a bounded continu-

ous extension of f on S to S. Thus (§.3) is also satisfied by S.

Now it is clear that £(§) separates points in S. For, if x and y arein S
and x ==y, then X=¢"%x) and Y =4""(y) are distinct. Hence there exists a
function 7 in P(S) such that X(f)= Y(y), which shows 7 (x)=7(y). Thus
P(S) is an algebra with 1 which separates points in S. Thus by the Weierstrass-
Stone approximation theorem (Bourbaki [41), P(S) is dense in C(S) with the
topology induced by the norm 7n(f).

If S is not dense in §, there exists a function g in C (§) such that g$(3
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and g=0 on S. By the above we can find a sequence {f,} in P(S) such that
7 m converges uniformly to g. Thus we may assume |f,,(p)| <1/m on S. As
already stated, f m=/fm on S and #(f) < n(fm) £1/m. Thus {fm) converges to
0 uniformly. So g =0, which is a contradiction. Hence S is dense in S. Thus,
to show that S satisfies (S.2), we have only to prove that S is open in S or
that S — S is closed.

To verify this, we first prove thai x belongs to § — S if and only if 7 (x)
=0 for all f in P(S) with compact carrier. The “if part” of the above state-
ment is evident. Conversely, we shall prove that f (x) =0 for all f in P(S)
with compact carrier if x belongs to S —S. Contrary to the assertion, suppose
that there exists a function 7, in P(S) with compact carrier such that 7 (%) 0.
We may assume f, =0. Put R={p; pisin Sand fo( p) >0} and Z={f; fis
in P(S) with compact carrier contained in the closure of R in S, and 7 (x)=0)}.
For each point » in R, we can find f» in Z such that f,(p)=0. If this is not
the case, (g—g(x))fo is in Z for any g in P(S) and so (g(p) — 2(x))fe(p) =0.
Thus g(p) = 2(x) holds for all g in P(S), which shows that Xx(g) =7 (x)(g)
or x =p, which is a contradiction. Thus we can find f» in Z such that f»(p) =0.
Clearly, we may assume f»=0 and fs(p)=1. Let hy= (fo— fFol2))*/(fo(x))
Then hy(x) =0 and ky=0. Moreover, hy(p)=1/2 on S— R', where R' is a
compact set in S. We can find a finite number of points in R', say p;, and f,
in Z such that 33/, =1/2 on R’. Then h=ho+ > fp,=1/2 and /(%) =1/2 and
on the other ha;d (%) = ho(x) + 337 p(x) = 0. ’I‘Jhis is a contradiction. There-
fore, S — S coincides with the intérsection of zero-sets of continuous functions.
So S is open in S. Thus the proof of the existence of the P-compactification
of S is established.

Finally we show the unicity of P-compactification. Let S; (=1, 2) be P-
compactifications of S. By (S.2), the extensions f; of f in P(S) to S; is unique.
Thus the correspondence ; : f — 7; gives an algebraic isomorphism of P(S) onto
{f;}. Thus & éi': i~ 7, gives an algebraic isomorphism of {7,} onto {7,}.
It is easy to see that {7;} are dense in Cc(S ;) with respect to the uniform
topology. Itis clear that j; and 7, and hence 4, > ii' are isometric with respect
to the uniform norm. So the isomorphism of {7,} onto {f,} induces an iso-
morphism of C(S,) onto C(S.). As $§ ; are compact, the classical Cech theorem

implies that S; and $. are homeomorphic.
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This completes the proof of Lemma I.1.

We state some examples ol P-compactifications. As is already stated, B-
compactification Ss of a locally compact space S is the Cech-compactification BS.
Both By-compactification and B.-compactification of a locally compact space S
are the Alexandroff-compactification S» which is formed by adding one point <
to S. Now we introduce a new property. Let B; be the subfamily of C such
that (f, S) belongs to B; if and only if (f, S) belongs to B and, for each posi-
tive number e, there exists a compact subset K and a family of constants {cp},
where {D} is the totality of components of S— K, such that |f(p)—cpl is
smaller than ¢ on D for each D in {D}. Then B is the property satisfying
(P.1), (P.2), (P.3), (P.4), and (P.5). The Bi-compactification of a locally
compact space S is nothing but the Kerékjarto-Stoilow compactification of S {ci.
Royden [27]).

As is easily seen from the proof of Lemma 1.1, we get the following re-

presentation theorem of P-characters:

LemMma 1.2, For any P-character X on S, there exists a poini x in the P-
compactification S of S such that X(f)=f(x) for all f in P(S).

Next we state a simple and useful lemma:

LuimMma 1.3, Any algebraic isomorphism o of P(S) onto P(S') is isometric
with respect to the uniform norm, that is, n( f°) =n(f) for all f in P(S).

Proof. Let f belong to P(S) and s(f) be the spectra of f, where a com-
plex number a belongs to s(f) if and only if f—a is not inversible in P(S)
and hence ix;flf—-al =0 by (P.3). Then it is easy to see that n(f) =sup{lal;

a belongs to s(f)} and that s(f°) =s(f). From these, our assertion follows.

6. Proof of TheoremI.1. We consider P-compactifications S and S’ of S
and S/, respectively. We construct a topological mapping T of $ onto S’ as
follows. Take a point x in S. Then we can find a P-character X in the P-
character space S* of S such that X(f)=7(x), where f/ is the topological
continuation, to S, of f belonging to P(S). To this X, we define a functional
Y on P(S") by Y(f)=X(f°""), where f is in P(S’). Then by Lemma 1.3, it is
easily verified that Y belongs to the P-character space S'* of . Using Lemma
I.2, we can find a point » in S’ such that Y(f) =7 (y), where f is the topo-
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logical continuation, to S’, of f belonging to P(S'). These give rise to a
mapping T: x — 'y of § into §'. This is clearly one-to-one and onto. Moreover,
by the definition of topologies in S and S', we see immediately that 7" is bi-
continuous. To any function f in P(S) and for any point p in S, we have the
identity

7 (Tp) =7(p).

