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Introduction

1. Various strides have been done to characterize the conformal structure

of Riemann surfaces by the algebraic structure of some appropriate function

algebras on them (cf. Bers [2], Rudin [29], Royden [26], [28], Heins [7], Kaku-

tani [12], Wermer [33] etc.). In this paper we discuss, corresponding to the

above, the problem to determine the quasiconformal structure of Riemann

surfaces by the algebraic structure of some function algebras on them.

2. Quasiconformal equivalence. Following Pfluger-Ahlfors-Mori ([21], [1],

[14]), we say that a mapping T of a Riemann surface R onto another Riemann

surface i?' is a quasiconformal mapping of R onto R' if it is a topological

mapping of R onto R' and if its maximal dilatation K(T) is finite. Here K{T)

is defined by the following : K(T) = inf {λ Λ"1 mod Q < mod TQ^λ mod Q for

all Q in Q(/?)}, where Q{R) denotes the totality of quadrilaterals on R and mod

Q denotes the modulus of Q.

Now consider two Riemann surfaces R and R!. If there exists a quasi-

conformal mapping of R onto Rf, then R and Rf are said to be quasiconformally

equivalent or to have the same quasiconformal structure.

3. Royden's algebra. Let R be a Riemann surface and M(R) be the

totality of complex-valued functions / on R satisfying the following three con-

ditions :

(M.I) / i s absolutely continuous in the sense of Tonelliυ;

Received October 29, 1959.
1 } A function Fix, y) on a rectangle [α, b) c, d~\ is called absolutely continuous in the

sense of Tonelli (abbreviated as a.c.T.) if F(x, y) is absolutely continuous in x varying
in [σ, b~\ for almost all fixed values y in [c, dj and if the corresponding fact holds by
interchanging x and y and, further, if F£ and Fϋ are locally integrable. (For details,
refer to [22, 30, 34].) This notion is carried over Riemann surfaces by using local
parameters.
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(M. 2) / i s bounded on R in the absolute value

(M. 3) Dirichlet integral of/ over R is finite.

We define the algebraic operations in M(R) as usual, that is, for / and g in

M(R) and for a complex number a, (f+g)(p)=f(p)+g(p), (fg)(p) = f(p)g(p)

and (af)ip) = a(f(p)) at every point p in R. Then M(R) becomes an algebra

over the complex number field. This function algebra MiR) is called Royden's

algebra associated with R.2) Some applications of Royden's algebra to the func-

tion theory were given by Royden [24], [25], [26], S. Mori [15], [16], Mori-Ota

[17] and the present author [18], [19].

4. Main theorems. The main result of this paper is that the algebraic

structure of the Royden's algebra MiR) associated with a Riemann surface R

determines the quasiconformal structure of R,3) namely:

THEOREM. TWO Riemann surfaces R and R' are quasiconformally equivalent

if and only if their Royden s algebras M(R) and MiR') are algebraically iso-

morphic.

The Royden's algebra M{R) can be normed by

11/11 = sup 1/1+ /(( |grad/|2tf*</y.
ϋ V J J jfj

Using this norm, we can state4)

THEOREM. TIVO Riemann surfaces R and R' are conformally0' equivalent if

and only if MiR) and MiR') are normed algebraically isomorphic.^

5.7) In Chapter I, we give a general theorem on some subalgebra of bounded

continuous function algebra. Our main tool is the notion of unremovability of

2 ) The original definition of Royden's algebra due to Royden [24] is as follows: let
BD(R) be the totality of the complex-valued bounded piecewise smooth functions defined

on R with finite Dirichlet integrals. Then BD(R) can be normed by | |/ | | = sup | / |
E

+]/ J | Jgrad/|2ίte4y. Then the completed algebra of BD{R) by this norm is called

Royden's algebra. As for the coincidence of both definitions, refer to [18].
3^ An improvement of the author's previous result, Theorem 4 in [18].
4 ) An extension of the author's previous result in [19], in which this was proved under

the condition that R and Rr are compact.
5 ) Including both of direct and indirect ones.
6 ; i.e., this means that M(R) and M(R') are algebraically isomorphic and this iso-

morphism preserves the norm \\f\\.
7) The result stated in this paper was published in [20] without proofs,
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a point for a family of functions with some property. In Chapter II, a quantity

is defined for some topological mapping and we characterize the quasiconfor-

mality of this topological mapping by using this quantity. In Chapter III, the

results above mentioned are proved. By using the algebra Mn{R) consisting

of all functions in M(R) which are n-ίolά continuously differentiate (n = 1, 2,

. . . , oo), similar results as above are proved for Mn(R) instead of M{R).

The author wishes to express here his hearty thanks to Prof. K. Noshiro

for his kind encouragements and guidances, and also to Prof. T. Kuroda for his

valuable discussions.

I. Some subalgebras of continuous function algebras

l In this chapter we treat the problem characterizing a given topological

space S by an algebra of some continuous functions defined on S. It is well

known that the total algebra C(S) of all continuous functions defined on S

determines S if S is a compact Hausdorff space (Cech EG). As an extension,

Hewitt [8] and Shirota [32] proved that C{S) determines S if and only if S is

a Q-space. For arbitrary spaces S and for arbitrary subalgebras P(S) of C(S).

it is not always true that P(S) determines S. But under some conditions on S

and on the structure of PCS), it is known that the same holds (cf. Pursell [23],

Isiwata [10]).

In this chapter we shall only consider the locally compact Hausdorff spaces

S. For locally compact spaces S, Shanks [31] and Ishii [9] proved that the

subalgebra Co(S) of C(S) consisting of all functions with compact carriers

determines S. Some generalization of this was given by Isiwata [11].

We shall consider some appropriate property P on functions of C(S) and

we shall prove that the algebra P(S) consisting of functions in C(S) with a

property P determines S if S has no removable point with respect to the property

P. These discussions play important roles to study Royden's algebra.

2. A property on continuous functions. We denote by S = {S} the totality

of locally compact Hausdorff spaces S. Let / be a complex-valued continuous

function defined on S. We consider the totality C of such a pair (/, S), i.e.,

C = {(/, S) S is in S and / is a continuous function defined on S}. Let P be

a subfamily of C. We say that a continuous function / defined on S has a

property P if (/, S) belongs to P and that P is a property on continuous func-
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tions. By P(S) we denote the set {/; (/, S) belongs to P}. Now we consider

the following conditions (P.I)-(P.7) on a property P :

(P.I) P(S) is an algebra over the complex number field with the constant

function 1

(P. 2) P(S) separates points in S strongly, i.e., for any neighborhood V of

any point p in S, there exists a function / in P(S) such that / = 0 on S - V

and 1 on a neighborhood of p contained in V\

(P. 3) P(S) is inverse-closed, i.e., if / is in P(S) and inf | / | > 0, then the

function 1// belongs to P(S)

(P. 4) P(S) *s self-adjoint, i.e., if / belongs to P(S)> then /* belongs to

PiS), where f*(p)=f(p) (the complex conjugate of /(£)) for all points p

in S;

(P. 5) every function / i n P(S) is bounded in the absolute value;

(P. 6) P is monotone, i.e., if S' belongs to S and S is an open subset of S',

if (/, S) belongs to P and if / vanishes on a neighborhood of the relative

boundary of S with respect to S', then (/', SO also belongs to P, where / ' = /

on S and / ' = 0 on S'-S. Conversely, (/, S) belongs to P if (/, S') belongs

to P.

