CYCLES ON ALGEBRAIC VARIETIES

HISASI MORIKAWA

In the present note, applying the theory of harmonic integrals, we shall show some results on cycles on algebraic varieties and give a new birational invariant.

Notations:

 ${\bf V}$: a non-singular algebraic variety of (complex) dimension n in a projective space,

 $V_1(V_2)$: the first (second) component of $V \times V$,

 $\delta(\mathbf{V})$: the diagonal sub-manifold of $\mathbf{V} \times \mathbf{V}$,

 \mathbf{W}_r : a generic hyper-plane section of (complex) dimension r of \mathbf{V}_r ,

Q, R, C: the fields of rational, real, complex numbers respectively,

 $H_r(\mathbf{V}, Q), H_r(\mathbf{V}, R), H_r(\mathbf{V}, C)$: the r-th homology groups of \mathbf{V} over Q, R and C respectively,

 $H^r(\mathbf{V}, Q)$, $H^r(\mathbf{V}, R)$, $H^r(\mathbf{V}, C)$: the *r*-th cohomology groups of \mathbf{V} over Q, R, C respectively,

 $H_{p,q}(\mathbf{V}, *)$: the subgroup of $H_{p+q}(\mathbf{V}, *)$ consisting of all the classes of type (p, q),

 $H^{p,\,q}({\mathbb V},\,*)$: the subgroup of $H^{p+q}({\mathbb V},\,*)$ consisting all the classes of type $(\,p,\,q),$

 $\mathfrak{H}_r(\mathbf{V}, Q)$: the subgroup of $H_{2r}(\mathbf{V}, Q)$ consisting of all the classes containing algebraic cycles,

 B_r : the degree of $H_r(\mathbf{V}, Q)$,

 $\{\Gamma_r^1,\ldots,\Gamma_r^{B_r}\}$: a base of $H_r(\mathbf{V}_1,Q)$,

 $\{\Delta_r^1,\ldots,\Delta_r^{B_r}\}$: the base of $H_r(\mathbf{V}_2,Q)$ corresponding to $\{\Gamma_r^1,\ldots,\Gamma_r^{B_r}\}$,

 $\{\Gamma_r^{1+},\ldots,\Gamma_r^{R_r+}\}$: the base of $H_{2n-r}(\mathbf{V}_1,Q)$ such that $I(\Gamma_r^i\Gamma_r^{j+})=\delta_{ij}$ i,j=1,2,..., B_r ,

 $\{\mathcal{A}_r^{1+},\ldots,\mathcal{A}_r^{B_r+}\}$: the base of $H_{2n-r}(\mathbf{V}_2,Q)$ corresponding to $\{\Gamma_r^{1+},\ldots,\Gamma_r^{B_r+}\}$,

 α_X , $\alpha_Y^{1\times 2}$, α_Z^1 , α_Z^2 : the harmonic forms on V, $V \times V$, V_1 , V_2 corresponding

Received June 15, 1955.

to cycles X, Y, Z, U on V, $V \times V$, V_1 , V_2 by means of Hodge's theorem respectively.

 $\mathcal{Q}^{(p,q)}$: the period matrix of harmonic forms of type (p,q) on V_1 with period cycles $\Gamma_r^1, \ldots, \Gamma_r^{B_r}$ such that $p+q=r \leq n, p \leq q$,

 $\Omega^{(n-q, n-p)}$: the period matrix of harmonic forms of type (n-q, n-p) with period cycles $\Gamma_r^{1+}, \ldots, \Gamma_r^{B_r+}$ such that $p+q=r, p \leq q$.

$$<\alpha, X>=\int_{X}\alpha,$$

$$<\alpha, \beta>_{M} = \int_{M} \alpha \wedge \beta,$$

 $Z \approx 0$: Z is homologous zero over Q.

 $\delta(\Gamma)$: the cycle on $\delta(V)$ corresponding by the natural correspondence to a cycle Γ on V,

 $\delta_1^{-1}(X)$: a cycle on V_1 corresponding by the natural correspondence to a cycle X on $\delta(V)$,

$$(A)_{\alpha\beta}=(a_{ij})_{\alpha\beta}=a_{\alpha\beta},$$

 $I(X \cdot Y; \delta(\mathbf{V}))$: Kronecker index of the intersection of cycles X, Y of $\delta(\mathbf{V})$ along to $\delta(\mathbf{V})$.

