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CYLINDRICAL PROBABILITIES AND THE DIFFERENTIATION

OF VECTOR MEASURES
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§ 1. Introduction

There are many results in probability theory on vector spaces which
rely implicitly on the approximation of a given cylindrical probability by
cylindrical probabilities with moments; for example, this is the basic idea
behind the proof of the Radon equivalence of the weak and strong topo-
logies of a metrizable space (Schwartz [13] p. 162). The technique of ap-
proximation by cylindrical measures with moments can be systematically
developed. In particular, it follows that if each member of a family of
cylindrical probabilities with moments is decomposable, then the limits of
these cylindrical probabilities are often regular and so they are σ-additive.

An application of this method is related to the work of L. Schwartz
[11], [12] dealing with the notion of "p-radonifying" maps. The well-known
theorem due to Sazanov (see [13]) asserts that a continuous linear oper-
ator between Hubert spaces is Hilbert-Schmidt if and only if it maps every
cylindrical probability scalarly concentrated on bounded sets into a Radon
measure (i.e. it is "o-radonifying"). However, there are maps between
Banach spaces which are even nuclear but not o-radonifying. In fact, the
maps need only be a little better than nuclear maps to be o-radonifying.
Furthermore, there are absolutely summing maps between Banach space
which are not 1-radonifying. This phenomenon is related to the Radon-
Nikodym property of the range space [12].

Since nuclear and absolutely summing maps send vector measures
into indefinite integrals (i.e. they are "Nikodymising"), the approximation
argument mentioned above allows us to find classes of cylindrical proba-
bilities for which nuclear and absolutely summing maps are regularizing.
The method has the advantage of relying only on the notions of summa-
bility and boundedness in a locally convex space, so there is no need to
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26 BRIAN JEFFERIES

use norms or quasinorms as in [11].
Now if the space E has the Radon-Nikodym property and the cylin-

drical probabitity μ is the limit of certain cylindrical probabilities arising
from vector measures, then μ is regular and so <τ-additive. Furthermore,
any sufficiently regular cylindrical probability arises in this fashion. The
internal structure of a conuclear space is determined by a collection of
nuclear maps defined in it, so applying the argument above for nuclear
maps allows us to give a necessary and sufficient condition for which a
cylindrical probability is regular, and so σ-additive on a conuclear space.
This condition does not involve the continuity of the linear random func-
tion associated with μ as in the Minlos theorem. It is feasible that when
the approximating family is readily available, the condition will be easier
to apply than Minlos's result.

§ 2. Preliminaries

In this section some terminology and notation are fixed, and results
concerning cylindrical probabilities are reviewed.

The conventions of Schaefer [10] for locally convex spaces are followed
generally. A family J* of subsets of a locally convex space E is called a
convex bornology if

(a) the union of any two sets in 3$ also belongs to 3f;
(b) any subset of a set in & also belongs to ^
(c) the set UJ* is dense in E;

(d) the closed, balanced convex hull bco(B) of a set B e J 1 also be-
longs to J*;

(e) if α>0, Be&, then aB e ύi.
If condition (c) is not satisfied, SS is said to be a convex bornology in E.
A base for the convex bornology SB is a subfamily si of £% such that every
element of 3S is contained in an element of si. The convex bornology 3$
is said to be complete if it has a base consisting of disked (i.e. balanced
and convex) sets Be31 for which EB (the normed space (U n e NnB,pB)) is
complete. The standard convex bornologies of a locally convex space E
include the family J*o of bounded subsets of E, the family # # of subsets
of compact, convex subsets of E9 and the family IVΉΉ of subsets of weakly
compact, convex subsets of E. If E is quasi-complete, then W = ^(iΓtftf
= WΉ) the family of subsets of compact (weakly compact) subsets of E.

Given a complete convex bornology 3S in E, we also consider two
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CYLINDRICAL PROBABILITIES 27

other convex bornologies generated by 38, A set A C E is said to be

38-strictly compact (^-strictly weakly compact) if there exists a disked set

ΰ e f such that A a B and A is compact (weakly compact) in the normed

space EB. The family of subsets of ^-strictly compact (^-strictly weakly

compact) sets is denoted by 38*% {βΊV^Ή). These families are convex bor-

nologies, because 38 is assumed complete.