We say that a topological mapping T of S onto S' has property P when

(/ ° T~\ S') belongs to P if and only if (/, S) belongs to P. A mapping a of

PiS) onto P(S') is said to be induced by a topological mapping T locally if T

is a topological mapping of an open subset Si of S onto an open subset S[ of S'

and f(Tp) =f(ρ) holds for any j£ in Si and for any / in P(S)y where / σ is the

image of / by the mapping a. By using these terminologies, our additional con-

dition is stated as follows:

(P. 7) if (P.I) is satisfied and if an algebraic isomorphism of PiS) onto

P(Sι) is induced by a topological mapping T locally, then T has the property P.

We shall say that a property P satisfying the conditions (Pol), (P.2), (P.3),

(P.4), (P.5), (P.6) and (P.7) is an admissible property on continuous functions.

Examples of admissible properties are B, Bo, and Bm, where B =-{(/, S)

(/, S) is in C and / is bounded in the absolute value on S}, Bo - {(/, S) (/, S)

is in C and / is constant outside a compact subset of S} and Z?» = {(/, S) (/, S)

is in C and there exists a constant c/ such that for any ε > 0 there exists 3
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compact set outside which we have \f - c / | < ε}.

3, P-removability. Let S be in S and P be a property on continuous func-

tions. A point p in S is said to be P-removable if the following condition is

satisfied: for any pair (/, S - {p}) belonging to P, there exists a pair (/;, S)

belonging to P such that f(q) = f'(q) holds for any # in S-{p). in other

words, choosing a suitable value of / at p, we can extend / to the whole space

S such that (/, S) is contained in P. We consider the subfamily Ŝ  of S defined

by the following: S is in Sp if and only if S has no P-removable point.

We state an example. Let S be in S and let S be non-compact. Let βS be

the Cech compactification of S, i.e., the compact Hausdorff space containing S

as its open dense subset and every function in B(S) is extended over fiS so as

to be continuous on 0S. Then each point of βS - S is ^-removable and βS does

not belong to S .̂ On the other hand, any manifold belongs to SB or more

generally, each space in S whose each point is Gs belongs to Sj?*

4β THEOREM 1.1. Let P be an admissible property on continuous functions

and, S and S} belong to Sp. Assume thai a is an algebraic isomorphism of P(S)

onto P(Sf). Then there exists a topological mapping T of S onto S! such that

fσ(p) = f(T~Hp)) for any point p in S1 and for any function f in P(S), ivhere

f° denotes the image of f under the mapping a.

5β P-compactification. For the proof of Theorem 1.1, we need same pre-

liminaries. Let P be a property satisfying (P.I), (P.2), (P.3), (P.4) and (P.5).

For each space S in S we associate a space S = S/», which will be called P-

compactiftcation of S, satisfying the following three conditions:

(S.I) S is a compact Hausdorff space containing S as Us topological sub-

space

(S. 2) S is open and dense in S;

(S 3) for each f belonging to P(S) there exists a continuous function f

defined on S such that f (p) = f(p) for any point p in S, i.e., f can be extended

continuously to S.

We say that a complex-valued functional X on PiS) is a P-character on S

or simply a character on PCS) if it satisfies the following conditions: for func-

tions / and g in P(S) and for any complex numbers a and b,
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(x.i)

(X.2) X(af + bg)=aXlf)+bX(g)f X(fg) = X(f)X(g)

(X.3) \X(f)\^n(f), where w(/)=sup|/|.
s

A point p in S determines a character X/> on PiS) defined by Xp(f) - fip) on

PCS). By (P.2), p*q implies Xp*XQ. We say that a character Xp is

determined by p. We denote by S* = Sί the totality of P-characters on S and

we call Sp the P-character space of S. First we prove the following fundamental

LEMMA 1.1. For any locally compact space S, there exists a unique P-

compactification S of S.

Proof. Let S be the set of points x, y, . . . containing S as its subset such

that there exists a one-to-one mapping / of the P-character space S* of S onto

S. Moreover, we assume that i(Xp) -pt where Xp is the character determined

by p. We denote by P(S) the totality of functions f on S defined by fix)

= ii~ιix))if). Now we consider P(S) as a normed space with the norm nif).

Then by (X.3), S* is contained in the dual space PiS)* of PiS) and further

S* is contained in the unit sphere of PiS)*. It is easy to see that S* is closed

in P(S)* with respect to the weak topology σ(P(S)*, P(S)) of PiSf as func-

tionals. Then the well known Tychonoff-Kakutani theorem yields the compact-

ness of S*. Hence S* is a compact Hausdorff space. We introduce a topology

into S by i such that / is a homeomorphism between S* and S. It is easily

seen that the relative topology of S with respect to S is coincident with the

proper topology of S as a locally compact Hausdorff space. Hence we have

shown that (S.I) is satisfied by S. By this topology, it is clear that P{S) is

the family of functions / which are continuous on S. Moreover, / (p)-f(p)

on S and nif ) < nif), where nif) = sup \f ix) |. Thus / is a bounded continu-

ous extension of / on S to S. Thus (S. 3) is also satisfied by S.

Now it is clear that PiS) separates points in S. For, if x and y are in S

and x^y, then X~i~1ix) and Y-i^iy) are distinct. Hence there exists a

function / in PiS) such that X(f)±?Y(f), which shows f(x)*f(y). Thus

P(S) is an algebra with 1 which separates points in S. Thus by the Weierstrass-

Stone approximation theorem (Bourbaki 1X1), P(S) is dense in CiS) with the

topology induced by the norm n(f).

If S is not dense in S, there exists a function g in C(S) such that ^ $ 0
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and ^ = 0 o n S. By the above we can find a sequence {fm) in PiS) such that

f m converges uniformly to g. Thus we may assume \fm(p)\ < l/m on S. As

already stated, /«,=/« on S and n(f ) £ n{/m) ^ l/m. Thus {fm} converges to

0 uniformly. So ^ = 0, which is a contradiction. Hence S is dense in S. Thus,

to show that S satisfies (S.2), we have only to prove that S is open in S or

that S — S is closed.

To verify this, we first prove that x belongs to 5 ~S if and only if fix)

= 0 for all / in P(S) with compact carrier. The "if part" of the above state-

ment is evident. Conversely, we shall prove that fix) = 0 for all / in PiS)

with compact carrier if x belongs to S - S. Contrary to the assertion, suppose

that there exists a function /0 in PiS) with compact carrier such that foix) Φ 0.

We may assume f0 > 0. Put R = {p p is in S and fD(p) > 0} and Z= {/; / is

in PiS) with compact carrier contained in the closure of R in S, and fix) = 0}.

For each point p in R, we can find fp in Z such that fpip)^0. If this is not

the case, (g-g(x))fo is in Z for any g in PiS) and so igip) - g(x))fo(p) = 0.

Thus gip) =£(#) holds for all g in PiS), which shows that Xpig) = i~Hx)(g)

or x -p, which is a contradiction. Thus we can find fp in Z such that fpip) Φθ.

Clearly, v/e may assume fP>0 and fp(p)=l. Let fe0 = (/o-/ o(#)) 2/(/o(#)) a.