Next we prove that the image TS of S under the mapping T is S
Contrary to the assertion, suppose that there exists a point p in S which is sent
to a point x' in §'—9', i, Tp=4'. Let U be an open neighborhood of » con-
tained in S with its closure and let U’ be the image TU of U under 7. We
set V'=U'NS' which is a non-void open set in S’, as S’ is a dense open subset
of §’, and let V be the counter image T7'V' of V' under T. Clearly V is con-
tained in . By the hypothesis that S is contained Sy, there exists a function
F on S—{p} such that (F, s—{p}) is contained in P but no pair (g, S) exists
such that (g, S) is contained in P and g(q) = F(g) on S—{p}. By the condition
(P.2), there exists a function d(g) on S such that (d, S) belongs to P and
d(g) =1 on a neighborhood of p contained in U;, where U, is a neighborhood
of p contained in U with its closure, and d(g) =0 outside U;,. We define the
function G on S—{p} by G(¢)=d(g)F(g) on S—{p}. Then (G, S—{p})
belongs to P. The function G cannot be continued to p such that (G, S)
belongs to P. In fact, suppose that G can be extended to S and (G, S) belongs
to P. Since (1—d)F vanishes on a neighborhood of p and ((1-4d)F, S—{p})
belongs to P, ({1—d)F, S) belongs to P by (P.6). As (F, S~ {p})
=(G+(1—ad)F, S—{p}), we see that (F, S) belongs to P by (P.1), which is
a contradiction. Thus G cannot be extended to S. Hence we have found a
function G defined on S— {p} satisfying

(i) (G, S={p}) belongs to P;

(ii) G cannot be continued to p such that (G, S) belongs to P;

(iii) G vanishes outside a neighborhood U; of p, where U, is contained in

U with its closure.

Here we notice that G vanishes on S ~S. Now we consider a function G’
defined on S'—{¥'} and a fortiori on S’ by G'(¥) = G(T ' (y)) for y in S'~ {x'}.
As T is a topological mapping of the open subset V of S onto the open subset
V' of S' and as /(Tp) =7(p) on V', ie, T induces « locally, so 7' has the
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property P by (P.7). Thus we can conclude that (G(T"'(y)), V') belongs to
P. Let ¢’ be a point in the boundary of V' relative to S'. Then g=T""¢ is
a boundary point of V relative to S. Since U is relatively compact in S and
V is contained in U, the point g belongs to S. In this case g cannot be in U.
Contrary to the assertion, if ¢ is in U, then TU contains ¢' and hence TUN S'
= V' contains ¢', which contradicts the assumption that ¢' is in the boundary
of the open set V'. Thus g is outside U. Hence we can choose a neighborhood
W' of q' such that T7'W’ is outside Uj;, since the closure of U; is compact
in U.

Thus we can find a neighborhood W' of g' such that 7'y belongs to
S - U, if y belongs to S'—W'. If y belongs to V' N\ W', we see by (iii) that
G(T'(y))=0. Thus G(T (y)) vanishes on a neighborhood of the relative
boundary of V'’ with respect to S’. Hence, by (P.6), (G, S') belongs to P.
Thus we can find a function g in P(S) such that the image of g by ¢ is G
By the definition of T we have the identity G'(Tq) =g(q) for every point ¢ in
S—{p}. By the definition of G', it holds the identity G'(Tq) =G(g) for every
point ¢ in S—{p). Thus g coincides with G on S - {p}, which means that G
can be continued to p such that it belongs to P(S). This contradicts the
assumption (ii) on G. This contradiction arises from our assumption Tp = &'
for some points p in S and %' in S'—S'. Thus we have proved the inclusion
TSCS'. By the similar manner we can show the converse inclusion 77'S’' C S.
Thus we get the required identity 7S= S’ and so T is a homeomorphism of S
onto S’ and the relation f£°(7Tp) = f(p) holds for any function f in P(S) and
for any point p in S.

This completes the proof of Theorem I.1.

Remark. For later use, we notice the following fact. Let s be an alge-
braic isomorphism of P(S) onto P(S’), where P is a property on continuous
functions satisfying (P.1), (P.2), (P.3), (P.4) and (P.5). Let T induce ¢ locally
in U and U, that is, T is a topological mapping of an open subset U of S onto
an open subset U’ of S’ and f’(Tp) =s(p) on U for all f in P(S). If the
sequences {p,} and {ph} in U and U’, satisfying Tp. = p,, converges to points
p and p' in the relative boundary of U and U’ with respect to S and S’
respectively, then we can find neighborhoods W and W' of p and ' in S and
S’ respectively and T can be extended to a topological mapping of W UU onto
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W'UU' such that f(Tp) = f(p) for all p in WU U, ie. the extended T
induces. ¢ locally on WU U and W' U U".

The proof of this fact is essentially contained in the first part of the proof
of Theorem I.1.