The following two results are proved in [6].

THEOREM 2.1. Let & be a complete convex bornology on the locally

convex space E. Let u: Ef -> F be a linear map into the locally convex

space F.

Suppose that u is continuous for the topology of uniform convergence

on 38, and for some B e J , the restriction of u to B° {the polar of B in Ef)

is relatively τ(E\ E)-continuous.

Then u is τ(E', E)-continuous into F.

THEOREM 2.2. Let & be a complete convex bornology on the locally

convex space E. Let u: E'T -> F be a continuous linear map into the Banach

space F which is also continuous for the topology of uniform convergence

on 38.

Then u is continuous for the topology of uniform convergence on 381^^

if and only if there exists B e 3$ such that u(B°) is relatively weakly com-

pact in F.

Theorem 2.1 may be viewed as Grothendieck's completeness theorem

[10] IV, 6.2 for the bornological setting. Here only the local completeness

of the bornology 3$ is required, instead of the completeness of the whole

space E.

The generality of locally convex spaces and bornologies considered

here is required for examples which arise naturally in applications. For

example, let Sf8 (E, F) denote the space of continuous linear operators

between a Frechet space E and a Banach space F, equipped with the

strong operator topology. Then Sf£E, F) is not complete or metrizable,

and it has no natural norm structure. However, the convex bornology

generated by the sets of the form {u: sup {|u(x)\: x e B} <Ξ 1} for B bounded

in E is complete, and it immediately suggests itself as a suitable object

of study for probability theory on *&S(E, F).

If J* is a convex bornology on E, then the topology on Er of uniform

convergence on sets in 38 is locally convex. The space Ef with this topology
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28 BRIAN JEFFERIES

is denoted by E'a.

Let 3f(E) denote the algebra of cylinder sets of the locally convex

space E (sets of the form φ~\B) for φ: E-> Rk continuous and linear, and

B a Borel subset of Rk) and &&(E) the <7-algebra generated by £(E). The

Borel σ-algebra of a Hausdorff topological space T is denoted by

(the smallest σ-algebra containing the open sets).

A cylindrical probability on E is an additive set function μ:

[0,1] such that for each continuous linear map φ: E -> Rk, keN, the set

function μoψ'1: <%Θ(Rk)-^[0,1] defined by μ°φ-\A) = μ(φ~\A)\ Ae@Θ(Rk)

is a (7-additive probability measure.

The algebraic dual Ef* of Ef is isomorphic to the completion of E in

σ(E, E'). Given a cylindrical probability μ: &(E) -> [0, 1], there exists a

unique (/-additive probability μσ: ^^(E'*) —> [0,1] such that μ,(A) =

μ(A Π £7) for every A e 3f(E'*) (identifying £J with its canonical image in

E'*).

Let 0 < p < oo. A cylindrical probability μ on E has (weak) p-th

order moments if for all ξeE', μ(\ξ\p) < °o (since x -> |<x, ?>|p, x e ί J is

•^(immeasurable, the integral is well-defined). Now let p be a locally

convex topology on E' and & a bornology on E. We say that μ has

(̂ o, p)-moments ((&, p)-moments) if μ has p-th order moments and the map

ξ-+μ(\ξ\p), ξeE' is continuous on E'9 (E£).

The cylindrical probabilities with (r,l)-moments, (here r is the Mackey

topology τ(E\ E) on E') are of special interest. Suppose that μ has (τ, 1)-

moments, and denote the identity map on Ef* by cσ, Then cσ is ^σ-inte-

grable on E'*, and the values of cσμσ on ^^(Ef%) are all contained in a

weakly compact convex subset of E. Furthermore, if φ: E -> Rk is a

continuous linear map, & e iV, then on

μo φ-1 = μσ o (dφ o cσμσldμσ)-χ .

In this sense, μ is the "distribution" of a density for the vector measure

cσμa with respect to μσ (μ is said to be the (cσμσ, /O-distribution). For more

details and references, see [7].