LEMMA 1. Let C be a cycle of dimension 2r. Then

$${}^{t}(I(C\times \Delta_{r}^{i+}\delta(\Gamma_{r}^{j+}))=(I(C\Gamma_{r}^{i+}\Gamma_{r}^{j+})).$$

Proof. By virtue of intersection theory, 1)

$$\delta(\Gamma_r^{j+}) \approx \sum_{q=0}^r \sum_{\mu,\nu} \lambda_{\mu\nu}^q (\Gamma_r^{j+}) \Gamma_{q-r}^{\mu} \times \Delta_{2n-q}^{\nu},$$

where

$${}^t\lambda^q(\Gamma_r^{j+}) = (-1)^{(2n-q)r}(I(\Gamma_q^\mu\Gamma_q^{\nu+}))^{-1}(I(\Gamma_r^{j+}\Gamma_q^\mu\Gamma_{2n+r-q}^{\nu}))(I(\Gamma_{q-r}^\mu\Gamma_{q-r}^{\nu+}))^{-1}.$$

Since

$$^t\lambda^{2n-r}(\varGamma_r^{j+})=(-1)^r(I(\varGamma_r^{\mu+}\varGamma_r^{\nu}))^{-1}(I(\varGamma_r^{j+}\varGamma_{2n-r}^{\mu}\varGamma_{2r}^{\nu})(I(\varGamma_{2n-2r}^{\mu}\varGamma_{2n-2r}^{\nu+}))^{-1}.$$

we have

$$\begin{split} I(C\times\varDelta_r^{i+}\boldsymbol{\cdot}\delta(\varGamma_r^{j+})) &= I(C\times\varDelta_r^{i+}\boldsymbol{\cdot}\sum_{q=0}^r\sum_{\mu,\nu}\lambda_{\mu\nu}^q(\varGamma_r^{j+})\varGamma_{q-r}^\mu\times\varDelta_{2n-q}^\nu) \\ &= \sum_{\mu,\nu}\lambda_{\mu,\nu}^{2n-r}(\varGamma_r^{j+})I(C\varGamma_{2n-2r}^\mu)I(\varGamma_r^{i+}\varDelta_r^\nu) \end{split}$$

¹⁾ See S. Lefschetz, Topologg (New York), 1930.

$$\begin{split} &= (-1)^r \sum_{\alpha,\beta} I(C\Gamma_{2n-2r}^{\alpha}) \big\{ {}^t (I(\Gamma_{2n-2r}^{\mu}\Gamma_{2n-2r}^{\nu+})^{-1} \\ & {}^t (I(\Gamma_r^{i+}\Gamma_{2n-r}^{\mu}\Gamma_{2r}^{\nu}))^t (I(\Gamma_r^{\mu+}\Gamma_r^{\nu}))^{-1} \big\}_{\alpha,\beta} I(\Gamma_r^{i+}\Gamma_r^{\beta}) \\ &= \sum_{\alpha,\beta} I(C\Gamma_{2n-2r}^{\alpha}) \big\{ (I(\Gamma_{2n-2r}^{\mu}\Gamma_{2n-2r}^{\nu}))^{-1} \\ & (I(\Gamma_r^{i+}\Gamma_{2r}^{\mu}\Gamma_{2n-r}^{\nu})(I(\Gamma_r^{\mu}\Gamma_r^{\nu+}))^{-1} \big\}_{\alpha,\beta} I(\Gamma_r^{\beta}\Gamma_r^{i+}) \\ &= I(\Gamma_r^{j+}C\Gamma_r^{i+}) \\ &= I(C\Gamma_r^{j+}\Gamma_r^{i+}). \end{split}$$

This proves our lemma.

Lemma 2. If a cycle X of dimension r on $\delta(V)$ is not homologous to zero over Q on $\delta(V)$. Then it is not homologous to zero over Q on $V \times V$, too.

Proof. Let $\{\omega_1, \ldots, \omega_{B_r}\}$ be a base of harmonic forms of degree r on V_1 . Then they can be considered as harmonic forms on $V \times V$ and on $\delta(V)$ and they are linearly independent on $V \times V$ and on $\delta(V)$. Therefore, by d'Rham's theorem our assertion is ture.

