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Abstract

Some of the conjectures of Birch and Swinnerton-Dyer have been verified for curves with
complex multiplication by V - 7. The /.-function LD(\) of such curves at the point s = 1 is
written as a finite sum of division values of p-functions and the integer property of LD(\) is
proved.

0. Introduction

In 1965 Birch and Swinnerton-Dyer made some conjectures about
general elliptic curves

E:y2 = x3+ax + b (a,bGZ).

(See Birch and Swinnerton-Dyer (1963, 1965) and Swinnerton-Dyer (1967).)
Roughly speaking, these tell us that the group EQ of rational points on E is
described to a great extent by the L -function of E. The evidence they
produced in support of these conjectures was then largely derived from curves
E, with End(Ei) = Z[V - 1] (see Birch and Swinnerton-Dyer (1965)). Further
evidence was obtained by Rajwade (1968, 1969) for the curves E2 with
End(E2) = Z[V^2] and for E3 with End(E3) = Z[a>] (w = ( - 1 + V^3)/2)
and by Stephens (1968) for the curve X* + Y* = D. See also Damerell
(1970, 1971). In all thse verifications, LE(1), the value of the L-function of E
at 1, is calculated in finite form in terms of Weierstrass's p-function.
Subsequently it was realized that a different and in many cases (certainly in
principle) simpler method may be used when E is parametrizable by
L-functions; see Birch and Swinnerton-Dyer (1969), Manin (1971), Slater
(1974), and Swinnerton-Dyer (1967). On account of Weil's conjecture that
every elliptic curve is isogenous to a curve that can be parametrized by a pair

286

https://doi.org/10.1017/S1446788700020309 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020309


[2] The equation y2 = x(x2 + 2lDx + 112D2) 287

of functions on H/r,,(N), for some N, it seems that this simpler method is
applicable for all E.

The original method giving LE(1) in terms of the Weierstrass' p-function
was applied only to curves with complex multiplication by V—1, V —2,
V - 3 . All these three cases have special features even amongst curves Em

with complex multiplication by V - m, i.e., with End(Em) equal to a
subring of finite index in the ring of integers of ( ? ( V - m)
(m = 1,2,3,7,11,19,43,67,163). The special features being that (?(VJ£T)and
Q(-1 + V - 3)/2 have 4 and 6 units respectively while V - l and
( - 1 + V - 3)/2, the generators of these fields are themselves units. Also 2
being always a special prime, <?(V - 2) is bound to have special features. The
m that remain, however, are pretty well alike: m = I(mod4), <?(V- m) has
only 2 units ± 1. It seems, therefore, that m = V - 7 is the simplest genuinely
typical case. In this paper we verify some of the conjectures of Birch and
Swinnerton-Dyer for curves E-, with End(£7) = the full ring of integers of
Q(V -7) by the original p-function method. As many of the results for the
case m = 7 are exactly like one (or more) of the cases m = 1,2,3, one realizes
that after all the p-function method is itself fairly quick and will cover all the
cases of complex multiplication, in principle fully but in detail in most places,
as we shall see. It therefore seems worthwhile to examine this typical case.
Wherever proofs of results are exactly like the corresponding ones in any of
the cases m = 1,2,3, we omit them entirely; if the proof is genuinely different
from all these cases then we give it and remark whether or not it can be
adapted in the remaining cases m = 11,19,43,67,163.

The shape of E7 and multiplication by V - 7 of a generic point (x, y) of
E7 may be obtained by the use of p-functions and is classical. In any case once
we have the formulae, their validity may be checked by easy computations.
The formulae are:

(0.1) E7:y2 = x(x2 + 21Dx + 112D2) (D E Z)

and (K - 1 + V - 7)) (x,y)= (X, Y) where

X- V-7)(x+2D(7-V-7))2

8(x+H21- V-7)D)

(5 - V - 7)y (x + D(7 + V - 7))(x + ID(7 - V - 7))
16(x+K21-V^

(0.2)

We call a prime p good if p )( 14D. The curve (0.1) has a good reduction
at all the good primes and our first object is to determine the number Np of
points on the complete curve
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(0.1)' y2z =x(x2 + 21 Dxz + 112DV), modulo p.

We remark that the method of getting the Np for £7 is not immediately
adaptable for the remaining m as the V - m-division points on Em need to be
explicitly calculated if we are to follow a similar method. For the present case
we have managed to calculate the V - 7-division points on (0.1) explicitly. We
now turn to these calculations as an aid to the determination of Np.

p.