A cylindrical probability μ on the locally convex space E is said to

be scalarly concentrated on the family 3F of subsets of E, if for every

ε > 0, there exists a set FeS? such that (μ o ξ-γ(ξ(F)) ^ 1 - e, for all

ξ e E''. The cylindrical probability μ is cylindrically concentrated on J^ if

for every ε > 0, there exists a set Fe^ such that (μ o φ'^iφiF)) ^ 1 — ε,
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CYLINDRICAL PROBABILITIES 29

for all continuous linear φ: E -> Rk, k e N.

The following result appears in [15].

THEOREM 2.3. Let E be a complete locally convex space and let p>l.

If the cylindrical probability μ has p-th order moments, and if μ is

scalarly concentrated on weakly compact sets, then μ has {τ,p)-moments.

In particular μ has (τ, ΐ)~moments.

Theorems 2.1 and 2.2, and an argument analogous to the proof of the

above theorem can be applied to yield the corresponding result for born-

ologies (strengthening a similar statement in [7]).

THEOREM 2.4. Let & be a complete convex bornology on the locally

convex space E, and let p > 1. If the cylindrical probability μ has (β, p)-

moments, and if μ is scalarly concentrated on weak compact convex subsets

of E, then μ has (g&iΓΉ, p)-moments.

Proof. Let M: Er -» L°(μσ) be the linear random function associated

with μ [13]. Since μ has p-th. order moments, M(Ef) C Lp(μσ) and μ has

f, p)-moments if and only if M: E^ -> Lp(μσ) is continuous.

Now μ has (β, /^-moments, so M: E# —• Lp is continuous. The unit

ball of Lp is weakly compact for p > 1, so to prove M: E^v -> Lp is con-

tinuous, it suffices to prove M: Ef

τ —> Lp is continuous, by Theorem 2.2. By

Theorem 2.1 and [10] p. 158, this will be true when for some B e £8, the

restriction of M to B° is continuous in the relative Mackey topology

τ(E\ E), and for the weak topology σ(Lp, {Lp)') of ZΛ We now establish

this condition.

Since M: E# -> Lp is continuous, a disked set B e @ can be chosen

so that M(B°) is contained in the unit ball of ZΛ Let pf = p/(p — 1),

and let geLp\ Define a linear functional ug: E'-+R by

ug{ξ) = μσ(M(ξ)g), ξeE'.

We show that ug\B° is continuous in the relative Mackey topology on

B°.

Given ε > 0, choose n > 0 such that

\gfμX{\g\ > n}) < (ε/3r

Then for each ξ eB°,

\ug(ξ)\ £
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30 BRIAN JEFFERIES

because M(B°) is contained in the unit ball of Lp(μσ). Now μ is scalarly
concentrated on weakly compact convex subsets of E, so for some disked

On the other hand, if ξσ denotes the extension of ξ to i?'*, then

μa(\M(ξ)\) = \M(ξ)\μσ(ξ7\ξ(K))) + \M(ξ)\μa(ξΛξ(K)y)

Consequently, if pκ(ξ) < e/3n, ξeB°, then \ug(ξ)\ < ε; the theorem is pro-
ved.

If p ^ 1, E# is barrelled and if μ is scalarly concentrated on £fi and
has p-th order moments then μ has (^, p)-moments. The requirement that
E# is barrelled cannot be relaxed [7]. These results give an effective
method for showing that a cylindrical probability with moments has con-
tinuous moments.

Two main topologies will be considered on the space P(£J) of cylin-
drical probabilities on the locally convex space E. A bounded continuous
cylinder function f: E-^ R, is a function of the form / = g o φ, where g:
Rk —• R is bounded and continuous, and φ: E->Rk, keN is continuous
and linear. If μ e Έ*(E), then μ(f) is uniquely defined by μ(f) = μ <> φ~x(g).
Denote by CC(E) the collection of bounded continuous cylinder functions
on E. The cylindrical topology ϊ on P(E) is the topology of pointwise
convergence on CC(E); that is, the coarsest topology for which the map
μ-+ μ(f), μeΈ*(E) is continuous for each feCc(E). A sequence (μn)neN ̂
P(2?) converges to μ e P (E) in the topology ΐ if and only if the Fourier
transform fin of μn, neN converge pointwise on E' to the Fourier trans-
form μ of μ.