LEMMA 3. Let C be a cycle of dimension 2r. Then

$$C \times \Delta_r^{j+} \cdot \delta(\mathbf{V}) \approx \sum_k I(C \times \Delta_r^{j+} \cdot \delta(\Gamma_r^{k+})) \cdot \delta(\Gamma_r^k).$$

Proof. By Lemma 2 $H(\delta(\mathbf{V}), C)$ is inbedded in $H(\mathbf{V}, C)$. Hence $I((C \times \Delta_r^{j+} \cdot \delta(\mathbf{V})) \delta(\Gamma_r^{k+}); \delta(\mathbf{V}) = I(C \times \Delta_r^{j+} \cdot \delta(\Gamma_r^{k})).$ Therefore

$$C \times \Delta_r^{j+} \delta(\mathbf{V}) \approx \sum_k I(C \times \Delta_r^{j+} \delta(\Gamma_r^{k+})) \delta(\Gamma_r^k).$$

Proposition 1. Let C be a cycle of type $(r \mp s, r \pm s)$ with complex coefficients. Then

$$\Lambda(C)\, \mathcal{Q}^{(n-q\pm s,\, n-p\mp s)} = \mathcal{Q}^{(p,\,q)}(I(C\Gamma_r^{i+}\Gamma_r^{j+})),$$

with a matrix $\Lambda(C)$, where p+q=r < n.

Proof. Let $\{\alpha_1, \ldots, \alpha_l\}$ be a minimum base of harmonic forms of type (p, q) on V_1 . We denote by the same notations $\alpha_1, \ldots, \alpha_l$ the harmonic forms on $V \times V$ induced by $\alpha_1, \ldots, \alpha_l$. Then we have

$$(\langle \alpha_{i}, \, \delta_{1}^{-1}(C \times \mathcal{A}_{r}^{j+} \cdot \delta(\mathbf{V})) \rangle)$$

$$= (\langle \alpha_{i}, \, C \times \mathcal{A}_{r}^{j+} \delta(\mathbf{V}) \rangle)$$

$$= (\langle \alpha_{i}, \, \sum_{k} I(C \times \mathcal{A}_{r}^{j+} \cdot \delta(\Gamma_{r}^{k+})) \, \delta(\Gamma_{r}^{k}) \rangle)$$

$$= (\langle \alpha_{i}, \, \sum_{k} I(C \times \mathcal{A}_{r}^{j+} \delta(\Gamma_{r}^{k+})) \, \Gamma_{r}^{k} \rangle)$$

$$= (\langle \alpha_{i}, \, \Gamma_{r}^{j} \rangle)^{t} (I(C \times \mathcal{A}_{r}^{j+} \delta(\Gamma_{r}^{k+}))$$

$$= \mathcal{Q}^{(p,q)} (I(C\Gamma_{r}^{j+} \Gamma_{r}^{j+})).$$

On the other hand

$$(\langle \alpha_{i}, C \times \Delta_{r}^{j+} \delta(\mathbf{V}) \rangle)$$

$$= (\langle \alpha_{i}, \alpha_{C \times \Delta_{r}^{j+} \delta(\mathbf{V})}^{1 \times 2} \rangle_{V \times V})$$

$$= (\langle \alpha_{i}, \alpha_{C}^{1} \wedge \alpha_{\Delta_{r}^{j+}}^{2} \wedge \alpha_{\delta(\mathbf{V})}^{1 \times 2} \rangle_{V \times V})$$

$$= (\langle \alpha_{i}, \alpha_{C}^{1} \wedge \alpha_{\delta(\mathbf{V})}^{1}, \alpha_{\delta(\mathbf{V})}^{2}, \alpha_{\Delta_{r}^{j+}}^{2} \rangle_{V \times V})$$

$$= (\langle \int_{C} \alpha_{i} \wedge \alpha_{\delta(\mathbf{V})}^{1 \times 2}, \Delta_{r}^{j+} \rangle).$$

The type of the form

$$\int_{\mathcal{C}} \alpha_i \wedge \alpha_{\delta(\mathbf{V})}^{1 \times 2}$$

is $(p, q) + (n, n) - (r \mp s, r \pm s) = (n - q \pm s, n - p \mp s)$.

Hence

$$(\langle \alpha_i, C \times \mathcal{A}_r^{j+} \delta(\mathbf{V}) \rangle) = \Lambda(C) \mathcal{Q}^{(n-q\pm s, np-\mp s)}$$

with a matrix $\Lambda(C)$. Therefore

$$\mathcal{Q}^{(p,q)}(I(C\Gamma_r^{i+}\Gamma_r^{j+})) = \Lambda(C) \mathcal{Q}^{(n-q\pm s, n-p\mp s)}.$$

LEMMA 4. Let $r \leq n$. Then $(I(\mathbf{W}_r \Gamma_r^{i+} \Gamma_r^{j+}))$ is non-singular.

