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ON ELLIPTIC CURVES WITH COMPLEX
MULTIPLICATION AS FACTORS OF
THE JACOBIANS OF MODULAR

FUNCTION FIELDS
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1. As Hecke showed, every L-function of an imaginary quadratic field
K with a Gréssen-character 2 is the Mellin transform of a cusp form f(2)
belonging to a certain congruence subgroup I of SL,(Z). We can normalize
2 so that
@) =a for acK, a=1 mod*c
with a positive integer v, where ¢ is the conductor of 2, and mod* ¢ means
the multiplicative congruence modulo ¢. Then f(z) is of weight »+1, i.e.,

fl@z + b)l(cz + d) = f(2)(cz + d)** for I:Ccl db]EF ’
and I" is given by
r={¢ Jlestzfe=a=1 c=0 mod 0-N(C)}

where —D is the discriminant of K. If v =1, f(z)dz is a differential form
of the first kind on the compactification (H/I")* of the quotient H/I', where
H denotes the upper half complex plane. Denote by Jac(H/I') the jacobian
variety of (H/I')*, and identify the tangent space of Jac(H/I') at the origin
with the space of all differential forms of the first kind on (H/I"* Let A
be the smallest abelian subvariety of Jac (H/I') that has f(z)dz as a tangent
at the origin. Then the first main result of this paper can be stated as

follows:

The abelian variety A is a product of copies of an elliptic curve whose endo-
morphism algebra is isomorphic to K.

Hecke [3] proved this fact in the case where K = Q(/=¢) with a prime
¢>3, =3 mod (4) and ¢ = (/=3). In the general case, he showed only that
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the periods of f(z)dz belong to a certain class field over K. His proof
requires rather deep arithmetic results of complex multiplication. Ours is
simpler, and based on the following

LemMa 1. Let X be an abelian variety of dimension n defined over C, and
h an injective homomorphism of K into Endo(X). Suppose that the representation
of K, through h, on the tangent space of X at the origin is equivalent fo n copies
of the identity injection of K into C. Then X is isogenous to a product of n copies
of an elliptic curve E such that Ende(E) is isomorphic to K.

Here and henceforth we denote by End (X) the ring of all endomor-
phisms of X over €, and put Ende(X) = End (X)®Q.

Our next purpose is to show that every elliptic curve E defined over
Q with complex multiplication is isogenous over Q to a factor of Jac(H/I")
for some I'” in the following way. By virtue of Deuring’s result [1], if K
is isomorphic to Ende(E), the zeta-function of E over @ is exactly the L-
function of a certain Gréssen-character 2 of K. Then we obtain an abelian
variety A by the procedure described above, i.e.,

elliptic curve E — zeta-function with a Gréssen-character 2
—cusp form f(z) > abelian subvariety A of Jac (HI™).

In this situation, we shall prove:
A is an elliptic curve isogenous to E over Q.

This is an easy consequence of the results in the previous articles [7], [8].
If —D is the discriminant of K, and ¢ is the conductor of 2, the group I”
is of the form

r={[4 5:|ESL2(Z)iCEO mod (D-’N(c))].

2. Let us first prove the above lemma. Although it is a special case
of [6, Prop. 14], we give here a direct proof for the reader’s convenience.

Identify X with a complex torus C"/L with a lattice L. Let Q-L
denote the Q-linear span of L. Then K acts, through A, on Q-L, so that
there exists a K-linear isomorphism » of K" onto Q-L, where K" is the
submodule of C" consisting of the vectors whose components belong to K.
Since C* =Kn®QR=(Q'L)®QR,V we can extend p to an R-linear auto-
morphism of €”, which we denote again by p. By our assumption, we
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may assume that the action of an element « of K on X is represented by
the complex linear transformation u — au (usC") of C". We can find
a real number » and an element a of K so that r-a =/=7. Now p is K-
linear and R-lincar, hence p commutes with the map u—y/—T1-u, le.,

p is C-linear. Take any free Z-submodule a of rank 2 in K. Then p gives
an isogeny of C*/a™ = (C/a)" onto C"/L. This proves the lemma, since C/a
is an elliptic curve with K as its endomorphism algebra.

3. For a function f(z) on H and e:[z ﬂe GLyR) with det(¢) >0,
we define a function f|[§], on H by
(FI[E1e)(z) = det (&)*72 - (cz 4 d)™* - f((az + b)/(cz + d)).

For an arbitrary positive integer N, put
i) = {[4 b]estiz)fc=0 mod ),
rN ={[¢ blerqm|a=1 mod ).