A finer topology σc is specified by saying that a net (μί)iei converges
to μ in (P(£), σc) if and only if (μτ)a(C) -> μσ(C) for every C e f i f ^ * ) .
Both of these topologies are coarser than the topology of convergence in
variation on P(i£).

Let T be a Hausdorff topological space and let ^ be a collection of
subsets of T. A Borel probability v\ @Θ(T) -> [0,1] is said to be ^-regular
if

i) v{A) = sup{^ (C): C c A, C is closed in T) for each A
and
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CYLINDRICAL PROBABILITIES 31

(ii) sup{y*(F): Fe^}^ 1.
Let p be a topology on the locally convex space E which is finer

than σ(E,E'). Then Prokhorov's theorem asserts that a cylindrical pro-
bability is cylindrically concentrated on the family !F of ^-compact sets,
if and only if it has a unique extension to an J^-regular Borel measure
on Ep. Indeed, it is usually stated for p = σ(E, E'), but the topologies of
σ(E, Ef) and p coincide on ^-compact sets, so the unique extension exists
[13].

§ 3. Limits of cylindrical probabilities

The two topologies σc and ϊ are used in this section to relate the
cylindrical concentration of a family of cylindrical probabilities to the
cylindrical concentration of elements in its closure. The main aim of this
technique is to formulate conditions showing when a given cylindrical
probability is σ-additive.

In this respect, the cylindrical topology ϊ is rather weak, so that it
must be supplemented by additional restrictions on the size of the approxi-
mating family of cylindrical probabilities.

The next lemma shows that a cylindrical probability is regular when
it is concentrated on a sufficiently small subspace of a locally convex
space. Its proof follows directly from the general theory of Souslin spaces
[13]. Alternatively, the Banach-Dieudonne theorem can be used in the
present setting to give a more elementary proof.

LEMMA 3.1. Let & be a complete convex bornology in the locally convex

space E. The following conditions are equivalent for a cylindrical proba-

bility μ on E.

( i ) μ is cylindrically concentrated on <W.

(ii) There exists a family (Bn)neN C 31 of closed disked sets such that

EBn is separable for each neN, and μf(U neNEBn) = 1.

(iii) μ extends to a unique ^-regular Borel measure on Eβ.

The condition that μ is cylindrically concentrated on gfiiί^y? may be
added to the list, but this fact is not required [7]. The separability
assumption on each of the Banach spaces EBn avoids the necessity of in-
voking Prokhorov's theorem. Since there exist <x-additive probabilities on
Banach spaces which are not even scalarly concentrated on weakly com-
pact sets, the separability of each space EBn cannot be omitted. Further-
more, any Banach space is the union of its finite dimensional subspaces,
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32 BRIAN JEFFERIES

so the countability of the family (Bn)neN is an essential condition.

Given any cylindrical probability μ on a locally convex space E, it

is not hard to see that there exists a net of cylindrical probabilities with

compact finite dimensional support converging to μ in the cylindrical

topology. Such cylindrical probabilities have (τ, l)-moments, so convergence

in ϊ is not sufficiently restrictive to be of much use for investigating re-

gularity.

However, if a condition is imposed on the additivity of the approxi-

mating net thereby limiting its size, convergence in the cylindrical to-

pology is no longer vacuous.

DEFINITION 3.2. Let E be a locally convex space. A family A c: P(E)

of cylindrical probabilities is called uniformly cylindrically additive if for

each increasing sequence (Un)neN of open cylinder sets such that limμ(Un)
nGN

= 1 for every μ e A, we have sup {μ(E\Un): μ e A} -> 0 as n —• oo.

The following elementary observation is the basis of many of the

applications of uniform cylindrical additivity.

PROPOSITION 3.3. Let A c P(E) be a uniformly cylindrically additive

family of cylindrical probabilities on the locally convex space E. Let u:

E -+ F be a continuous linear map into the locally convex space F.