II. Norm of a certain homeomorphism

1. Definition of qussiconformal mappings. Let T be a topological mapping
of a Riemann surface R onto another Riemann surface R'. Consider the quantity
K(T) defined for T as follows:

K(T)=inf{2; 2 'mod @ < mod TQ < Amod @, for all @ in Q)},

where Q denotes the totality of quadrilaterals {Q} contained in R and mod @
denotes the module of ©. Clearly the inequality 1 < K(T)=<c holds. This
quantity K(T') is called the maximal dilatation of T. If K(T) is finite, then
we say that T is a quasiconformal mapping. This definition is due to Ahlfors
[1] (see also Pfluger [21] and Mori [14])¥

2. We state another definition of the quasiconformal mapping which is
convenient for our purposes. Corresponding to XK(T'), we consider the quantity

K*(T) =inf {2; 1" mod A < mod TA < imod 4, for all A in A},

where A denotes the totality of annuli A which are Jordan domains contained
in some simply connected domains on R and mod A denotes the module of A.
Clearly we have the relation 1< K*(T)=<o. Then we get the following
criterion of the quasiconformality [18]:

TueoreM IL.1° A topological mapping T of a Riemann surface R onto
another Riemann surface R' is a quasiconformal mapping if and only if K*(T)

is finite.

In the particular case that K*(T) is 1, we have the following (see Nakai

[191):

Tureorem II.2. A topological mapping T of a Riemann surface R onto

another Riemann surface R' is a direct or indirect conformal mapping if and

8) See also Bers [3].
9 This is a direct consequence of Mori’s Lemma 4 in [14] and Yiijobo’s Theorem 4
in [34]. As for dilatations, we have K*(T) < K(T) < exp (zK*(T)).
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only if K*(T) =1.

Remark. We may restate Theorems II.1 and II.2 as follows: there exists
a finite real-valued increasing function 7(x) defined for 1 < x such that (1) =1
and lim7(x) = « and K*(T) < K(T) = r(K*(T)).

x>0

3. M-mapping. Let R be a Riemann surface and M(R) be the Royden’s
algebra associated with R, ie., the algebra of all complex-valued bounded func-
tions on R which are absolutely continuous in the sense of Tonelli and have

finite Dirichlet integrals over R. The algebra M(R) can be normed
Irl=sup|f|+VDL/],

where D[ fJ denotes the Dirichlet integral _Uklgrad f12dxdy of f over R. Then
M(R) is complete with respect to this norm and the subalgebra M'(R) is dense
in M(R), where M'(R) denotes the totality of functions in M(R) which are
continuously differentiable (cf. Nakai [18]). We denote by M,(R) the sub-
algebra of M(R) consisting of all members in M(R) which have compact
carriers, i.e., f belongs to My(R) if and only if / belongs to M(R) and vanishes
outside a compact set.

A topological mapping T of R onto R' is said to be an M-mapping if T
induces an algebraic isomorphism of M,(R) onto M(R'), i.e., f belongs to M(R)
if and only if the composite function fo T7' belongs to My(R'). For an M-
mapping of R onto R/, we define the norm of T by

[Tl =inf{a; 277N lfe T =2lf]l, for all £ in Mo(R)}.
Clearly 1 =T = «. The aim of the present chapter is to prove the following :
TueoreMm I1.3.  An M-mapping T of a Riemann surface R onto another
Riemann surface R' with finite norm | T\ is a quasiconformal mapping with the

maximal dilation K(T) < v(\TIF). In particular, T is a direct or an indirect

conformal mapping if and only if |T|=1.
4. Fundamental functions. Recall that A denotes the totality of annuli A
on R satisfying the following two conditions:

(A.1) A is a domain contained in a simply connected domain D, on R;

(A.2) the boundary 0A of A consists of two closed Jordan curves C, and
C..
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Assume that the domain (C,) in D, surrounded by C, contains C;. Now

we consider the function f4«(») on R defined by the following manner:

0, if p belongs to R—(Co);
fa(p)=Jw(p; A, Cp),if p belongs to A4;
1, if » belongs to the closure of (Ci),
where w(p; A, C:) denotes the harmonic measure of C, with respect to A.
Now we prove that f.; belongs to M(R) and DL f.]= ”A |gardf.|*dxdy. For the
aim, we select a decreasing sequence {¢,! of positive numbers tending to zero
such that ¢, <1—¢, and the level curves Con={p; wi(p; A, Ci) =es} and
Cin={p; w(p; A, C;)=1-c¢,} are simple closed analytic curves. We set
en, if p belongs to R— (Co,») ;
(p) = w(p, A, C), if p belongs to (Co,») — the closure of (C,,»);
1 —ex, if p belongs to the closure of (Ci, ).

Then f»(p) is clearly in M(R). Moreover, it is obvious that the sequence {fn}
converges to /4 uniformly and that {f,} is a Cauchy sequence in M(R). Using

the completeness of M(R), we conclude that f.« belongs to M(R) and that
l 2 — fal tends to zero as = tends to infinity. From this it holds that D[ f.]

= SL |grad f,1*dxdy.

We say that f4, above defined, is a fundamental function with the base A.
The totality of fundamental functions will be denoted by Mf(R), ie., Ms(R)
={fs; A belongs to A}. If a function g in M(R) coincides with a function
/ in My(R) outside the base of f, we shall write zg=/. Concerning this oper-

ation, we have the following
Lemma 11.1. D[rgl = Dlg] and =gl < ligl.

Proof. For g in M(R), we can select a sequence {gn}n-1 in M'(R) such
that llg, — gl tends to zero as » tends to infinity and a fortiori D[g,] tends to
D[gl. Let A be the base of f=ng and f, be the function in M(R) which
coincides with g, outside A and harmonic in A with boundary values g, on
oA. By the Dirichlet principle, it holds D[ f»]= D[g,]. As the sequence {/x}

converges to f uniformly in A and |gradf.| converges to |grad f| in A by

Harnack’s theorem, we have yf |gradf lzdxdyglzi_irpjff‘ |grad f|*dxdy. Together

v Aa

with “Rﬂ!grad f1Pdxdy _—H _AEg*radfn?zdxdy, we get D[f]<lim D[f,]

JR
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=lim D[ g,1=D[g]. As suplrg|=supigl, the second inequality holds.
Next we prove two simple lemmas for functions in Ms(R):

LemMma I1.2. For any f in Ms(R) and for any positive integer n, there exist

2" functions fi, foy . . ., fon in Ms(R) satisfying the following two conditions:

(i) DLA1=2"DIr] (k=1,2,...,2";
(ii) the bases A of fr are mutually disjoint and contained in the base of
Aof fand A=A U Ay U - - - U A, where the bar denotes the closure.