Then ftoU)=O and /*0^0. Moreover, hdp)^l/2 on S-i?', where i?' is a

compact set in S. We can find a finite number of points in R', say pj, and //>,•

in Z such that Σ / ^ S 1/2 on R1. Then Λ = ft0 + Σ / ^ > 1/2 and ί (ΛΓ) 2 1/2 and

on the other hand hix) = feo(«) + Σ / ^ U ) = 0. This is a contradiction. There-

fore, S — S coincides with the intersection of zero-sets of continuous functions.

So S is open in S. Thus the proof of the existence of the P-compactification

of S is established.

Finally we show the unicity of P-compactification. Let Sj (.7 = 1, 2) be P-

compactifications of S. By (S.2), the extensions/) of / in PiS) to Sj is unique.

Thus the correspondence ij -/-* fj gives an algebraic isomorphism of PiS) onto

{fj}. Thus io° iΐ1 '- fi-*f2 gives an algebraic isomorphism of {fλ} onto {f2}.

It is easy to see that {/,} are dense in C(Sj) with respect to the uniform

topology. It is clear that ύ and ί>, and hence i2 ° iΐ1 are isometric with respect

to the uniform norm. So the isomorphism of ifx) onto {f2} induces an iso-

morphism of CiSi) onto CiS2). As Sj are compact, the classical Cech theorem

implies that Si and S* are homeomorphic.
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This completes the proof of Lemma I.I.

We state some examples of P compactifications. As is already stated, B-

compactification SB of a locally compact space S is the Cech-compactification βS.

Both ZVcompactification and J5co-compactification of a locally compact space S

are the Alexandroff-compactiίication S*> which is formed by adding one point °°

to S. Now we introduce a new property. Let B\ be the subfamily of C such

that (/, S) belongs to Bι if and only if (/, S) belongs to B and, for each posi-

tive number e, there exists a compact subset K and a family of constants {CD),

where {D} is the totality of components of S-K, such that \f{p)-cD\ is

smaller than ε on D for each D in {D}. Then Bι is the property satisfying

(P.I), (P.2), (P.3), (P.4), and (P.5). The JBi-compactification of a locally

compact space S is nothing but the Kerekjartό-Stoϊlow compactification of S (cί.

Royden [27]).

As is easily seen from the proof of Lemma 1.1, we get the following re-

presentation theorem of P- characters:

LEMMA 1.2. For any P-character X on S, there exists a point x in the P-

compactification S of S such that X(f) -fix) for all f in P(S).

Next we state a simple and useful lemma:

LEMMA 1.3. Any algebraic isomorphism a of P(S) onto P(Sf) is isometric

with respect to the uniform norm, that is, n(fa) = n(f) for all f in P(S).

Proof Let / belong to P(S) and s(f) be the spectra of /, where a com-

plex number a belongs to s(f) if and only if f—a is not inversible in P(S)

and hence ίnf \f - a\ = 0 by (P.3). Then it is easy to see that n(f) =sup{|α|

a belongs to s(f)) and that s(/σ) = s ( / ) . From these, our assertion follows.

6. Proof of Theorem LI. We consider P-compactiίications S and Sr of S

and S', respectively. We construct a topological mapping T of § onto S1 as

follows. Take a point x in S. Then we can find a P-character X in the P-

character space S* of S such that X(f)=f{χ), where / is the topological

continuation, to S, of / belonging to P(S)« To this X, we define a functional

Y on P(S') by Y(f) = X(f°~ι), where / is in P(S'). Then by Lemma 1.3, it is

easily verified that Y belongs to the P-character space S' * of Sf. Using Lemma

1.2, we can find a point y in Sf such that Y(f) =/(jy), where / is the topo-
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logical continuation, to S', of / belonging to PiS1). These give rise to a

mapping T: x -»y of S into S'. This is clearly one-to-one and onto. Moreover,

by the definition of topologies in S and S', we see immediately that T is bi-

continuous. To any function / i n P(S) and for any point p in S, we have the

identity

fa(τp)=f(p).

Next we prove that the image TS of S under the mapping T is S'.

Contrary to the assertion, suppose that there exists a point p in S which is sent

to a point xf in §' - S', i.e., Tp = *'. Let £/ be an open neighborhood of p con-

tained in S with its closure and let £/' be the image TU of U under 7\ We

set V = Uf Π Sf which is a non-void open set in S\ as Sf is a dense open subset

of §', and let V be the counter image T" 1 V of V under T. Clearly F is con-

tained in U. By the hypothesis that S is contained S/>, there exists a function

F on S-{p} such that (F, s-{/>}) is contained in P but no pair (g, S) exists

such that (g, S) is contained in P and #(#) = F(q) on S - {p). By the condition

(P.2), there exists a function d(q) on S such that (d, S) belongs to P and

d(q) = 1 o n a neighborhood of p contained in Uu where £71 is a neighborhood

of p contained in £7* with its closure, and d(q) =0 outside Uι. We define the

function G on S~{£} by G(q) =d{q)F(q) on S-{j>}. Then (G,S-{p))

belongs to P. The function G cannot be continued to p such that (G, S)

belongs to P. In fact, suppose that G can be extended to S and (G, S) belongs

to P. Since ( l - r f ) F vanishes on a neighborhood of £ and ( d - d ) F , S-{p})

belongs to P, ( U - d ) F , S) belongs to P by (P.6). As (F, S - (p))

= ( G + ( l - d ) F , S-{p}), we see that (F, S) belongs to P by (P.I), which is

a contradiction. Thus G cannot be extended to S. Hence we have found a

function G defined on S~ {p} satisfying

( i ) (G, S-{p}) belongs to P;

(ii) G cannot be continued to i> such that (G, S) belongs to P;

(iii) G vanishes outside a neighborhood £71 of i>, where U\ is contained in

£7" with its closure.

Here we notice that G vanishes on S - S. Now we consider a function G

defined on S' - {%'} and a fortiori on S' by G'(y) - G(Γ"*H^)) for y in S'- {#'}.

As T is a topological mapping of the open subset V of S onto the open subset

V of S' and as Γ(Tp) - f(p) on F\ i.e., T induces o- locally, so T has the
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property P by (P.7). Thus we can conclude that (GiT'Hy)), V) belongs to

P. Let qf be a point in the boundary of V relative to S'. Then q = T'ιq' is

a boundary point of V relative to S. Since U is relatively compact in S and

V is contained in U, the point q belongs to S. In this case q cannot be in U.

Contrary to the assertion, if q is in U, then TU contains qf and hence TU Π S'

= V contains q\ which contradicts the assumption that qf is in the boundary

of the open set V. Thus q is outside U. Hence we can choose a neighborhood

W of q' such that T~XW is outside Uu since the closure of £7Ί is compact

in CT.

Thus we can find a neighborhood W of #' such that T~xy belongs to

S-Ui'ύ y belongs to S'-W. If y belongs to V'ΠW, we see by (iii) that

GiT^iy)) = 0. Thus G(T~Hy)) vanishes on a neighborhood of the relative

boundary of V with respect to S'. Hence, by (P.6), (G't S') belongs to P.

Thus we can find a function g in PiS) such that the image of g by a is G*.