Then the family {μow1: μeA}dP(F) is uniformly cylindrically

additive.

The next statements provide some conditions for a family of cylin-

drical probabilities to be uniformly cylindrically additive.

PROPOSITION 3.4. A relatively σc-compact subset of ΐ(E) is uniformly

cylindrically additive.

Proof. Let ca^J^X-E'*)) be the space of countably additive set func-

tions on ^^{E'*) with the topology of setwise convergence. If A c P(2?)

is relatively σc-compact, then {μσ: μ e A} is a relatively compact subset of

According to a result of Bartle, Dunford and Schwartz (Dunford and

Schwartz [4] p. 305), the family {μσ: μe A} is uniformly countably additive.

Now suppose that Un, n = 1, 2, is an increasing family of open cylinder

sets in E such that μ(Un) -> 1 for every μeA as n-> oo.

For each neN, let (Un)σ be the open cylinder set in E'* induced by

Un. Then μσ((Un)σ) = μ(Un) for every neN. For each μeA.
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μλi U (C7J.]\(E7J.) -> 0
mSJV

as n -> oo and since {̂ β: // e A} is uniformly countably additive,

svv{μ(E\Un): μeA} = sap{μt(E'*\{UnX): μeA}

= supK( U (Um)σ\(UnX)}-+0
mβN

as n—> oo. Thus, the family A is uniformly cylindrically additive.

In particular, if μn9 n = 1, 2, is a sequence in P(J5) converging in

the topology σc to μ e P(£), then the family {μn: n eN} is uniformly cylin-

drically additive by the Vitali-Hahn-Saks theorem (Dunford and Schwartz

[4] p. 159).

LEMMA 3.5. Let Z e 3?(E) be closed cylinder set Then the map μ ->

μ(Z), μ e F(E) is upper semίcontίnuous on (P(E), ΐ).

Proof. For some continuous linear map φ: E->Rk, keN, and some

closed set C d R\ Z = φ~\C). The space (P(Rk), ΐ) is the space of regular

Borel probabilities on Rk, with the topology of convergence on bounded

continuous functions. The map v -> v(C), v e P (Rk) is upper semicontinuous

for ϊ [1]. Furthermore, the map μ-+ μ ° φ'1, μ e F(E) is continuous between

(P(E), γ) and (P(Rk), r).

Thus, the map μ -> μ(Z), μ 6 P(£) is the composition of a continuous

map and an upper semicontinuous map, so it is upper semicontinuous

itself.

THEOREM 3.6. Let E be a locally convex space. A subset A of P(E)

is uniformly cylindrically additive if and only if the following two conditions

hold.

(i) A is relatively 7-compact.

(ii) If Fetfg'iE'*) and vσ(F) = 1 for every v e A, then μσ(F) = 1 for

every cylindrical probability μ belonging to the closure Ar of A in the cylin-

drical topology ϊ.

Proof. Suppose that A satisfies conditions (i) and (ii). Let (Un)neN

be an increasing sequence of open cylinder sets such that μ(Un)->l as

n -> oo for every μeA. We show that A is uniformly cylindrically addi-

tive by showing that the convergence is uniform for μeA. For each

neN, let (Un)σe%(Ef*) be the open cylinder set in E'* induced by Un e

https://doi.org/10.1017/S0027763000001124 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001124


34 BRIAN JEFFERIES

Define Φn: P(E) -> [0, 1] by Φn(μ) = μ(E\Un), μ e P(E), for each n e N.

Now vσ(UneN(Un)σ) = 1 for each v e A, so condition (ii) implies that Φn de-

creases pointwise to zero on Ar.

By Lemma 3.5, each map Φn is upper semicontinuous on (P(E), ΐ).

Condition (i) together with Dini's theorem shows that Φn —> 0 uniformly

on A7. Thus, A7 is uniformly cylindrically additive.

Assume now that A is uniformly cylindrically additive. To see first

that it is a relatively f-compact subset of P(E), we observe that it is an

equicontinuous subset of the dual M of CC(E) equipped with the sup-norm.