Proof. The general case is easily reduced to the case n =1, so we shall
prove the lemma under the assumption z=1. We define two fundamental
functions f1(p) and f2(p) on R as follows:

1 (172 = F(p));
fp)y=327(p) 0< f(p)<1/2);
0 (f(p)=0),
11 1=71(p);
f(P)=52f(p)~1 (1/72< f(p)<1);
0 (f(p)=1/2).

Then the bases A; and A of /1 and f; are represented by
Ar={p; 0< f(p)<1/2}, A:={p; 1/2< f(p) <1}

Evidently (ii) is satisfied. As we have |grad fx|*=4|grad | on A (=1, 2),
it holds that

4D[f1= 4D, [f1+ 4DA3[f] = D[fil+ DLf:],

where D, denotes the dirichlet integral over Ar. On the other hand, by using

Green’s formula, we get
DLAJ=2DLf].

From the above two equalities, it follows D[f:1=2D[f] (k=1, 2), ie, the

condition (i) in lemma is satisfied.

Lemma IL.3. Let f and f (B=1,2, ..., n) are functions in Ms(R) such
that the bases Ar of fr are mutually disjoint and contained in the base A of f
and A=A, U AU+ -\JA,. Then the following inequality holds:

1/D[./Jz§1/otm.
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Proof. We may assume n =2, for the general case is easily reduced to this

simple case. We define the function g(p) in M(R} on R as followa:

f1(P) (fi(p) < 1);
g(p) =41 (fuUp) =1, fo(p)=0);
(1= P+ 41 —=D7H (f2(p) >0),

where 4 is an arbitrary number in the interval 0=42=1. Then g=fon R—A

and so ng can be defined and f=ng By Lemma II.1, we have

D[f]=D[=gl = D[gl.
As grad g|*=2*gradf;|> on {p; g(p) < i} and |grad g|*= (1—2)*|grad f:|* on
{p; g(p)>1}, we have

Dlgl= ‘{Skgﬂ ‘grad g |{*dxdy + Sj‘Mg ; igrad g% dxdy

— 32 ! 2 _ 9 i ‘)!2
= ”Kfld.gradfxf dxdy + (1—1) ”o%qigradﬁ. dxdy

=2PDLA+ 1 =DLf.

Thus we get
DLf1=2DLA1+ (1= *DLf].

In particular, if we put 1= D[/£.1(DLAJ+ D[], then we see that
1/DLf1=1/DlA1+1/DL1],
which proves the lemma.
5. Now we consider the relation between the norm 7’| and the quantity

K*(T) for an M-mapping T of R onto R’'. The following plays an essential

role in the proof of Theorem II.3.
LemMma 1L 4. For any M-mapping T of R onto R', it holds K*(T) < |T %

Proof. 1f |T}= o, nothing is left to be proved. So we may assume that
the norm of T is finite. Let / be in M(R). Instead of fo T, we shall write
/. Let A belong to A. If fis in Ms(R) and if the base of f is A, then we
have

mod A =27/D[/].

From this we have
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VES(T) =inf{1; A7'WD[f]1 = VD[rf']1 < VD[ f] for all fin Ms(R)}.
If we set

a =sup{¥D[zf'1/VDL[f]; f belongs to Ms(R)},
@ =sup{V¥D[f1/VD[rf"]; f belongs to Ms(R)},

then we see that VK*(T) =max(a, @'). So, if we can show that a, a' =\ T,
then the proof is complete. We have only to show that e<[|Tl, since ' <| T

can be verified by the similar argument. For the purpose, we set
an=sup {(VD[=f']1/VD[f]; for all fin Ms.(R)} (n=1,2,...),

where My, »(R) = {f; f belongs to Ms(R) and YyD[f] = n}. From the definition
it is clear that the sequence {@.} is monotone non-increasing. First we show
that

(1) for any positive number ¢, there exists a positive integer N depending
on ¢ such that

ay <|T|+e.

Contrary to the assertion, we assume the existence of a positive number ¢
such that [[T|+e=<a, for all =1, 2, .... Then we can choose two positive
numbers b and ¢ such that

an>b>c>|TI=1

for all positive integers n. By the definition of a@,, we can find an elemant
7 in My .(R) for each n=1, 2, ... such that

VD[zf™"1>byD[f™].

Now we choose an integer n so large as to satisfy the inequality # > ¢(b—¢)™*
Then we have VD[ f"™]>n>c(b—¢)"* or

(b—c)VD[f'™M]>ec.

We proceed to compute as follows: using Lemma 1, we have

>bVD[f ] = (b—c)VDLS ™)+ cyD[f ]
> o4 NDL/™)=el /™),

that is,
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el 7ML <L
On the other hand, /™ <ITIs"™}l. From the above inequality, we get
N <IITI 71 or ¢ < IT, which contradicts the definition of ¢. Thus we
have proved (I). Next we show that
(II) for any positive integer m and for any f in Ms(R), it holds
\/Wﬁ'j = am\/ﬁETj-
To see this, we choose a sufficiently large positive integer » such that

2"DLf]1> w’. By Lemma II.2, we can choose 2" functions f» (k=1,2, ...,
2") in Mf(R) such that

DLfe1=2"DLf]

and the bases of 7 and f; satisfy the condition (ii) in Lemma I1.2. By the
definition of #, DUf1=2"D[f1>m or fi is in Myn(R) (B=1,2,...,2").
Then, by the definition of an, we have

VDIrfil= anVDLfl or 1/DLfel = @&/ Dlxfr].