Further, for a complex-valued character ¢ of (Z/NZ)*,» we denote by Si(N, ¢)
the vector space of all the cusp forms f(z) satisfying

fIrh = eld)- f
for every 7 =|:‘CZ ‘ﬂel“o(N)-

LemMA 2. Let f(z) = X1.2,a,6%"* be an element of S.(N,€), r» a positive
integer, M a common multiple of Nr and v, and let

9(2) = 2tn, r=1, %12,

Then geS,(M,€’), where €' 1is the restriction of € to (Z|MZ)*.

Proof. Put ¢ = e¥/7, 7Ju=|:g 1’;] for ueZ, and I =Iy(N). We see

easily that I'y, = Iy, if and only if #=v mod (). We can find numbers
xz, of Q&) for ueZ such that

Ty,=12, if w=v mod (¥),

if (n,7) =1,

1
r=1 un

cly = .
w1 T 0 otherwise.

L If §'is an associative ring with the identity element, $* denotes the group of all invertible
elements in S.
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We see easily that g(z) = 2iziz, - fl[#.Je. Further, it can be seen that
1) Ty = Tay if (a,r) =1,

and 2, is invariant under Gal(Q(¢)/Q), hence z,£Q. Now g(z) is a cusp
form of level N72 (see for example [7, Prop. 2.4, Lemma 3.9]). Therefore,
to prove our assertion, it is sufficient to check the behavior of g under an

element 7 = [:(]ZWC 5:\ of I'f(M). We have

r ula b _Ta b Tr d*u

0 r] Mc d:"‘[Mc d’][o 7']
with @ = a+ cuM/r, b =b+dull —a'd)]r, d' =d— cd®uM[r. Note that
@ =a, d'=d mod (N)n(r), and ad'd=ad =1 mod (r). Therefore, putting
v = d?u, we have f|[9.71 = &(d)- flln.Ji. In view of (1), we obtain ¢g|[7].=
&d)+g, q.ed.

4. For our purpose, it is necessary to consider Grossen-characters
which are not necessarily “primitive”. To define them, let m be an inte-
gral ideal in K, and I, the group of all fractional ideals in K prime to m.
Let Wu denote the group of all elements @ of K* such that e« =1 mod* m,
i.e., @ —1 is p-integral and divisible by m, for all prime factors p of m,
where m, is the p-closure of m. Further let P, denote the subgroup of I,
consisting of all principal ideals (a) with eeW,. For a positive integer »,
let 42, denote the set of all homomorphisms 2 of I, into C* such that
A(a)) = « for every acWy. Such a 2 is called a Grossen-character of K
defined modulo m. Obviously, £ is not empty if and only if the following

condition is satisfied:
(2) If ¢ is a root of unity in K and £ =1 mod m, then & =1.

For each 24, there is a unique divisor ¢ of m such that: (i) 1 is the
restriction of an element of 4; (ii) no proper divisor of ¢ has the property
(1). Then ¢ is called the conductor of 2. We call 2 primitive if m is the
conductor of 2.

We can associate with every i€/, an L-function L(s,2) and a function
fiz) on H by

L(s,2) = 2a(t)N(®)™ (s&C),
Silz) = 2pA(g)ern s (z€H),
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where each sum is taken over all integral ideals ¢ in I,. Under the as-
sumption (2), let V% be the vector space spanned by the f; over C for all
iesy,. For i, pes,, we see easily that f, = f, if and only if 2=pg. More-
over, we shall see later that the f, for 24, are linearly independent over
C. Therefore V is of dimension (I, : Pyl

Fix any set S of representatives for I, modulo P,, whose members are

prime to m, and put, for each a€S,
(3) 9a(2) = 3 @’ + N @@,
where the sum is taken over all ideals (e) such that a€W,Nna. We have
then
1= 2ae )™ g

50 that the functions g, for a=S, form a basis of V¥ over C. Hecke [2]
proved that g, is a cusp form belonging to a certain congruence subgroup.

We can state this fact in the following form.

LeEmMA 3. Let —D be the discriminant of K, and let a4, M= D-N(m).
Then f, is an element of S,..(M,¢), where & is the character of (Z|MZ)* defined
by

&la) = (:aQ) 'Z(Eff» (aeZ, (a, M) =1).
Proof. 1If 2 is primitive, our assertion can be proved by examining the
functional equations of L(s,2) and

L(s,2,%) = 22N (g))N(x)™

with primitive characters x of (Z/pZ)* for all rational primes p not dividing
M, and applying the principle of Weil [9]. Although [9, Satz 2] is con-
cerned with S,(M,¢) for real characters ¢, the result can easily be extended
to the case of an arbitrary character e. Let us now prove the general case
by induction on N(c~'m), where ¢ is the conductor of 2. Suppose that ¢'m
has a prime factor p, and put n =p~m. Let z be the element of 4 whose
restriction to A is 2. By the induction assumption, £, belongs to S,.,(D-N(n), ¢).
Put ¢ = N(p). Then