Proof. Since $\{\Gamma_r^{1+}, \ldots, \Gamma_r^{B_r+}\}$ is a base of $H_{2n-r}(\mathbf{V}, Q)$, by virtue of theory of harmonic integral on a Hodge variety, $\{\mathbf{W}_r\Gamma_r^{1+}, \ldots, \mathbf{W}_r\Gamma_r^{B_r+}\}$ is a base of $H_r(\mathbf{V}, Q)$. Hence $(I(\mathbf{W}_r\Gamma_r^{i+}\Gamma_r^{j+}))$ is non-singular.

Theorem 1. Let $r \le n$. Let C be a cycle of type (r, r). Then

where

²⁾ See J. Igusa, On Picard varieties § II, 6, Proposition 3 American Journal, **74**, 1-22 (1952).

This is an immediate consequence from Proposition 1.

THEOREM 2. Let r be an odd integer less than n. Let $\{s_1, \ldots, s_l\}$ be a base of the module of rational matrices $S = (s_{ij})$ such that

$$\sum_{i,j} s_{ij} \Gamma_r^{i+} \Gamma_r^{j+} \approx 0.$$

Let $K_{2r}(\mathbf{V}, Q)$ be the sub-module of $H_{2r}(\mathbf{V}, Q)$ consisting of Z such that $I(Z\Gamma_r^{i+}\Gamma_r^{j+}) = 0$ i, $j = 1, 2, \ldots, B_r$. Then there exists an isomorphism from

$$H_{r,r}(\mathbf{V}, Q)/H_{r,r}(\mathbf{V}, Q) \cap K_{2r}(\mathbf{V}, Q)$$

onto the module of rational matrices M satisfying

i) $\Omega^{(r)}M = \Lambda\Omega^{(r)}$ with a matrix Λ ,

where

$$\mathcal{Q}^{(r)} = \begin{cases}
\begin{pmatrix}
\mathcal{Q}^{(r,0)} \\
\mathcal{Q}^{(r-2,2)} \\
\vdots \\
\mathcal{Q}^{(1,r-1)}
\end{pmatrix} & for odd r, \\
\begin{pmatrix}
\mathcal{Q}^{(r,0)} \\
\mathcal{Q}^{(r,0)} \\
\mathcal{Q}^{(r-1,1)} \\
\vdots \\
\mathcal{Q}_{(r/2,r/2)}
\end{pmatrix} & for even r.$$

ii)
$$S_{\nu}S_{\nu}M(I(\mathbf{W}_{r}\Gamma_{r}^{i+}\Gamma_{r}^{j+}))=0$$
 $\nu=1, 2, \ldots, l.$

Proof. Let D_1, \ldots, D_m be independent generators of $H_{r,r}(\mathbf{V}, Q)/H_{r,r}(\mathbf{V}, Q)$ $\cap K_{2r}(\mathbf{V}, Q)$. Let φ be the linear mapping such that

$$\varphi(\sum_{k} a_{k} \mathbf{D}_{k}) = \sum_{k} a_{k} (I(\mathbf{D}_{k} \boldsymbol{\Gamma}_{r}^{i+} \boldsymbol{\Gamma}_{r}^{j+})) (I(\mathbf{W}_{r} \boldsymbol{\Gamma}_{r}^{i+} \boldsymbol{\Gamma}_{r}^{j+}))^{+}$$

Then, by virtue of Theorem 1,

$$\mathcal{Q}^{(r)}\varphi(\sum_{k}a_{k}\mathbf{D}_{k})=\Lambda\mathcal{Q}^{(r)}$$

with a matrix Λ .

On the other hand we get

$$S_{p}S_{\nu}\varphi(\sum_{k}a_{k}\mathbf{D}_{k})(I(\mathbf{W}_{r}\Gamma_{r}^{i+}\Gamma_{r}^{j+})) = S_{p}S_{\nu}(I(\sum_{k}a_{k}\mathbf{D}_{k}\Gamma_{r}^{i+}\Gamma_{r}^{j+}))$$

$$= \sum_{k}a_{k}I(\mathbf{D}_{k}\sum_{i,j}s_{ij}^{(\nu)}\Gamma_{r}^{i+}\Gamma_{r}^{j+}) = 0 \qquad \nu = 1, 2, \ldots, l.$$