Thus we get

on

1/DLf1=2"/2"D[f1= :2=11/D[fk3 < 311/DLrA.

On the other hand, =/' and =f% (k=1,2, ..., 2" satisfy the assumption of
Lemma II1. 3, so it holds

2

gl/ptzf/:] <1/DLx/"].

Combining the above two inequalities, we get
VD[=/'] = amVDLf1].
Finally we shall prove ¢ =||Tl. To this end, we choose an arbitrary posi-

tive number :. Then, by (I), we get a positive integer N such that

ay <iTl+e.

(I1). As ¢ is indpendent of | T} and f, letting ¢ tend to 0, we find that

VDT=/") £ | TINDLS ]
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for all / in Mys(R), which shows that ¢ =|T|. This completes the proof of

Lemma II. 3.

6. Now the proof of Theorem II.3 is immediate. By Lemma II.3 and by
Remark in II.2, we have

1S KXT)SITP = KDY £ #(K*(T) < r(IT1).

From this we get Theorem II.3.

III. Algebraic criterion on quasiconformal equivalence

1. If there exists a topological mapping 7' of a Riemann surface R onto
another Riemann surface R', then we say that R and R’ are topologically
equivalent and we write R ~ R’. Moreover, if T is quasiconformal, then R and
R’ are said to be quasiconformally equivalent and we denote it by R~ R'. In
particular if the maximal dilatation of 7 is 1, i.e.,, if T is a direct or indirect
conformal mapping, then we say that R and R' are conformally equivalent
and we denote the fact by R= R'.

As for the topological equivalence, results of Hewitt [8] implies that R~ R’
if and only if C(R) =~ C(R’)." Sometimes it is more convinient to use B(R)
than to use C(R), since the normed ring theory can be applied to B(R) and
since C(R) = C(R') implies B(R) = B(R') but the converse is not true. In this
point of view, we may state the following fact: R~ R' if and only if B(R)
= B(R'). This is a direct consequence of Theorem 1.1 by considering the
property P in the theorem as the property B.

For compact surfaces R and R’, it is well known that R~ R'& R~ R’
< B(R) = B(R") &= C(R) = C(R'") & g(R) = g(R'), where g(R) denotes the
genus of R. But for open surfaces, none of the latter four determines the

quasiconformal equivalence R ~ R'.

2. The main theorems. As for the quasiconformal (or conformal) equiva-
lence, we can state the following purely algebraic (or normed algebraic) criterion

of the quasiconformal (or conformal) equivalence using the Royden’s_algebra,

19 As for ||TI?P< K(T), see [18].

1) C(R) (resp. B(R)) denotes the algebra of all complex-valued continuous (resp.
bounded continuous) functions on R. For algebras A and A’, A = A’ means that A is
isomorphic to A’ as algebras over the complex number field.
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which are the main object of this paper.

Tureorem III.1. Two Riemann surfaces R and R' are quasiconformally
equivalent if and only if their Royden's algebras M(R) and M(R') are iso-

morphic as algebras.

As stated already, M(R) can be normed by ||/ I\=s%p [ f1+ / jS | grad f|*dxdy.
! R

With this norm, M(R) is a normed algebra. Then we can prove

Tueorem I11.2. Two Riemann surfaces R and R' are conformally equivalent
if and only if their Royden’s algebras M(R) and M(R') are isomorphic as normed

algebras.”’

3. Theorems III.1 and IIL 2 follow from the following more precise facts.
Let Q(R, R') be the totality of quasiconformal mappings of R onto R’ and
I(R, R') be the totality of algebraic isomorphisms of M(R) onto M(R'). For
s belonging to I(R, R'), we put lell=inf{a; 27\ /1NN <Alfl}. Clearly
1=|l¢f| <. Then Theorems III.1 and III.2 are direct consequences of the

following

Turorem II1.3. There exists a one-to-one correspondence <> T between
I(R, R") and Q(R, R') satisfying (i) f°=fo T for f in M(R) and (i)
1= KT = ol = K(T).

4. Property M. For the proof of Theorem III.3, we apply the general
Theorem I.1. For the aim, we introduce a property M on continuous functions.
Let M be a subfamily of C={(f, S)} satisfying the following four conditions :
a pair (f, S) belongs to M if and only if

(M.0) S is an open subset of a Riemann surface R-;
(M. 1) the function f is a.c.T on S;
(M.2) f is bounded on S in the absolute value;

(M. 3) the Dirichlet integral qugrad f1*dxdy of f over S is finite.

. . ,
Now we put [[(/, S)|§=i|f|§s=|5fi!=sgplfl+ \/” | grad f |*dxdy for a pair

R
(f, S) belonging to M. We shall show that M is an admissible property and

that any Riemann surface belongs to Sx. The following is evident:

12) This means that M(R) and M(R’) are isomorphic as algebras and that the norms
of corresponding elements by this isomorphism are coincident.
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Lemma IIL.1. The property M satisfies the conditions (P.1), (P.2), (P.3),
(P.4), (P.5) and (P.6).

5. Next we have to show that M satisfies (P.7). For our purpose, the

following lemma is very important:

LemMma II1.2. Let S and S' satisfy (M.0) and let ¢ be an algebraic iso-
morphism of M(S) onto M(S'). Then the following holds: 1=|sll < x, where
loll=inf{a; A7 rl= o< allrl for all £ in M(S)).