Flge) = Zig vy, pE)e P02,
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hence

(4) Flz) — p0)flqr) = Zg my (D) NO? = fi(2),

where we understand that g(p) =0 if p divides n. Since we have

[6 1% al=[¢ I8 1]
it can easily be verified that f,(gz)€S,..(q- D+ N(n),¢). Therefore the equality
(4) implies that f,€S,.(q-D-N(u),¢), q.ed. '
The symbols 24, M, and & being as above, put fi(z) = 3,a.e***. Then
the L-function L(s,2) has an Euler product:

L(S’ 1) = Hp(l - app_s + 8(73)27"—2‘)_19

where the product is taken over all rational primes p ;e(p) =0 for every
prime factor p of M. Therefore, by Hecke [4, II, Satz 42] (see also [7,
Th. 3.43]), f, must be a common eigen-function of all Hecke operators.
Thus the functions f,, for 14, are distinct eigen-functions whose first

Fourier coefficients are 1. Therefore they are linearly independent over C.

5. Let us now consider a projective non-singular curve C, biregularly
isomorphic to the compactification of the quotient H/I'; (M) for a positive
integer M. There is a “standard” way to define C, rational over Q, up to
biregular isomorphisms over @. (One can define, for instance, the function
field of C, to be the field of all I',(M)-invariant modular functions whose
Fourier expansions with respect to e? have rational coefficients. See also
(51, [7, §6.7, §6.3].) Then the jacobian variety Jac(Cy) of C, can naturally
be defined over Q. We denote by r, the endomorphism of Jac(Cy) cor-
responding to the Hecke operator of degree x.

Let a€4l, M= D-N(m), and f,(z) = J.a.e*":. Further let %, denote
the field generated over Q by the numbers a, for all ». Since f, is a
common eigen-function of all Hecke operators, we obtain, by virtue of [7,
Th. 7.14], a couple (A4,,06,) satisfying the following three conditions:

(1) Ay is an abelian subvariety of Jac (Cy) of dimension [k; : Q.

(i) 60, is an isomorphism of k. into Ende(A,) such that 6,(a,) is the restriction
of ©n to A, for all n.

(1) A, is rational over Q.

Moreover, (A,,6,) is unique for f, under the conditions (i) and (ii).
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For an automorphism ¢ of the algebraic closure of @, we define an
element 1, of Ak by i,(x) = a&°). If fiz) = J.a.e*"*, we see that
fi(2) = Saaieins, Now identify the tangent space of Jac(C,) at the origin
with the space of all cusp forms of weight 2 with respect to I"(M). Then
the proof of [7, Th. 7.14] shows that the tangent space of A, at the origin
can be identified with the vector space spanned by all distinct f,,. There-
fore our result mentioned at the beginning of this paper follows from the
following

TueoreM 1. The abelian variety A, is isogenous to a product of copies of an
elliptic curve whose endomorphism algebra is isomorphic to K.

Proof. (1) First let us assume that m is divisible by y=p, and m=m",

where p denotes the complex conjugation. Put
r=rym, =[5 4],

We can let I'sI" act on the vector space of cusp forms with respect to I'
(see [7, §3.4]). Denote the action by [I'éI',, Take a disjoint coset de-
composition I'éI" = U5, I'67; with 7,€I'. Let g, be as in (3). Then, by
definition,
gul[["srk = U::=1ga|[5ri]2-
If o, fcWnNa, we have
N(a)/N(a)= N(B)/N(a) mod (D),

so that, if &, = e¥#/2,

9al[8], = EY@F@. g,
with any fixed a contained in Wyna. Therefore
©) Gull[6T ], = g+ EN@N@ g

Thus [I’éI'); maps V) onto itself. Let A’ be the abelian subvariety of
Jac(Cy) generated by the A4, for all a1e4). Since m=w’, V) can be

identified with the tangent space of A’ at the origin. Let o denote the
endomorphism of A’ obtained from [I'éI'},. The relation (5) shows that the
representation of w on the tangent space has characteristic roots - {y@/¥@),

where a« must be fixed for each acS. Put x(») = (:rl—)—) Then we see that
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N(a)/N(a) is prime to D, and %(N(a)/N(a)) =1. We can define an embed-
ding # of Q(¢p) into Ende(A’) by h({p) = x7'w. If ¢ is an automorphism of
Q(¢p) such that & = ¢ with x(r) =1, then the restriction of ¢ to K is the
identity map. Therefore applying Lemma 1 to A’, we see that A’ is iso-
genous to a product of copies of an elliptic curve with K as its endo-
morphism algebra.