By the Banach-Alaoglu theorem, A is a relatively σ(M9 Cc (ί^-compact

subset of M. It suffices to show that the closure of A in (M, σ (M, CC(E)))

is contained in P(-E).

Suppose that v: CC(E) -> R lies in the closure of A (considered as

linear functionals on Cc (E)) in σ(M, Cc (E))). Then v defines the functional

vσ: Cσ (E'*) —> R in an unambiguous manner. If fn, n = 1, 2, is a de-

creasing sequence of bounded continuous cylinder functions on Ef* such

that fn -> 0 as n —> oo, then the uniform cylindrical additivity of A implies

that vσ(fn) -> 0 as n -> oo. Consequently, v e PCE) so A is relatively ϊ-

compact.

Now suppose that Fe&<&(£'*) and vσ(F) = 1 for every veA. Let μ

be a cylindrical probability belonging to A7. We want to show that

μσ{F) — 1.

Firstly,

μ0{F) = inf { Σ i".(An): ί1 C U An, A. e #(£'*)}

= i n f { Σ ; ^ ( ^ ) : ί c U l/», Une&(E'*) is open}
neiV wΘiV

= inf K ( ^ J7n): F ajϋ^ Un, Un e &(E'*) is open}.

Now each open set Un e %(E/%) is the union of a countable collection

(Vr

W)W)m6JV of open cylinder sets such that VmiU (zUn,meN. If FC UneπUn,

then for every ε > 0, there are numbers N, MeN such that v(Un<^Umgiίf

Vm,n) ^ 1 — ε for every veA, because A is uniformly cylindrically additive.

There exists a net (μi)ίeI C A such that μ4 -> μ in the cylindrical

topology Y. It follows from Badrikian [1] that

U Un) = A ( U_ U, Vw,«) ^ M U U VmJ

U U Vm,n) ^ 1 - ε ,
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for each ε > 0. Hence μσ(F) = 1 and condition (ii) is satisfied.

COROLLARY 3.7. Let & be a complete convex bornology in the locally

convex space E. Let A be a collection of cylindrical probabilities on E

satisfying the following two conditions.

(i) A is uniformly cylindrically additive.

(ii) There exists a family of separable Banach spaces (EBJneN with

Bne&, n = 1, 2, such that ι>*( U neN^s,) = 1 for every v e A.

If μe Ar, then μ extends to a unique gfi^-regular Borel measure on Fβ,

Proof Each of the disked sets Bne&9 neN may be assumed to be

closed in E. If Fe<#S?(E'*) and ΌneNEBn c F9 then va{F) = 1 for each

veA. By Theorem 3.6, μσ(F) = 1 also, so μΐ(UneNEBn) = 1. Now Lemma

3.1 may be applied.

The purpose of the assumption of uniform cylindrical additivity is to

ensure that probabilities in the closure of a family in the cylindrical

topology are concentrated on the same sets on which members of the

original family are concentrated. For the topology σc, this holds auto-

matically.

If A is a relatively <τc-compact subset of P(-E), then the induced family

of cylindrical probabilities {μσ: μe A] on E'* is uniformly countably addi-

tive. By analogy, it might be imagined that a relatively ^-compact subset

of P(JB) is uniformly cylindrically additive; that is, condition (ii) follows

from (i) in Theorem 3.6. The following example shows that this is not

the case.

EXAMPLE 3.8. Let λ: @Θ[0,1] -> [0,1] be the Lebesgue measure on

[0,1]. Now define the vector-valued measure m: &Φ[0,1] —• Lι{X) by m{A)

= XA9 A e &Θ[0,1]. Then the cylindrical probability v associated with (m, X)

(i.e. v © φ-1 == X o (dφ o mjdX)'^ for all φ: E-> Rk, keN continuous and

linear) has (τ, l)-moments, but it is not d-additive on L\λ), for otherwise

m would have a density with respect to λ, which is certainly not the

case [3]. The random linear function associated with v is just the natural

inclusion M: L°°(λ) -> L\λ).