1. Determination of the V - 7-division points on (0.1) and Np

From K - 1 + V - 7)_(x, y) = (X, Y) it follows that K - 1 - V - 7) (x, y) =
(X, V), whence (̂1 + V - 7) (x, y) = (X, - Y). Adding gives

V ^ 7 ( x , y ) = (X, Y) + (X,- Y).

The V - 7-division points on (0.1) are those (x, y) for which V - 7 (x, y) = /,
the point at infinity, i.e., for which X = X, i.e., for which Im(X) = 0. This
gives the cubic:

(1.1) x3 + 28Dx2 + 2.112D2x+4.112D3 = 0.

If Xi,x2,x3 are the roots of this then the V —7-division points are /,
(JC,-, ±yf) i = 1,2,3. Write x for x / - 4 D , then (1.1) can be written as

(1.2) x . 3 -7x 2 +14x-7 = 0.

To obtain the roots of this we expand sin 76 in terms of powers of sin 6. We
have sin 79 = 7sin 0-56sin30 + 112sin50 - 64sin70, hence 2sin 70 =
7(2sin0)-14(2sin0)3+7(2sin0)5-(2sin0)7. It follows that the roots of
7x - 14x3 + 7x 5 -x 7 = 0 are

0, ±2sin(27r/7), ±2sin(47r/7), ±2sin(6ir/7)

and hence those of (1.2) are 4sin2(27r/7), 4sin2(47r/7), 4sin2(67r/7). Thus
x,,x2,x3 are given by - 16D.sin2(27r/7), - 16D.sin2(47r/7), - 16D.sin2(67r/7).
The y-coordinates are found as follows: we have y2 = x(x2 + 21Dx + 112D2)
where x satisfies (1.1). Substituting for x3 from (1.1) gives, on simplification
y 2 = -lD(x +8D)2. Hence we have the following theorem:

THEOREM 1. The V' — 1'-division points on (0.1) are the following

1, ( - 16D.sin2(27r/7), ± 8V7.( - D)3'2.COS(4TT/7)),

( - 16D.sin2(47r/7), ± SVl.( ~ D)3/2.COS(TT/7)),

( - 16D.sin2(67r/7), ±8V7.( - D)3/2.COS(5TT/7)).
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Now let P be one of these, say P = ( - 16D.sin2(2-n-/7),
8\/7.( — D)V2.COS(4TT/7)). Then the remaining five proper V — 7-division
points are just - P , ±2P, ±3P. We now determine which are which. The
formula for the duplication of a point on our curve is

_ / ( : r -112D 2 ) 2 (x2 - 1 \2D2)(x2 + UDx + 56D2)(xz + 28Dx + 224D2)

This is easily computed. Using this we find that

(2P), = [162D2sin4(27r/7)- 1 1 2 D 2 ] 2 / [ - 4 . 6 4 . 7 D 3 C O S 2 ( 4 T 7 / 7 ) ] ,

and letting A = 4sin2(277/7) this equals - D(A2 - 7)2/7(l - A/2)2 and we have
to find out whether this equals - 16D sin2(4-n77) or - 16D sin2(67r/7). It turns
out that the latter works, i.e.,

2P = ( - 16D sin2(67T/7), - 8V7( - D)V 2.COS(5TT/7)).

Similarly 4P ( = — 2>P) may be worked out. Hence we have the following
stronger result. If

P = ( - 16D.sin2(27r/7), 8V7( - D)3/2.COS(4TT77))

then

2P = ( - 16D.sin2(677/7), - 8V7( - D)3/2.COS(5TT-/7))

and

3P = ( - 16D.sin2(477-/7),8V7(- D)3/2.cos(-n-/7)),

and if we let £ = e""7 then we have the following

THEOREM 2. The six proper V — 7-division points on the curve (0.1) are
±P, ±2P, ±3P, where

P = [4D(£ 2 - £ "2)2 ,4V7.(- D f 2 ( r + £-4)]

2P = [4D(£ 6 - £"6)2, - 4V7.( - Dfl2((5 + £"5)]

3P = V

We make an application of these V — 7-division points and prove the
following

THEOREM 3. Let Np be the number of points on the projective version of
(0.1), then
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I p + 1 if p is not a norm i.e. if p =3 ,5 ,13 (mod 14),

p + 1 - (DITT)2.TT - (D/TT)2.TT if p is a norm, i.e., if p = 1,9, 11 (mod 14

where p = TTTT is the splitting of p in the integers of Q ( V - 7) and the factors TT,
TT are normalized so that TT, it = 1,2 or 4 (mod V - 7), and where fhe symbol
(D/TT)2 is the quadratic residue symbol in Z [ V - 7 ] ; we use the symbol (a//3)
(a, /B G Z ) /o denote the ordinary Legendre symbol.