Proof. Consider M(S) to be a normed algebra with the norm [lf|l. Then
M(S) is complete with respect to this norm lf|| (cf. [18]D.* As [/
= sup |71, we can conclude that lim| f”[|”” =0 if and only if /= 0, which shows
M(S) has no generalized nilpotent. Since M(S) is commutative, this is equiva-
lent to that M(S) is semi-simple. Thus ¢ is an algebraic isomorphism of a
commutative semi-simple Banach algebra M(S) onto such a M(S’). Then by
the Gelfand theorem [6],'Y we have the bicontinuity of ¢ with respect to the
norm topology. From this we get the finiteness of o.

Next we prove
LemMma III.3. M is an admissible property on continuous functions.

Proof. By virtue of Lemma III.1, we have only to show that A satisfies
(P.7). Let ¢ be an algebraic isomorphism of M(S) onto M(S') and let U and
U' be two open subsets of S and S’, respectively, and let 7' be a topological
mapping of U onto U’ such that f°(Tp) = f(p) on U. We show that T has
property M, ie, (go T7', U') belongs to M if and only if (g U) belongs to
M. As the argument is quite similar, we have only to show that (go T U")
belongs to M if (g, U) does so.

Let U=> U, be the decomposition of U/ into components and U’ = >\U
be the corresponding one for U, ie., TU, = U, We denote by T, the restric-
tion of T on U,. Then T, is a homeomorphism of U, onto U,. Then it is
clear that f - f°= f o T5' is an algebraic isomorphism between My(U,) and
MyUy). The norm [[T,]| of T, defined in II.3 is not larger than [ which is
finite by Lemma III.2. By Theorem II.3, T, is a quasiconformal mapping with

13) In [18], S is assumed to be connected, but the proof stated there had make no
use of the connectedness of S.
) See also Loomis [13].
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the dilatation not larger than »(|l¢|*).

Let (g U) be in M. For simplicity, we put K=7(lsl*), g'=g° T7" and
gn=g° Ts'. It is clear that (g, U') satisfies (M.0) and (M.2). By Theorem
2 in [18], we see that g4 is a.c.T and Dy, [g«] < KDy,[gl. From this, g’ is
a.c.T and Dp[g'l=> Dy, Lgrl = > KDy, lgl= KDy[gl. Thus (g', U) satisfies
(M.1) and (M.3).

6. Now we prove the following
Lemma IIL 4. Any open subset S of a Riemann surface belongs to Su.

Proof. In virtue of (P.1), (P.2) and (P.6), we have only to show that the

center z=0 of thedisc U: |z| <1/2 is not M-removable. Consider the function
f(2) =sin (log (log (|12|™)))

defined on Uy= U—{0}. Clearly (f, U;) satisfies (M.0), (M.1) and (M.2).
Further, we have

27 al/2

§. tarad s@axay= | [ (lorrer(®+1as/o01 ) raras

1/2
= ZnS cos’ (log (log ")) 7 *(log 7) *dr

0
1/2

< 27r5 r (log7) *dr =2r(log2)7",

0

which shows that (f, U,) satisfies (M.3). Thus (f, U,) belongs to M.

Consider the cluster set Cu,( £, 0) of f at 0. It is easy to see that Cy,(f, 0)
is the closed interval [ —1, 1]. Hence there exists no pair (g, U) in M such
that g(z) = f(2) on U,. Thus 0 is not M-removable.

7. Proof of Theorem III.3. We define a mapping 3: T - T =¢ of
Q(R, R') into I(RR') as follows: f°= fo T! which is nothing but (i) in the
theorerri. By results in [18] and [19], this is well defined and (ii) in our
theorem is satisfied. Moreover, it is clear that S is one-to one. So we have
only to show that J is an onto mapping. Let o be an arbitrary element in
I(R, R'). Then, by Theorem 1.1, Lemma III.3 and Lemma III.4, we find a
topological mapping of R onto R’ such that /"= o T"'. Of course, f»fo T"!
induces an algebraic isomorphism of AM,(R) onto My(R') and the norm ||T| of

T is not larger than |sll which is finite by Lemma II1.2. Thus, by Theorem
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I1.3, we see that T belongs to Q(R, R') and T*=o. This shows that J is onto.
This completes the proof of Theorem III. 3.

8. As an immediate consequence of Theorem 2 in [18] and Theorem III. 3,

we get the following

Tueorem lII.4.  An algebraic isomorphism o of M(R) onto M(R') is bi-
continous with respect to the following topologies in M(R) and M(R') :

(i) Norm-topology: |fall— 0 if and only if || fall - 0;

(ii) Uniform topology : sup | fal= sgp|fn[ ;

(iii) D-topology: DLf71- 0 if and only if D[ f,1-0;

(iv) B-topology: (|fn|} is bounded and f; — O uniformly on each compact
set of R' if and only if {|fs|} is bounded and f, -~ O uniformly on each compact
set of R,

(v) BD-topology: fn-0 (in B and D-topology) if and only if fn - 0 (in
B and D-topology).

9. Differentiable function subalgebras of M(R). Next we consider the
subalgebra M*(R) (n=1,2,..., ) of M(R) consisting of all the elements
in M(R) which are #n-fold continuously differentiable; ie., a complex-valued
function f on R belongs to M"(R) if and only if

(M".1) f belongs to the class C";

(M”.2) f is bounded on R in the absolute value;
(M. 8) Dirichlet integral D[ f] of f over R is finite.