By the definition of T we have the identity G'(Tq) -g(q) for every point q in

S - {/>}. By the definition of G't it holds the identity G'(Tq) = G(q) for every

point q in S - {£}. Thus # coincides with Gon S - {£}, which means that G

can be continued to p such that it belongs to PCS). This contradicts the

assumption (ii) on G. This contradiction arises from our assumption Tp = x1

for some points p in S and x1 in S ; - S'. Thus we have proved the inclusion

TSCS'. By the similar manner we can show the converse inclusion T~1Sf CS.

Thus we get the required identity TS=Sf and so T is a homeomorphism of S

onto S' and the relation f°(Tp) = f(p) holds for any function / in P(S) and

for any point p in S.

This completes the proof of Theorem 1.1.

Remark. For later use, we notice the following fact. Let a be an alge-

braic isomorphism of P(S) onto P(S'), where P is a property on continuous

functions satisfying (P.I), (P.2), (P.3), (P.4) and (P.5). Let T induce a locally

in U and U\ that is, T is a topological mapping of an open subset U of S onto

an open subset IP of S' and fΊ(Tp)^f(p) on Z7 for all / in PiS). If the

sequences {̂ >Λ} and {pn) in £7 and IP, satisfying Tpn-pn, converges to points

p and p1 in the relative boundary of U and U1 with respect to S and S'

respectively, then we can find neighborhoods W and W1 oί p and ./>' in S and

S' respectively and T can be extended to a topological mapping of FT U U onto
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W'UU' such that fa(Tp)^f(p) for all p in W\JU, i.e., the extended T

induces, σ locally on W U U and ft" U £/'.

The proof of this fact is essentially contained in the first part of the proof

of Theorem Γ. 1.

II. Norm of a certain homeomorphism

1. Definition of qusaiconf ormal mappings. Let T be a topological mapping

of a Riemann surface R onto another Riemann surface R*. Consider the quantity

K(T) defined for T as follows:

K(T) = inf U λ"1 mod Q ^ mod TQ^λ mod £, for all Q in Qh

where Q denotes the totality of quadrilaterals {Q} contained in R and mod Q

denotes the module of Q. Clearly the inequality 1 ̂  K( T) ύ <*> holds. This

quantity K(T) is called the maximal dilatation of T. If K(T) is finite, then

we say that T is a quasiconformal mapping. This definition is due to Ahlfors

[1] (see also Pfluger [21] and Mori [14]).8)

2. We state another definition of the quasiconformal mapping which is

convenient for our purposes. Corresponding to K(T), we consider the quantity

K*( T) - inf U A""1 mod A ύ mod TA ύ λ mod A, for all A in A},

where A denotes the totality of annuli A which are Jordan domains contained

in some simply connected domains on R and mod A denotes the module of A.

Clearly we have the relation 1 ^ Ξ Z £ * ( T ) ^ O O . Then we get the following

criterion of the quasiconformality [18]:

THEOREM II. 1.9) A topological mapping T of a Riemann surface R onto

another Riemann surface Rf is a quasiconformal mapping if and only if K*(T)

is finite.

In the particular case that ϋf*(T) is 1, we have the following (see Nakai

[19]):

THEOREM II. 2. A topological mapping T of a Riemann surjace R onto

another Riemann surface Rf is a direct or indirect conformal mapping if and

8> See also Bers [3].
9 ) This is a direct consequence of Mori's Lemma 4 in [14] and Yϋjόbό's Theorem 4

in [34]. As for dilatations, we have K*{T) g K{T) ^ e x p (JΓ/C*( T)).
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only if K*(T) =1.

Remark. We may restate Theorems II. 1 and II. 2 as follows: there exists

a finite real-valued increasing function r(x) defined for 1 < x such that X I ) = 1

and limr(x)= <» and K*(T) £ K(T) £ r{K*{T)).

3. ΛΓ-mapping. Let R be a Riemann surface and M(R) be the Roy dens

algebra associated with R, i.e., the algebra of all complex-valued bounded func-

tions on R which are absolutely continuous in the sense of Tonelli and have

finite Dirichlet integrals over R. The algebra M(R) can be normed

where D [ / ] denotes the Dirichlet integral (T \gra.df\2dxdy of/ over R. Then
JJR

M(R) is complete with respect to this norm and the subalgebra M1(R) is dense

in M(R), where M1(R) denotes the totality of functions in M(R) which are

continuously differentiate (cf. Nakai [18]). We denote by Mo(R) the sub-

algebra of M{R) consisting of all members in M{R) which have compact

carriers, i.e., / belongs to Mo(R) if and only if / belongs to M(R) and vanishes

outside a compact set.

A topological mapping T of R onto R' is said to be an M-mapping if T

induces an algebraic isomorphism of MQ{R) onto Λfo(/?O, i.e., / belongs to M0(R)

if and only if the composite function f° T~ι belongs to MoiR1)- For an M-

mapping of R onto R\ we define the norm of T by

l|T|| = inf {λ; /ΓΊI/II S 11/° T'1!! ^ ;!!/!!, for all / in Mo(/?)>.

Clearly 1 ^ IjTlί ^ °°. The aim of the present chapter is to prove the following :

THEOREM II. 3. An M-mapping T of a Riemann surface R onto another

Riemann surface R( ivith finite norm | |T|| is a quasiconformal mapping with the

maximal dilation K{T) ^ r(||Tl!2). In particular, T is a direct or an indirect

conformal mapping if and only if |j T \\ = 1.

4. Fundamental functions. Recall that A denotes the totality of annuli A

on R satisfying the following two conditions:

(A.I) A is a domain contained in a simply connected domain A on i?;

(A. 2) the boundary dA of A consists of two closed Jordan curves Co and

Cl.
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Assume that the domain (Co) in DA surrounded by Co contains Ct. Now

we consider the function /A(P) on R defined by the following manner:

0, if p belongs to R- (Co)

UP) wip A, Ci), if p belongs to A

1, if p belongs to the closure of (Ci),

where wip I A, Ci) denotes the harmonic measure of Ci with respect to A.

Now we prove that fA belongs to M(R) and DtfAΊ = J \ ! garάfA \2dxdy. For the

aim, we select a decreasing sequence {εn) of positive numbers tending to zero

such that εw<l~-εn and the level curves CQ,n={pl ιv(p', A, Ci) = e«} and

C\,n-{p\ w(p\ Ay Ci) = 1 - ε«} are simple closed analytic curves. We set

εn, if p belongs to R~ (Co,n) I

UP) = ΐvip, A, CO, if p belongs to (Co,») - t h e closure of (Ci,«)

1 - ε«, if i> belongs to the closure of (&,»).

Then fn(p) is clearly in M(R). Moreover, it is obvious that the sequence {fn)

converges to fA uniformly and that {/„} is a Cauchy sequence in M(R). Using

the completeness of M(R), we conclude that fA belongs to M(R) and that
\\fn — fA tends to zero as n tends to infinity. From this it holds that DίfAl

We say that fA, above defined, is a fundamental function with the fozs£ A

The totality of fundamental functions will be denoted by M/(R), i.e., M/(R)

~{fA\ A belongs to A}. If a function g in M(R) coincides with a function

/ in MfiR) outside the base of/, we shall write πg = f. Concerning this oper-

ation, we have the following

LEMMA Π. L Dίπg'] S Dig] and \\πgl ̂  W\\.