Conversely we assume that a rational matrix M satisfies the condition i),

ii). From ii) it follows that there exists a cycle with rational coefficients C such that

$$(I(C\Gamma_r^{i+}\Gamma_r^{j+})) = M(I(\mathbf{W}_r\Gamma_r^{i+}\Gamma_r^{j+})).$$

We assume that C is not homologous to a cycle of type (r, r) modulo $K_{2r}(\mathbf{V}, Q)$. We put $\alpha_c = \alpha_{c_0} + (\alpha_{c_1} + \alpha_{c_1}') + \ldots + (\alpha_{c_r} + \alpha_{c_r}')$, where

$$\alpha_{C_{\nu}}$$
 is of type $(r-\nu, r+\nu)$ $\nu=0, 1, \ldots, r,$
 $\alpha_{C'_{\mu}}$ is of type $(r+\nu, r-\nu)$ $\mu=1, 2, \ldots, r$

and C_{ν} , C'_{λ} are cycles with complex coefficients corresponding to harmonic forms $\alpha_{c_{\nu}}$, $\alpha_{c'_{\mu}}$ by means of Hodge's theorem respectively. Then, since C is real, necessalily we get $\alpha_{c'_{\nu}} = \overline{\alpha_{c_{\nu}}}$. By virtue of the assumption on C, there exists ν_0 such that

$$(I((C_{\nu_0} + C'_{\nu_0}) \Gamma_r^{i+} \Gamma_r^{j+})) \neq 0.$$

On the other hand from Proposition 1, putting

$$T(C_{\nu} + C_{\nu}') \, \Omega^{(r)} = \Omega^{(r)} (I((C_{\nu} + C_{\nu}') \, \Gamma_{r}^{i+} \, \Gamma_{r}^{j+})) (I(\mathbf{W}_{r} \, \Gamma_{r}^{i+} \, \Gamma_{r}^{j+}))^{-1},$$

we have that for any i, j at most one i, j-element of $T(C_0), T(C_1 + C_1'), \ldots, T(C_r + C_r')$ does not vanish. From $(I((C_{\nu_0} + C_{\nu_0}'(\Gamma_r^{i+} \Gamma_r^{j+})) \neq 0)) \neq 0$ we see that $T(C_{\nu_0} + C_{\nu_0}') \neq 0$. By virtue of Proposition 1 $T(C_{\nu_0} + C_{\nu_0}')$ varies of the type of integrants. This is a contradiction to our assumption. Therefore our theorem is proved.

THEOREM 3. Let $\{S_1, \ldots, S_l\}$ be a base of the module of rational matrices $S = (s_{ij})$ such that

$$\sum_{i,j} s_{ij} \Gamma_1^{i+} \Gamma_1^{j+} \approx 0.$$

Let $K_{2n-2}^*(\mathbf{V}, Q)$ be the sub-module of $H_{2n-2}(\mathbf{V}, Q)$ consisting of Z such that $I(\mathbf{W}_2 Z \Gamma_1^{i+} \Gamma_1^{j+}) = 0$ $i, j = 1, 2, \ldots, B_1$.

Then there exists an isomorphism from

$$\mathfrak{H}_{n-1}(\mathbf{V}, Q)/\mathfrak{H}_{n-1}(\mathbf{V}, Q) \cap K_{2n-2}^*(\mathbf{V}, Q).$$

onto the module of rational matrices M satisfying

- i) $\Lambda \Omega^{(1,0)} = \Omega^{(1,0)} M$ with a matrix \wedge ,
- ii) $S_b S_{\nu} M(I(\mathbf{W}_1 \Gamma_1^{i+} \Gamma_1^{j+})) = 0, \quad \nu = 1, 2, \dots, l.$

Proof. Let D_1, \ldots, D_m be independent generators of $\mathfrak{H}_{n-1}(\mathbf{V}, Q)$. Then $D_1\mathbf{W}_2, \ldots, D_m\mathbf{W}_2$ are independent generators of $\mathfrak{H}_1(\mathbf{V}, Q)$. On the other hand, by virtue of Lefschetz-Hodge's theorem, $H_{1,1}(\mathbf{V}, Q) = \mathfrak{H}_1(\mathbf{V}, Q)$. Hence if we put

$$\varphi(\sum_{k} a_k \mathbf{D}_k) = \sum_{k} a_k (I(\mathbf{W}_2 \mathbf{D}_k \Gamma_1^{i+} \Gamma_1^{j+})) (I(\mathbf{W}_1 \Gamma_1^{i+} \Gamma_1^{j+}))^{\mathsf{T}}.$$

Then, by the strictly same reason in the proof of Theorem 3, φ gives our isomorphism.