For convenience we put M°(R) =M(R). As a subalgebra of M(R), M"(R)
can be normed by the norm of M(R), i.e., !!f|!=sln}p | f1+ VD[ f]. Needless to
say, M"(R) is not complete with respect to this norm in the case #»=1 but

we have proved, as already stated and used, in [18] the following'®

Lemma IIL.5. For each n=1,2,..., , M™(R) is dense in M(R).

10. If there exists a C"-quasiconformal (resp. conformal) mapping T of R
onto R', then the correspondence f - f°=f° T ' induces an algebraic (resp.

normed algebraic) isomorphism of M"(R) onto M"(R'). This leads us naturally

15 In [18], the case # = oo is not treated. But a similar method, by using molifier
instead of mean-value integral of Rad6, can be used to include the case # = .
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to study the converse problem: under the assumption that there exists an alge-
braic (resp. normed algebraic) isomorphism of M"(R) onto M"(R'), can we
conclude the existence of a C"-quasiconformal (resp. conformal) mapping of R
onto R’ which induces a given isomorphism? The answer is affirmative. To
state our result, we introduce two notations: Q”(R, R’') denotes the totality of
C"-quasiconformal mappings of R onto R’ (n=1,2,..., o) and I"(R, R"
denotes the totality of algebraic isomorphisms of M"(R) onto M™(R') (n=1,
2,..., ©). For convenience we put Q(R R')=@Q(R, R') and I(R R')

=J"(R, R'). Then we can prove

TueoreMm III.5.  There exists a one-to-one correspondence o <> T belween
I"(R, R') and Q™ R, R') satisfying (i) f°=foT™" for all f in M"(R) and
(i) 1 = KX)ol < K(T).

11. In the case n» =0, this theorem reduces to Theorem II.3. Thus we
may assume # = 1. In the case n =0, the completeness of M(R) has played a
very important role (cf. Lemma III.2). In the case » =1, we essentially use
the continuity of the dilatation at a point in place of the completeness.

As before we define a mapping 3, : T - T =s of Q*(R, R') into I"(R, R')
as follows: f’= foT7! for f in M"™(R), which is (i) in the present theorem.
Clearly this is well defined and one-to-one and satisfies (ii). We shall prove
that this is onto.

12. For the aim, we define a property M" by the following: a pair (/, S)
in C={(f, S)} belongs to M" if and only if S is an open subset of a Riemann
surface R and f is bounded C”-function on S with finite Dirichlet integral over
S. Then it is easy to see that M" satisfies (P.1), (P.2), (P.3), (P.4), (P.5)
and (P.6). Moreover, any open subset of a Riemann surface belongs to Su.
For the proof of this, the proof of Lemma III.4 can be applied to this case
without any change. In order to apply Theorem L. 1, we now have only to show
that the property M” satisfies (P.7).

Let ¢ be an algebraic isomorphism of M™(S) onto M"(S'). Assume that ¢
is induced by T locally on U and U’, ie., T is a topological mapping of an open
subset {7 of S onto an open subset U’ of S’ such that £°(Tp) = f(p) on U for
all / in M(S). Let U=> U, be a decomposition of U into components and
U'=>1U} be the corresponding one for U’ such that TU, = U;.
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First we prove that T is a C"-quasiconformal mapping of U, onto Uj. Itis
readily seen that 7 and T~ ! are C*mappings. Thus J(T) =127/2z|* - |oT/oz |

vanishes nowhere in U,. Now we put
K(T, p) = (|aT/az| +|aT/oz)/||oT /02| — |aT/az|| at p,

where z is a local parameter at p. Then K(T, p) is continuous with respect to
p and Ky (T)=sup(K(T, p); p is in U,). We have to show that Ky.(T) is
finite.

Contrary to the assertion, assume that Ky.(7T) = cc. Then we find a
sequence {pm) in U, such that K(T, pm) = K(T7% ph) - © (m - =), where
Pm=Tpm. Clearly {pm} and {pf} do not cluster in U, and U,, respectively.

Now we notice that the following case does not occur: there exists a sub-
sequence {pm} of {pm} such that {p,} and {ph} converge to p and #' in the
relative boundary of U, and U; with respect to S and S’ respectively. In fact,
if this is not true, then by the remark at the end of Chapter I, we can extend
T to be a topological mapping of V onto V' such that {p} U U, C V, {p'} U U,
C V' and F(Tp) = f{(p) on V for all f in M™(S). From this we can easily see
that 7T is in the class C" in V. Choose a compact domain D contained in V
with its closure such that {p, pwr; m=1, 2, ...} is contained in D. Then, by
the continuity of K(T, p) in the closure of D, K(T, p) is finite in D, which
contradicts the fact lim K(T, pm) = oo.

Now, we may assume that we can choose a sequence {p.} on U,, a

sequence {Dy} of the circular neighborhoods D, of p., satisfying the following

(i) {pm} does not converge to any point p in the relative boundary of U,
with respect to S;

(i) im K(T, pp) = o ;

(iii) tt,lne closure of Dy is contained in U, ;'®

(iv) Dn N\ Dy =¢ (empty set) if m = [;

(v) Ko, (T)=sup{D[x(foT1/DI[f]; f belongs to Ms(Dnu)} > 3m.

In fact, by the above remark, we may assume (i) and (ii) hold for some {pm}.
Then (iii) and (iv) are clearly satisfied. Assume that (v) is not satisfied by
any subsequence of {pn). Then we have a constant 1 <¢ < such that

6) Moreover, we assume that the diameter of D, is smaller than 1/m for some metric
on R which induces the topology of R.
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DLfoT 1< eD[f] for all f in M(Dn) (m=1,2,...). In this case, {pm}
contains a subsequence which does not converge to any point ' in the relative
boundary of U; with respect to S'.