Proof. For g in M(R), we can select a sequence {gn)n^ι in MHR) such

that \\gn—gι. tends to zero as n tends to infinity and a fortiori Dίgnl tends to

Dίgi. Let A be the base of f=πg and fn be the function in M(R) which

coincides with gn outside A and harmonic in A with boundary values gn on

9A. By the Dirichlet principle, it holds Dίfnl ^ Dίgnl. As the sequence {fn}

converges to / uniformly in A and |grad/»| converges to |grad/ | in A by

W e f*
grad/12 dxdy < l|m | grad /«|2 rfxdjy. Together

A J J A

with ί 1 i grad f \2dxdv -~= \ f | grad A, !2^ύ(y, we get /)[/] ^ Hm D[/w]
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ύ lim DίgrJ = Dlgl. As sup \πg\ ^ sup |g|, the second inequality holds.

Next we prove two simple lemmas for functions in M/(R):

LEMMA II. 2. For any f in M/(R) and for any positive integer n, there exist

2" functions fu fi, . > ./*2» in M/(R) satisfying the folloiving two conditions:

( i ) D C / * J = 2 n D C / ] <Λ = 1, 2, . . . , 2 W ) ;

(ii) £/*£ &«s£s Λfc O/ /*> αr£ mutually disjoint and contained in the base of

A of f and A = A i U l 2 U U Z2«, where the bar denotes the closure.

Proof. The general case is easily reduced to the case n - 1, so we shall

prove the lemma under the assumption n~\. We define two fundamental

functions fΛp) and f%(p) on R as follows:

1 (1/2 ̂

2f(ρ) ( 0 < / ( / > ) < 1/2);

0

•1 (1/2 </(/>)< 1);

0 (f(p)^ 1/2).

Then the bases Λi and Λ2 of /1 and fz are represented by

Ai = {ί; 0</(/>)< 1/2}, A2=(i>; l/2

Evidently (ii) is satisfied. As we have igrad/jfe|2= 4|grad/| 2 on Ak (* = 1, 2),

it holds that

4 DC/] = 4D^C/] + 4Dj,C/] = DC/J + DC/2],

where D /̂t denotes the dirichlet integral over Ak. On the other hand, by using

Green's formula, we get

= 2DC/1

From the above two equalities, it follows DC/*] = 2DC/] (fc = l, 2), i.e., the

condition (1) in lemma is satisfied.

LEMMA II.3. Let f and fk (£ = 1, 2, . . . , n) are functions in M/(R) such

that the bases Ak of fk are mutually disjoint and contained in the base A of f

and A = A, U A2 U U An. Then the follotving inequality holds:

i / D C / ] δ Σ i / D C Λ l
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Proof. We may assume n = 2, for the general case is easily reduced to this

simple case. We define the function g(p) in M(R) on R as followa:

fi(p) (/](#)< 1);

-λd-λV1) (f2(P)>

where λ is an arbitrary number in the interval 0 ύ λ ̂  1. Then g=f on / ? - A

and so 7rg" can be defined and f—ng. By Lemma II. 1, we have

As I g r a d ^ l ' - ' lgrad/i l 2 on {p gip)< λ) and igrad^j 2 = (1 - /Π 2 |grad/ 2 | 2 on

{ > Λ}, we have

= ί\ \grΆάg\2dxdy + \ l

\gr<iάfΛ2dxdv+ (l~λ
Λ l * "

Thus we get

In particular, if we put λ = D[/2](DC/i] + DC/2])"1, then we see that

l/DC/]>l/β[/,]H-l/Z>C/2],

which proves the lemma.

5. Now we consider the relation between the norm I!Π! and the quantity

K*(T) for an M-mapping T of R onto R'. The following plays an essential

role in the proof of Theorem II. 3.

LEMMA II.4. For any M-mapping T of R onto R\ it holds K*(T) ̂  lίΠ!2.

Proof. If l!Tii= °°, nothing is left to be proved. So we may assume that

the norm of T is finite. Let f be in M{R). Instead of /° T~\ we shall write

/'. Let A belong to A. If / is in M/( R) and if the base of / is A, then we

have

moάA = 2π/Dί/l.

From this we have
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y/K*(T) - inf U λ'^D'ί/l ^ >/£>[>/'J ^ λyl'DΐΠ for all / in M/(R)}.

If we set

a = sup {Vΐ>Tτr77] /yjDtn / belongs to M/(R)},

a1 - sup {y/DZn I VδϋiT7] ί / belongs to Λf/(2?)},

then we see that >JK*(T) =max(β, * ') . So, if we can show that a, a'

then the proof is complete. We have only to show that a<\\T\\, since a1 <ί\\T\\

can be verified by the similar argument, For the purpose, we set

an = sup {y/DZπf'ΐ NWΓl \ for all / in M/,n(R)} in = 1, 2, . . .),

where Mf,n(R) = {f, f belongs to M/(R) and VOΪ7Ϊ ^«>. From the definition

it is clear that the sequence {an) is monotone non-increasing. First we show

that

(I) for any positive number ε, there exists a positive integer N depending

on ε such that

Contrary to the assertion, we assume the existence of a positive number e

such that II T|| + e ̂  an for all n = 1, 2, . . .. Then we can choose two positive

numbers b and c such that

an> b> c>\\T\\>l

for all positive integers n. By the definition of any we can find an elemant

fln) in M/,n(R) for each w = 1, 2, . . . such that

Now we choose an integer n so large as to satisfy the inequality n> c{b — cV1

Then we have VD[/W )] > n> c(b- c)"1 or

)2> c.

We proceed to compute as follows: using Lemma 1, we have

that is,
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On the other hand, l!/(™'|| ^ IIΠl ll/ίw)!l. From the above inequality, we get

cl!/ίΛ)ll < I|Γ|!I!/ ( M ) | | or c < \\T\\, which contradicts the definition of c. Thus Λve

have proved ( I ) . Next we show that

(II) for any positive integer m and for any / in M/(R)} it holds

To see this, we choose a sufficiently large positive integer n such that

2nDZfl > m\ By Lemma II.2, we can choose 2n functions /* (* = 1, 2, . . . ,

2n) in M/(R) such that

and the bases of / and fk satisfy the condition (ii) in Lemma II. 2. By the

definition of n, DZfkl=-2nDίfl> m or fk is in M/,m(R) (k = l, 2, . . . , 2n).

Then, by the definition of «OT, we have

Thus we get

On the other hand, πf and πfk (k = 1, 2, . . . , 2n) satisfy the assumption of

Lemma III. 3, so it holds

Combining the above two inequalities, we get

Finally we shall prove a ^ ! |T| |. To this end, we choose an arbitrary posi-

tive number z. Then, by ( I ) , we get a positive integer /V such that

For any / in M/(R), it holds that {D\jzfr] ^ a^DZfϊ ^ (liT|!+ ε)VΣ>Ϊ/1 by

(II). As ε is indpendent of | |Γ | | and/, letting ε tend to 0, we find that
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for all f in M/(R), which shows that a^\\T\\. This completes the proof of

Lemma II. 3.

6. Now the proof of Theorem IΪ.3 is immediate. By Lemma II. 3 and by

Remark in II. 2, we have

1 ^ K*(T) £ ! |Γ!! 2 < K(T)l0) £ r(KHT)) £ r(\\Tf).

From this we get Theorem II. 3.