We note that for the three cases p =1,9 ,11 (mod 14) the factors TT, TT of p
respectively satisfy the conditions

TT, TT = 1,6; 3,4; 2,5 (mod V ^ 7 )

and in the theorem one possibility is selected out of each of the two. Note also
that the selected possibilities, viz., 1,2,4 (mod V - 7 ) form the unique sub-
group of index 2 in the group of the non-zero residues m o d V - 7 .

PROOF. TO prove the theorem we use a well known result of Deuring's
(see Deuring (1941)), namely:

I p + 1 if p is not a norm

p + \ — TT — 77 if p = 7777 is a norm.

The problem is the normalization of 77 and 77 since p also equals ( - 77) ( - it):
Deuring's theorem also tells us that that sign + 77 or — 77 is the correct one
for which multiplication of points of (0.1) by the 77 with the correct sign has
the same effect as has the Frobenius automorphism

We try the action of the Frobenius map on the points of Theorem 2. We split
cases as follows:

Case 1. p = 1 (mod 14).
Let P = (A,/u.), then fp(P) = (\p, ft"). We have A"=A(modp) and

,up =(-7D/p).fi (modp). Hence fP(P) = (~7D/p).P, but also equals TTP by
the very definition of TT with the correct sign. Hence (TT — ( — IDlp))P = /
and P being a proper V - 7-division point we get TT = ( - ID Ip) (mod V - 7),
i.e., the normalized TT is (-lDlp).TT where TT = 1 (mod V - 7).

Case 2. p = 9 (mod 14).
Here C = - C and so as before it follows that fp(P) = ( - 7D/p).(- 3P)

and this equals TTP again whence v = — 3( —7D/p)(modV —7). Thus the
normalized TT is (-7Dlp).-rr where TT = - 3 ( m o d V - 7 ) .
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Case 3. p = 11 (mod 14).
As above, since fp = - (4 we find that the normalized n is (-lDlp).ir

where v = 2 (mod V - 7).
Thus in all cases we have

Np =p + l - ( - 7 D / p ) . i r - ( - 7 D / p ) . # ,

where TT, TT = 1,2, — 3(modV — 7). This gives the theorem since for any
rational integer d, {dIp) = {dITT)2 = (dITT)2 and 7= - ( V - 7 ) 2 .

2. The L-function of E7

THEOREM 4.

LD(s)= 2 (D/A)(A/(NA)S)
A = 1.2.4(mod V - 7 )

PROOF. AS for the cases m =1,2,3. See Birch and Swinnerton-Dyer
(1965) and Rajwade (1968, 1969).

Now write D = AF where F is the product of powers of V — 7, 2 and
units ± 1 of Z[\(\ + V — 7)], and where all the primes in A (necessarily to the
first power since without loss of generality D is square-free) are normalized
= l,2,4(modV^7). Let e = ( - 1/A)2 and let K be such that (i) V ^ 7 | X (ii)
(eF/\) depends on the class of A mod K. Then we have

THEOREM 5. K = 2 V - 7 . (Or we may take K = 14 if we wish.)

PROOF. Easily worked out by considering reciprocity laws in
z[Ki + V=7)].

Now let B be a set of representatives for the residue classes mod A and C
a set of representatives for those residue classes mod K which are =
1,2,4(modV-7). Then A may be written as

A = KA/x +(JQ3 + Ay), /8 GB, y £ C , /x £ Z[i(l + V - 7)],

= KA/n + p, say.

We now have the following

THEOREM 6.

( \- - ^ V en/ i V P/KA + /I
^ ^ (N(KA)X £ , (N(p//CA + /x))s •

PROOF. AS for the case m =2,3. See Rajwade (1968, 1969).
We have now to continue this analytically as far as s = 1. Proceeding as

for the case m = 2 (see Rajwade (1968)), we obtain the following
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THEOREM 7. Let A ^ 1 and let © and V - 7 0 be the periods of the

Weierstrass' p-function p(z) which satisfies the equation

p'2(z) = p(z).{p2{z) + 2\sp{z) + 112s2)

for some convenient s (which does not matter at this stage but which will be
fixed later). Then

) ) •

PROOF. AS for the case m =2 (See Rajwade (1968)).
We have used the following results (analogous to the cases m =2,3):
1. (s - lKo(v-7,(s)-> 7T/V7 as s ->• 1 + .
2. The sum S^eziiu^v -in.^^a /I //u. | M P* ~* a finite limit = 2 , as s —»1 + .

REMARK. The finitely many cases A = 1 require a lot of calculations and
are treated in the appendix. These will get more and more messy as m takes
values 11,19, • • •.