Otherwise, we can find a subsequence of {pm} which converges to a point
#' in the relative boundary of U, with respect to S'. For simplicity, we may
assume {pj,; converges to p'. Now we choose, for each m, an element Fm in
My(Dm) such that VD[7,,]<1/2". By Lemma 1.3 in [18], we can fined an
element f, in MZJ(Dn) such that {fm—/fml <1/2™. We set f=>fm. Then
sup [f1<3/2 and VyD[f]< %}\/DA[—f;jé 23D fml+1/2")=2. Moreover,
f (rj)m) = fiu( pm) differs from 1 at most 1/2™. Hence lim f(pm) =1. On the other
hand, we take a point ¢, on the external boundary ”:)f the base of fm. Then
7(qm) = fm(gnm) differs from 0 at most 1/2”. Hence lim f(gn) =0. Here we
remark that both {pm} and {g/x} converge to p’, where Zi,,: Tqm.

As f vanishes on a neighborhood of the relative boundary of U, with re-
spect to S, we may consider that 7 belongs to M™(S) by defining /=0 outside S.
From f°(Tp)=7(p) on S and, hence, on U,, we have f(ph)=f(pn) and
gt = f(gn). From this we get f7(p') = livrnn F£°(ph) =1 and at the same time
f°(p") =1lim f°(gn) =0. This contradicts the continuity of / at . Thus we
have shov1v"n that {pln)} satisfies the conditions (i) and (ii) instead of pm since
K(T, pm) = K(T7', pi). Putting D)= TDm, we see that {Dj,} satisfies the
conditions (iii) and (iv). Next we show that lirm Kp, (T™') = o, where
Ko, (T =sup{Dlxf1/DLf°]: f° belongs to Mf(DZ,,)}. If this is false, we
see that d=Max(Kp, (T), Kp,(T7')) is finite. Since K*(T)<d and K(T)
<7((K*(T))"), we get that K(T) is finite, which contradicts Ky (T)= co.
Thus we can select the subsequence { pi} of {pi.} such that Ky, (77') > 3m.
Hence the conditions (i)-(v) are satisfied by the system {py-} and { D} }.

Thus we may consider that {p,.} and {D,,} satisfy the conditions (i)-(v)
(if not so, we may consider {ph}, {Dlw}).

Now we can find an element &, in Ms(D,) such that D[»(g,° T7Y]
> 2m D[Z,] and so

D[g’m ° T_l:l >2m D[g’m]

by the condition (ii). Here we may assume D[Z,]>1. In fact, by Lemma
IL.2, we can find 2' functions g% (=1, 2,...,2) in My(D,,) satisfying (i)

https://doi.org/10.1017/5S0027763000007625 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007625

182 MITSURU NAKAI

and (ii) in Lemma II.2. Then, by Lemma II.3,

1/@2'DE-D > 2m/ @' Dr(Gme T™H] 22—1§(2m/D[r:(§m o T7H])
gz";(zm/Dtg’; o T71).

Then, for some k, 27/D[Zn]>2m/D(Fa%o T™1. So we get D[gkoT7]
> 2mDIgh]. If we choose I so large as to satisfy 2'D[Z,]> 1, then we get
the required situation.

As T is a quasiconformal mapping of D, onto D)., the mapping f— f° T™!
of My(Dm) onto My(Dy) is continuous with respect to the semi-norm VvD[f].
Now, by Lemma 1.3 in [18], we can find an element g, in M;(D,) such that
lgn— @nll < em for an arbitrary given en. Moreover, by the above, we can
select g, so as to satisfy ||gme ™' —Zn° T 'l <em. Then we see that

VDIgm o T3> VDI@no T™ 1~ em> V2m D[gn] — om
> V2m(VDLgml = em) = em.
If we choose ¢, sufficiently small, then we have
Dlgn° T™'1> mDlgml] and D[gn] > 1.
Next we choose a sequence {f»} such that ¢, D[gnl=1/m". Then 0<t,<1.
We put g= > Vtmgm. Then sup lgl <1 and DLgl=tmDlgnl=1/m’ < .
Hence g is in M(U,). By defining g=0 outside U,, we may consider g to be

in M™(S). It is well defined since g vanishes in a neighborhood of the relative
boundary of U, with respect to S.

By the definition of T, we have g°(Tp) =g(p) on U. Then we get

Dlg 1= (| Igradge T dudy

=2) S |grad Yimgm o T ' *dxdy

m Dm

= EtmD[gm o T71] = EmtmD[gm]
=21/m= .

m

which contradicts the condition (M".3), since g° belongs to M”(S’). Thus we
have proved Ky (T) < .

The sequence {Ky.(T)}7-; is uniformly bounded. This can be proved by
the similar method as above.
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Thus we see that the property M” satisfies (P.7). This can be proved by
the similar method as in the last part of the proof of Lemma III.3. Hence we
can apply Theorem I.1 to conclude that an arbitrary element in I"(R, R') is
induced by a topological mapping T of R onto R', ie., f°(Tp)=f(p) on R.
Thus T and 7' are C"mappings and the quasiconformality of T can be con-
cluded by the same method as above.

This completes the proof of Theorem III.5.

13. It is easy to see that if there exists a quasiconformal mapping of a
Riemann surface R onto another Riemann surface R, then there exists a C®-
quasiconformal mapping of R onto R’ From this and from Theorems 1II.1,
II1.2 and IIL. 5, we get the following

Tueorem II1.6. Two Riemann surfaces R and R' are quasiconformally (resp.
conformally) equivalent if and only if M™(R) and M"™(R) are algebraically (resp.

normed algebraically) isomorphic for some n and hence for all n=0,1,2, ..., .
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