III. Algebraic criterion on quasiconformal equivalence

1. If there exists a topological mapping T of a Riemann surface R onto

another Riemann surface /?', then we say that R and 7?' are topologically

equivalent and we write R ~~ R'. Moreover, if T is quasiconformal, then R and

R1 are said to be quasiconformally equivalent and we denote it by R — Rr. In

particular if the maximal dilatation of T is 1, i.e., if T is a direct or indirect

conformal mapping, then we say that R and R1 are conformally equivalent

and we denote the fact by R^ Rf.

As for the topological equivalence, results of Hewitt [8] implies that R^R1

if and only if C(R) ~ C{Rf).U) Sometimes it is more convinient to use B(R)

than to use C(i?), since the normed ring theory can be applied to B{R) and

since C{R) ~ C(Rf) implies B(R)~ B(R') but the converse is not true. In this

point of view, we may state the following fact: R-^ Rf if and only if B(R)

= B(R'). This is a direct consequence of Theorem 1.1 by considering the

property P in the theorem as the property B.

For compact surfaces R and R\ it is well known that R-Rft=$R^Rf

<=$B(R)^B(Rf)t=$C{R)=C(R')t==>g(R)=g(R'), where g(R) denotes the

genus of R. But for open surfaces, none of the latter four determines the

quasiconformal equivalence R - R'.

2. The main theorems. As for the quasiconformal (or conformal) equiva-

lence, we can state the following purely algebraic (or normed algebraic) criterion

of the quasiconformal (or conformal) equivalence using the Royden's. algebra,

10> As for \\Tψ^K{T), see [18].
U) C(R) (resp. B{R)) denotes the algebra of all complex-valued continuous (resp.

bounded continuous) functions on R. For algebras A and A\ A ~ A' means that A \s%

isomorphic to A' as algebras over the complex number field.
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which are the main object of this paper.

THEOREM III. 1. Two Riemann surfaces R and Rf are quasiconformally

equivalent if and only if their Roydens algebras M(R) and M(Rf) are iso-

morphic as algebras.

As stated already, M(R) can be normed by |!/|| = sup 1/1+ / fί \graάf\2dxdy.

With this norm, M(R) is a normed algebra. Then we can prove

THEOREM III. 2. Tivo Riemann surfaces R and R' are conformally equivalent

if and only if their Royden s algebras M(R) and M(R') are isomorphic as normed

algebras.12'

3. Theorems III. 1 and III. 2 follow from the following more precise facts.

Let Q(Ry Rf) be the totality of quasiconformal mappings of R onto Rf and

I(R, Rf) be the totality of algebraic isomorphisms of M(R) onto M(R'). For

a belonging to 1(R, R'), we put M\ = inf {λ λ~1\\f\\^\\fG\\^λ\]f\\}. Clearly

l^ lkΐ l^oo. Then Theorems III. 1 and III. 2 are direct consequences of the

following

THEOREM III. 3. There exists a one-to-one correspondence σ<r>T between

I(R, R') and Q(R, Rf) satisfying ( i ) / ° = / ° T'1 for f in M(R) and (ii)

1 ^ /Γ*(Γ) ^ H l̂l2 ̂  A"(Γ).

4. Property M. For the proof of Theorem III. 3, we apply the general

Theorem 1.1. For the aim, we introduce a property M on continuous functions.

Let M be a subfamily of C= {(/, S)} satisfying the following four conditions:

a pair (/, S) belongs to M if and only if

(M. 0) S is an open subset of a Riemann surface RsΊ

(M. 1) the function / is a.c.T on S;

(M. 2) / i s bounded on S in the absolute value;

(M. 3) the Dirichlet integral j j \graάf\2dxdy of / over S is finite.

Now we put H(/, S)|| = il/IU=l!/|| = s u p | / | + / ff \graάf\2dxdy for a pair
i? V J J i{

(/, S) belonging to M. We shall show that M is an admissible property and

that any Riemann surface belongs to SΛ. The following is evident:

1 2 ) This means that M{R) and M{Rr.) are isomorphic as algebras and that the norms
of corresponding elements by this isomorphism are coincident.
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LEMMA III. 1. The property M satisfies the conditions (P.I), (P.2), (P.3),

(P.4), (P.5) and (P.6).

5. Next we have to show that M satisfies (P.7). For our purpose, the

following lemma is very important:

LEMMA III. 2. Let S and Sf satisfy (M. 0) and let a be an algebraic iso-

morphism of MiS) onto M(S'). Then the following holds: 1 ^ IW! < <χ>, where

l!<y|| = inf{A; Π / l ! S \\f°\\ ^ Λl!/!| for all f in MiS)}.

Proof. Consider M(S) to be a normed algebra with the norm ||/||. Then

MiS) is complete with respect to this norm | |/ | | (cf. [18]).13) As i!/ni!1/n

=> sup 1/1, we can conclude that lim \\fn\\1/n = 0 if and only if / = 0, which shows

M(S) has no generalized nilpotent. Since M(S) is commutative, this is equiva-

lent to that MiS) is semi-simple. Thus a is an algebraic isomorphism of a

commutative semi-simple Banach algebra MiS) onto such a MiS9). Then by

the Gelfand theorem [6],14) we have the bicontinuity of a with respect to the

norm topology. From this we get the finiteness of a.

Next we prove

LEMMA III. 3, M is an admissible property on continuous functions.

Proof. By virtue of Lemma III. 1, we have only to show that M satisfies

(P.7). Let a be an algebraic isomorphism of MiS) onto MiS1) and let U and

Uf be two open subsets of S and S', respectively, and let T be a topological

mapping of U onto U' such that f°(Tp) =fip) on U. We show that T has

property M, i.e., ig° T~\,Uf) belongs to M if and only if (g, U) belongs to

M As the argument is quite similar, we have only to show that (g° T'1, U1)

belongs to M if (g, U) does so.

Let U=*ΣjUn be the decomposition of U into components and U' = *ΣUή

be the corresponding one for U\ i.e., TUn- ϋ'n. We denote by Tn the restric-

tion of T on Un. Then Tn is a homeomorphism of Un onto Uf

n. Then it is

clear that / - » / ' = /<> 7\"r is an algebraic isomorphism between MoiUn) and

MoiU'n). The norm | |ΓJ| of Tn defined in II.3 is not larger than [1J|! which is

finite by Lemma III. 2. By Theorem IL3, Tn is a quasiconformal mapping with

1 3 ) In [18], S is assumed to be connected, but the proof stated there had make no
use of the connectedness of S.

u) See also Loomis [13].
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the dilatation not larger than r(\\σψ).

Let (gt U) be in M. For simplicity, we put K^r(\\ΰt), gf-g° T" 1 and

g'n = go T"n. It is clear that {g1, Uf) satisfies (M.O) and (M.2). By Theorem

2 in [18], we see that gn is a.c.T and Dσ>n ίgnl ^ KDUn Lg]. From this, g' is

a.c.T and DD-lg'l = Σ f t ' « [ ^ ] ^ Σ/fΛ/ntell = # A / [ £ l Thus (gf, U) satisfies

(M.I) and (M.3).

6. Now we prove the following

LEMMA ΠL 4. Any open subset S of a Riemann surface belongs to S#.