(II) Next assume that 2 is primitive, and put m’ = mw’-(/=D),
M = N@mwm')-D, 5, = (])VI ]@] for ue€Z. Then M’ = M? and m’ = m’”. De-
fine, as in the proof of Lemma 2, rational numbers %, so that

S

where §) = e*/#, Take a positive integer ¢ so that tx, is an integer for
every u. Put &€ =3¢z, -[9,].. For every

f(2) = Znane "€ Sy(M, e),
we have, by Lemma 2 and its proof,
flE =t 2(n.M)=1aneznanSZ(M/, ).

Especially f,1& =¢.f, il p is the restriction of 2 to I... Let V, be the
subspace of V} + Vi, spanned by all distinct f;,, with automorphisms ¢ of
the algebraic closure of Q. Since 2 is primitive, we see that & maps V,
injectively into Vi,. (This is not necessarily true if 2 is not primitive.)
Since 7, -I(M'm;'cl'(M), the action [7,]; defines a homomorphism of
Jac(Cy) into jac(Cys), hence & defines a homomorphism &* of Jac(Cy) into
Jac(Cys). Then the restriction of &* to A; is an isogeny onto an abelian
subvariety of A’’, where A is the sum of A, for all z=4},. By the result
in the case (I), A’ is isogenous to a product of copies of an elliptic curve
with K as its endomorphism algebra. Therefore A4, has the same property.

(ITI) Finally let us consider the general case with no assumption on
m. Let ¢ be the conductor of 2. To prove our assertion by induction on
N(c™'m), suppose that ¢™'m has a prime factor p, and put n=p~m, g=N(p),
L=qg'M, B= [g 0], Since pryMg—cr,(L), [f. defines an endomorphism
¢ of Jac(C,) into Jac(Cy). Let ¢ be the natural map of Jac(C,) into
Jac(Cy) corresponding to [1},. If g is the element of A} whose restriction

to I is 2, we have f,, = f,, — s f,..|[8: with a constant s, by virtue of (4),
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for every automorphism ¢ of the algebraic closure of @. This shows that
Aco(A,) + ¢(A,). Therefore our assertion about A, follows from that about
A,, which is ensured by induction.

Remark. We have thus shown that the center 8 of Ende(4;) is iso-

morphic to K. It should be noted here that 8 is not contained wn 0,(k,).
This follows from either of the following two facts:

(i) The elements of 6,k;)NEnd(4,;) are rational over Q (see [7, pp.
182-183]), while K is the smallest field of definition for any generator of 3
contained in End(A,).

(i) The representation of k;, through ¢, on the tangent space of A4,
at the origin is equivalent to a regular representation over Q.

6. Let E be an elliptic curve defined over @ such that Ende(E) is
isomorphic to K. (This can happen if and only if the class number of K
is one.) By the result of Deuring [1], the zeta-function of E over Q coin-
cides exactly with L(s,2) with some primitive Grossen-character 1 of K. Let
¢ be the conductor of 4, and M= D-N(c). Then we obtain an element
fi of Sy(M,e) as before. If fi(z) = J.a.e?"2, we have

(6) L(s,2) = (1 — app~° + &(p)p'™) 7%

Since E is defined over @, we see that a,&€Q, and ¢ is the trivial character,
so that f, is a cusp form invariant under I'o(M). Therefore we can take
Jac(H/I'(M)) (of course defined over @) instead of Jac (H/I(M)) in the
above discussion, and define A, as an abelian subvariety of Jac (H/I(M)).
Since k; = @, A; is an elliptic curve defined over Q.

TrrorEM 2. The elliptic curve A; is isogenous to E over Q.

Proof. By [7, Th. 7.15], the zeta-function of A, over @ coincides, up
to finitely many Euler factors, with (6). On the other hand, by Theorem
1, Ende(4,) is isomorphic to K, so that the zeta-function of A, over @ is
L(s, 2) with a primitive Gréssen-character ¢ of K. Thus L(s,2) coincides
with L(s, ) up to finitely many Euler factors. It follows that a(p) = x(p)
or A(p) = u(y*) for almost all prime ideals p in K. If m is a common multiple
of the conductors of 2 and g, we have A((a)) = « = g((a)) for a€K, a=1
mod*m. Therefore we must have A(p) = u(p), so that 2 =g, Thus E and
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A; determine the same Gréssen-character of K. By [8, Th. 8], they must
be isogenous over Q. '

It should be noted that E has good reduction modulo a rational prime
p if and only if » does not divide D-N(c¢). This is due to Deuring [1,1V]
(see also [8] for a simpler proof).
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