3. The integer property of LD(1)

THEOREM 8. Let D > 1 be a square-free integer and 0 the real period of
the Weierstrass1 p-function satisfying

Then 14VD.LD(l)/0 and 14V7D.L_D(l)/0 are rational integers.

REMARK. From the formula for LD(1) in theorem 7 it follows that
L-D = L7O since 1 = — (V — 7)2. Hence it is enough to show that the first of
the two expressions of theorem 8 is a rational integer. We shall be taking
K = 14. As for the cases m = 2,3 (see Rajwade (1968, 1969)), we let k =
O ( V - 7) and ft = fc(2I), where the 91 are the 14A-division points on the curve

(3.1) y2

where we shall be taking s = 1, an essential choice as we shall soon see. Then
,Vt/fc is normal and Gal(M/fe) is isomorphic to a subgroup of the multiplicative
group G*4± of residues mod 14A prime to 14A in Z[|(l + V - 7 ) J . If r £
Gal(S\/k), we let the map Gal(S\/k)^> G*4A take T-> t. For each such /, there
exists a unit e(t)= ± 1 such that e(t).t = l , 2 , 4 ( m o d V - 7), for if t is not
already = 1,2,4 (mod V7 - 7) then - t will be. We shall show that if we take
s = 1 in (3.1) then e{t) = 1 always. In other words we have the following
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NORMALIZATION LEMMA. If s = I then the automorphisms r of S\/k with
T—* t, e(t)= - 1 are inadmissible (i.e. do not exist).

PROOF. Write P = (xP, yP) the proper V — 7-division point on (0.1) given
by Theorem 3. Write the others as ±2P = (x2P, ±y2P), ±3P = (JC,P, ±y^P).
Let

77 = yP + y2P + y4P

= 4s V - 7s. (£ - £2 + £ 3 - C + £ 5 - £% by Theorem 3,

= 4s V - 7s. X say.

The simplest way to calculate X is the following: On squaring X we get
X2 = 6 - 5 X whence (X + 6 ) ( X - l ) = 0 giving X=\ or - 6 . Hence
Real(X)= 1 or - 6 . But now

Real(X) = COS(TT/7) - COS(2TT/7) + COS(6TT/7)

and so | Real (X) |< 1 + 1 + • • • + 1 = 6. It follows that X = 1 (and not - 6). So
that i 7 = 4 s V - 7 s . By choosing s = 1 we see that -q £ Q(V - 7) so that
T7] = 7] always. However, since TJ = yP + y2P + y4P we see that

{ T, if T-M = l , 2 , 4 ( m o d V ^ 7 )

- T J if T - > / = - 1 , - 2 , - 4 ( m o d V " r 7 ) .

It follows that r — > / = - ! , - 2 , - 4 (mod V - 7) are inadmissible. This com-
pletes the proof of the normalization lemma.

The remaining points in the proof of Theorem 8 are exactly the same as
for the case m = 2 (or 3). The exact ennunciation of the corresponding
theorems A and B read as follows:

THEOREM A. Suppose the hypothesis as in theorem 8 holds; then
V D.LO (1)/B is a rational number.

14A"2 I (]\
THEOREM B (WEAKER FORM). e ' (7A)5'8 is an algebraic

integer.

REMARK. All this would go through for the other m except the normal-
ization lemma which would need case wise handling.

We now look at the appendix.
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Appendix

LD(1) when A = 1.
When A = l we have only four cases viz. eF = ±1,±2, since ±7 =

+ ( V - 7)2 and D is square-free not only in Z but also in Z[\(\ + V^7)] .
We proceed as in paragraph 5 of Rajwade (1968). The definitions and

results needed here are exactly the same as for the cases in =2,3. We find
that /3 takes just one value, viz. 1. And y takes twelve values, viz., the
residues m o d 2 V - 7 that are = 1,2,4 (mod V - 7); they are: 2, 4, 8,

^ 4 + V ^ 7 , 8 + V ^ 7 , |( - 3 + V^7) , 5(1 + V"1^), (̂9 + V ^ ) ,
jV^l), 1(9 + 3 V^7).

^ 7 , (D/p)2 = (F/y)2 and so we get

Ml) = ^ 2 (F/y)2. [f (1 + y/K) - 2(1 + y/K) -~~Z(] + y/K)j,

where

is the Weierstrass' ^-function with periods 1, V —7.
We also use:
(i) £(l + u)=£(w) + 27r/V7+3
(ii) g(l/2)=77-/V7+5/2
(iii) V -7.^(1/2) - f ( V - 7/2) =vn'

(iv) g(» + ") = g ( » ) + f ( « ) + 2 (
Using all this information we can get LD(1) (for A = 1) purely in terms of the
p-functions.
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