Proof In virtue of (P.I), (P.2) and (P.6), we have only to show that the

center z = 0 of the disc U : 121 < 1/2 is not M-removable. Consider the function

/U) = sin(log(log(UΓ)))

defined on ί/0=ί7-{0}. Clearly (/, £70) satisfies (M.O), (M.I) and (M.2).

Further, we have

if \gradf(z)\2dxdy= Γ*(\\df/Br\2+\3f/dθ\*/f*)rdrdθ

= 2π ( "cos2(log(log r" 1 )) r"x(log r)~2ί/r
Jo

ί
which shows that (/, ί/0) satisfies (M.3). Thus (/, Z70) belongs to M.

Consider the cluster set CCrΰ{f 0) of / at 0. It is easy to see that CU(i(f 0)

is the closed interval [ - 1 , ID. Hence there exists no pair (g, U) in Λf such

that g(z) =f(z) on Uo. Thus 0 is not M-removable.

7. Proof of Theorem III. 3. We define a mapping Σ: T -> Γ Σ = tf of

Q(/?, /?') into /(i?,i?0 as follows: f° - / o T" 1, which is nothing but ( i ) in the

theorem. By results in C18] and [19], this is well defined and (ii) in our

theorem is satisfied. Moreover, it is clear that Σ is one-to one. So we have

only to show that Σ is an onto mapping. Let a be an arbitrary element in

I(R, Rf). Then, by Theorem I.I, Lemma III.3 and Lemma III.4, we find a

topological mapping of R onto R1 such that / " = / ° T~\ Of course, / - > / ° T" 1

induces an algebraic isomorphism of Mo(R) onto MQ(R') and the norm | |T| ! of

T is not larger than ί^ϋ which is finite by Lemma III. 2. Thus, by Theorem
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II. 3, we see that T belongs to Q(R, Rf) and Γ 2 = a. This shows that Σ is onto.

This completes the proof of Theorem III. 3.

8. As an immediate consequence of Theorem 2 in [18] and Theorem III. 3,

we get the following

THEOREM III. 4. An algebraic isomorphism a of M(R) onto M(R') is bi-

continous with respect to the following topologies in M(R) and M(R'):

( i ) Norm-topology : I!/SI! -> 0 if and only if \\fn\\ -> 0

(ii) Uniform topology : sup 1/21= sup \fn\\
R' R

(iii) D-topology: Dίf»l -> 0 if and only if DtfnΊ -» 0

(iv) B-topology: (\fn\) is bounded and fn

n -* 0 uniformly on each compact

set of Rf if and only if {\fn\) is bounded and fn -> 0 uniformly on each compact

set of R
( v ) BD-topology : /« -> 0 (in B and D-topology) if and only if fn -» 0 (in

B and D-topology).

9. Differentiable function subalgebras of M(R). Next we consider the

subalgebra Mn{R) (n = l, 2, . . . , °°) of M(R) consisting of all the elements

in M(R) which are #-fold continuously differentiable; i.e., a complex-valued

function f on R belongs to Mn(R) if and only if

(MΛ 1) / belongs to the class Cn

(MΛ 2) / is bounded on R in the absolute value

(MΛ3) Dirichlet integral DΓfl off over R is finite.

For convenience we put M°(/f) =M(R). As a subalgebra of M(R), Mn(R)

can be normed by the norm of M(R), i.e., ϋ/|| = sup | / | + v^C/]- Needless to
R

say, Mn(R) is not complete with respect to this norm in the case n>l but

we have proved, as already stated and used, in [18] the following15)

LEMMA III.5. For each n = 1, 2, . . . , oo, Mn(R) is dense in M(R).

10. If there exists a C7Z-quasiconformal (resp. conformal) mapping T of R

onto R\ then the correspondence / -» / σ = / ° T~ι induces an algebraic (resp.

normed algebraic) isomorphism of Mn(R) onto Mn(Rf). This leads us naturally

1 5 ) In [18], the case n — oo is not treated. But a similar method, by using molifier
instead of mean-value integral of Radό, can be used to include the case n = oc.
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to study the converse problem: under the assumption that there exists an alge-

braic (resp, normed algebraic) isomorphism of Mn{R) onto Mn{R'), can we

conclude the existence of a Cw-quasiconformal (resp. conformal) mapping of R

onto Rf which induces a given isomorphism ? The answer is affirmative. To

state our result, we introduce two notations: Qn(R, R') denotes the totality of

C"-quasiconformal mappings of R onto Rf (n = 1, 2, . . . , oo) and In(R, R')

denotes the totality of algebraic isomorphisms of Mn(R) onto Mn(Rf) (n = 1,

2 , . . . , co). For convenience we put Q(R, R') = Q°(R, Rf) and I{R, Rf)

= Γ(R, R'). Then we can prove

THEOREM III.5. There exists a one-to-one correspondence a*>T betiveen

In(R, R') and Qn(R, R') satisfying ( i ) fa^foT~ι for all f in Mn(R) and

(ii) i £ κ

11. In the case n = 0, this theorem reduces to Theorem III. 3. Thus we

may assume n ^ 1. In the case n — 0, the completeness of M(R) has played a

very important role (cf. Lemma III. 2). In the case n^>l, we essentially use

the continuity of the dilatation at a point in place of the completeness.

As before we define a mapping Σn ' T-*T*n = σ of QniR, Rf) into Γ\Ry R1)

as follows: fΊ = f°T~1 for / in MniR)y which is ( i ) in the present theorem.

Clearly this is well defined and one-to-one and satisfies (ii). We shall prove

that this is onto.

12. For the aim, we define a property Mn by the following: a pair (/, S)

in C = {(/, S)} belongs to Mn if and only if S is an open subset of a Riemann

surface R and / is bounded C^-function on S with finite Dirichlet integral over

S. Then it is easy to see that Mn satisfies (P.I) , (P.2), (P.3), (P.4), (P.5)

and (P. 6). Moreover, any open subset of a Riemann surface belongs to Sj/.

For the proof of this, the proof of Lemma III. 4 can be applied to this case

without any change. In order to apply Theorem 1.1, we now have only to show

that the property Mn satisfies (P. 7).

Let a be an algebraic isomorphism of Mn(S) onto Mn{S'). Assume that a

is induced by T locally on U and U', i.e., T is a topological mapping of an open

subset U of S onto an open subset U' of S' such that f°{Tp) = f(p) on U for

all / in M(S). Let ί / = Σ K be a decomposition of U into components and

U1 = Σ ί / r be the corresponding one for 17' such that TUr = U'r.
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First we prove that T is a C-quasiconformal mapping of Un onto Un. It is

readily seen that T and T"1 are C*-mappings. Thus J(T) = \dT/dz\2 - \dT/dz\2

vanishes nowhere in Ur. Now we put

\ at β,

where z is a local parameter at p. Then K(T, p) is continuous with respect to

p and Kυr(T) =sup(K(T, β) p is in Ur). We have to show that KUr(T) is

finite.

Contrary to the assertion, assume that KUr(T)-°°. Then we find a

sequence {βm} in Ur such that K(T, βm) = K(T~ι, pm) -» °° (w-• °°), where

i 4 = Tim. Clearly {̂ m} and {^4} do not cluster in £/r and C7r, respectively.