We call the degree of $\mathfrak{H}_{n-1}(\mathbf{V}, Q)/\mathfrak{H}_{n-1}(\mathbf{V}, Q) \cap K_{2n-2}^*(\mathbf{V}, Q)$ the restricted Picard number of \mathbf{V} .

Then we get the following.

Theorem 4. Restricted Picard number is a birational invariant.

Proof. Let V' be another non-singular algebraic variety, which is equivalent to V by a birational correspondence T. Then T induces isomorphisms from $H_1(V, Q)$, $H^{(1,0)}(V, C)$ onto $H_1(V', Q)$, $H^{(1,0)}(V', C)$ respectively.⁵⁾ We denote by f and f^* these isomorphisms.

We denote by $[H^1(\mathbf{V},C)]$, $[H^1(\mathbf{V}',C)]$ the sub-rings generated by $H^1(\mathbf{V},C)$, $H^1(\mathbf{V}',C)$ respectively. Then f^* induces an isomorphism from $[H^1(\mathbf{V}',C)]$ onto $[H^1(\mathbf{V},C)]$, for f^* mapps $H^1(\mathbf{V}',C)$ onto $H^1(\mathbf{V},C)$ and f^* induces a homomorphism from [H'(V,C)], onto [H'(V,C)].

On the other hand, since

$$\alpha_{\Gamma_1^{i+}} = f^*(\alpha'_{f(\Gamma_1^{i+})})$$

and

$$\alpha'_{f(\Gamma_1^{i+})} = \alpha'_{f(\Gamma_1^{i})^+},$$

we have

$$\alpha_{\Gamma_{1}^{i+}\Gamma_{1}^{j+}} = \alpha_{\Gamma_{1}^{i+}} \wedge \alpha_{\Gamma_{1}^{j+}} = f^{*}(\alpha'_{f(\Gamma_{1}^{i+})}) \wedge f^{*}(\alpha'_{f(\Gamma_{1}^{i+})})$$

$$= f^{*}(\alpha'_{f(\Gamma_{1}^{i})}) \wedge f^{*}(\alpha'_{f(\Gamma_{1}^{i})})$$

$$= f^{*}(\alpha'_{f(\Gamma_{1}^{i})} \wedge \alpha'_{f(\Gamma_{1}^{i})}) = f^{*}(\alpha'_{f(\Gamma_{1}^{i})}) + f^{*}(\Gamma_{1}^{i})$$

^{3),4)} W. V. D. Hodge, The theory and applications of harmonic integrals, IV, 51, 2 (London), 1940.

⁵⁾ See J. Igusa, On Picard varieties § II, 11, American Journal, 74, 1-22 (1952).

Therefore

$$\sum_{i,j} s_{ij} \alpha'_{f(\Gamma_1^i)} + f_{(\Gamma_1^j)} + 0$$

if and only if

$$\sum_{i,j} s_{ij} \alpha_{\Gamma_1^{i+}\Gamma_1^{j+}} = 0.$$

This shows that

$$\sum_{i,j} s_{ij} f(\Gamma_1^i)^+ f(\Gamma_1^j)^+ \approx 0$$

if and only if

$$\sum_{i,j} s_{ij} \Gamma_1^{i+} \Gamma_1^{j+} \approx 0.$$

Let $\alpha'_1, \ldots, \alpha'_{B_1/2}$ be differentials of the first kind on V' such that $\Omega^{(1,0)}$ is the period matrix of $f^*(\alpha'_1), \ldots, f^*(\alpha'_{B_1/2})$ with period cycles $\Gamma^1_1, \ldots, \Gamma^{B_1}_1$. Then the period matrix of $\alpha'_1, \ldots, \alpha'_{B_1/2}$ with period cycles $f(\Gamma^1_1), \ldots, f(\Gamma^{B_1}_1)$ is also $\Omega^{(1,0)}$. Therefore, by virtue of Theorem 3, we get

$$\mathfrak{H}_{n-1}(\mathbf{V}, Q)/K_{2n-2}^*(\mathbf{V}, Q) \wedge \mathfrak{H}_{n-1}(\mathbf{V}, Q)$$

$$\cong \mathfrak{H}_{n-1}(\mathbf{V}', Q)/K_{2n-2}^*(\mathbf{V}', Q) \wedge \mathfrak{H}_{n-1}(\mathbf{V}', Q).$$

This proves our assertion.

Mathematical Institute, Nagoya University