Now we notice that the following case does not occur: there exists a sub-

sequence {βm'} of {pm} such that {pm'} and {βm'} converge to β and βf in the

relative boundary of Ur and U'r with respect to S and S' respectively. In fact,

if this is not true, then by the remark at the end of Chapter I, we can extend

T to be a topological mapping of V onto V such that {p}U Ur C V, {pf} U U'r
C V and /(Ti>) =f(β) on V for all / in Mn(S). From this we can easily see

that T is in the class Cn in V. Choose a compact domain D contained in V

with its closure such that {p, βm* m = 1, 2, . . .} is contained in D. Then, by

the continuity of K(Tt β) in the closure of JD, K(T, p) is finite in D, which

contradicts the fact limK(Tt pmr) = °o.

Now, we may assume that we can choose a sequence {pm} on Ur, a

sequence {Dm} of the circular neighborhoods Dm of pm satisfying the following

( i ) {pm} does not converge to any point p in the relative boundary of Ur

with respect to Si

(ii) limK(T,βm) = °°
m

(iii) the closure of Dm is contained in Ur 1
16)

(iv) DmΓ\Dι = φ (empty set) if m^ll

(v) J^ i n (T)=sup{D[τr(/°T" 1 )]/DC/]; /belongs to M/(Dm)>>3m.

In fact, by the above remark, we may assume (i) and (ii) hold for some {pm}.

Then (iii) and (iv) are clearly satisfied. Assume that (v) is not satisfied by

any subsequence of {pm}. Then we have a constant 1 < c < oo such that

i6) Moreover, we assume that the diameter oί Dm is smaller than 1/nι for some metric
on R which induces the topology of R.
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for all / in M(Dm) (*w = l, 2, . . . ) . In this case, {pin}

contains a subsequence which does not converge to any point pf in the relative

boundary of U'r with respect to S!.

Otherwise, we can find a subsequence of {p'm) which converges to a point

p' in the relative boundary of Ur with respect to S'. For simplicity, we may

assume {pm} converges to p'. Now we choose, for each m, an element fm in

Mf(Dm) such that VOL/™] <l/2m. By Lemma 1.3 in [18], we can fined an

element fm in M%(Dm) such that \\fm -/ml! < l/2m. We set / = Σ / m . Then

sup I /1 < 3/2 and V^C/J ^ ΣJ V^C/«] ̂  Σ (V^ΐΛj 4- 1/2*2) = 2. Moreover,
I7r TO

/(i>m) ^fm(pm) differs from 1 at most 1/2W. Hence lim f(pm) = 1. On the other
TO

hand, we take a point qm on the external boundary of the base of fm. Then

/(qm)-fm(qm) differs from 0 at most l/2m. Hence lim/(φn) = 0. Here we
m

remark that both {pm) and {qf

m} converge to p\ where q'm = Tqm

As / vanishes on a neighborhood of the relative boundary of Ur with re-

spect to S, we may consider that / belongs to Mn(S) by defining / = 0 outside S.

From f°(Tp)=f(p) on S and, hence, on Ur, we have f\p'm) = /(pm) and

f°{q'm) = /(#„,). From this we get fa(p') = lim f°(p'm) = 1 and at the same time

/σ(/>') = l i m / σ ( ^ ) = 0. This contradicts the continuity of / at p1. Thus we

have shown that {p'm} satisfies the conditions (i) and (ii) instead of pm since

K(T, pm) = K(T~\ p'm). Putting D'm = TDm, we see that {D'm} satisfies the

conditions (iii) and (iv). Next we show that l imKΌ^AT' 1 ) = oo, where
TO

«:

/,w,(T" 1)=sup{DC7r/]/D[/σ3: / σ belongs to M/{D}

m)}. If this is false, we

see that d = Max(K^T), Kn^iT'1)) is finite. Since K*(T)£d and K(T)

^r(lK*(T))2), we get that K(T) is finite, which contradicts Kϋr(T) = oo.

Thus we can select the subsequence {p'm'} of {̂ m) such that Knm'(T~1)> 3tn.

Hence the conditions (i)-(v) are satisfied by the system {pf

m>} and {Dm')*

Thus we may consider that {pm) and {Dm) satisfy the conditions (i)-(v)

(if not so, we may consider ip'm'), {D'm>}).

Now we can find an element gm in M/(Dm) such that Dlπ(gm ° T"1)]

> 2rnD\_gm~] and so

by the condition (ii). Here we may assume Dίgm] > 1. In fact, by Lemma

II.2, we can find 2ι functions gk

m Xk^l, 2, . . . , 2ι) in M/{Dm) satisfying ( i )
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and (ii) in Lemma II. 2. Then, by Lemma II. 3,

T'1)!)

Then, for some A, 2"ι/Dίgm]> 2m/Dίgmo T'ιl. So we get Dlgm ° T"1]

> 2wDCjfmX If we choose / so large as to satisfy 2ιD\Mm\ > 1, then we get

the required situation.

As T is a quasiconformal mapping of Dm onto Dm* the mapping /->/° T" 1

of Mo(Dm) onto Mo(Dm) is continuous with respect to the semi-norm V'ί

Now, by Lemma 1.3 in [18], we can find an element gm in M%(Dm) such that

\\gm — gm\\<εm for an arbitrary given em. Moreover, by the above, we can

select gm so as to satisfy \\gm ° T'1 — gm ° T'1]] < εm. Then we see that

> y/2miylDίgm] - em) - εm.

If we choose εm sufficiently small, then we have

Dlgm o T""1] > mDlgml and D[# m ] > 1.

Next we choose a sequence {tm} such that fm/)[^m] = l/^ 2 Then 0 < tm < 1

We put g = ΊWtmgm. Then sup | # | < 1 and Dίgl = Έ>tmDlgml = Σ l / m 2 < oo.
»n Ur m m

Hence ^ is in Λf(ίTi ). By defining # = 0 outside Z7r, we may consider g to be

in Mn(S). It is well defined since g vanishes in a neighborhood of the relative

boundary of Ur with respect to S.
By the definition of T, we have ga(Tp) =g(p) on U. Then we get

= Σ f ( Igrad VWm Γ ι f dxdy
vi J J Dm

which contradicts the condition (3VΓ.3), since g° belongs to Mn{Sl). Thus we

have proved Kσr{T) < oo.

The sequence {Kur{T)}?=i is uniformly bounded. This can be proved by

the similar method as above.
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Thus we see that the property Mn satisfies (P.7). This can be proved by

the similar method as in the last part of the proof of Lemma III. 3. Hence we

can apply Theorem I.I to conclude that an arbitrary element in In(R, R') is

induced by a topologίcal mapping T of R onto R\ i.e., fσ(Tp)-f(p) on R.

Thus T and T'1 are Cn-mappings and the quasiconformality of T can be con-

cluded by the same method as above.

This completes the proof of Theorem III. 5.

13. It is easy to see that if there exists a quasiconformal mapping of a

Riemann surface R onto another Riemann surface R\ then there exists a C00-

quasiconformal mapping of R onto R'.m From this and from Theorems III. 1,

III. 2 and III. 5, we get the following

THEOREM III. 6. Two Riemann surfaces R and R' are quasiconformally {resp.

conformally) equivalent if and only if Mn(R) and Mn(R) are algebraically (resp.

normed algebraically) isomorphic for some n and hence for all w = 0, 1, 2, . . . , °°.
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