Now let u: C[0,1] -+L\X) be the inclusion map of the space of con-

tinuous functions C[0, 1] on [0,1] in V(λ). For each Θ e C[0,1]', denote

by θλ the ^-absolutely continuous part of the measure θ. Let μ e P(C[0,1])

be the cylindrical probability defined by the linear random function θ ->

dθx\dl e L\λ), θ e C[0,1]'. Then μ obviously has (β, l)-moments. The com-
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position of the function θ->dθλ/λ, θ e C[0,1]' with the dual map uf\ L°°(λ)
—> C[0,1]' is the linear random function associated with v = μ o u~\

Thus, we have a cylindrical probability μ with (β, l)-moments defined
on the space of continuous function C[0, 1], and a map u: C[0, lJ-^L1^)
(which is absolutely summing) such that v = μ o u~\ Now it is proved in
Schwartz [11] that there is a net (μϊ)ieI of Radon probabilities on C[0, 1]
with finite support such that μt -> μ in the cylindrical topology on P(C[0,1]).
Moreover, there exists a number M > 0 such that for every ξ e C[0, 1]',
μt(\ξ\)^M\\ξ\\ for every iel.

Denote the bidual L\λ)" for L\λ) with the σ{L\λ)", L°°(A))-topology by
F. Let v be the cylindrical probability induced by v on F. For each iel,
let Vi be the cylindrical probability induced by vt = μt o w1 on F.

Given this somewhat elaborate construction, we can now describe the
phenomenon. According to Schwartz [11], (£4)<e7 is a relatively ^-compact
family of cylindrical probabilities on F such that £*->£> in Γ. Further-
more, each £*, i e l comes from a measure with finite support in C[0,1],
so obviously (vi)*(Z#1(λ)) = 1 for each i 6 /. Nevertheless, we do not have
(ϋ)*(U(X)) — 1, for otherwise v would be σ-additive on L\λ).

The problem is, of course, that {vt: i e l } is not uniformly cylindrically
additive on F, even though it is relatively Γ-compact. In this example, it
is true that v is σ-additive on F. Furthermore, the net (ΐ>i)ieI can even
be taken to be a sequence, because C[0,1] is a separable Banach space.

It is clear from Example 3.8 that the distinction between uniform
cylindrical additivity and relative r-compactness is of central importance
for the technique of approximating cylindrical probabilities in the ϊ-
topology.

A set A c P(E) is relatively compact in σc if and only if it is uni-
formly cylindrically additive, and for each set B e &(E), ε > 0, there exists
an open cylinder set Ue^(E) such that B C U and μ(B\U) < ε for all
μeA. Indeed, if A is uniformly cylindrically additive with the given
uniform outer-regularity property, then it follows that {μσ: μe A} is uni-
formly countably additive on &(E'*), from which follows relative σc-com-
pactness. Conversely, any relatively σc-compact subset of P(2?) is uniformly
absolutely continuous with respect to some cylindrical probability on E,
so the set A c P(-B) has the uniform outer regularity property.

Thus, we see that uniform cylindrical additivity is stronger than rela-
tive compactness in the cylindrical topology ϊ, but weaker than relative
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σc-compaetness by virtue of the absence of the condition of uniform outer

regularity on

§4. Images by nuclear maps

Suppose that u: E-+ F is a nuclear map between locally convex spaces

E and F [10]. Given a vector measure m: £f —• E absolutely continuous

with respect to a probability λ, it is a simple matter to verify that uom

has a density / with respect to λ such that the probability λof-1 has

strong regularity properties.

In view of Corollary 3.7, cylindrical probabilities which lie in the 7-

closure of a sufficiently small family of cylindrical probabilities with mo-

ments will be mapped into regular measures by nuclear maps. This basic

idea allows us to provide a characterization of regular measures on co-

nuclear spaces alternate to that of Minlos's theorem.

Call a subset A of a locally convex space E completing if A is contained

in a bounded, disked set B for which the space EB is complete.

THEOREM 4.1. Let E and F be locally convex spaces and u: E-+F a

linear map for which u = ΣineN^nξn® yn, where ΣneN\an\< oo, {ξn: neN}

is completing in Ef

a, and {yn: neN} is completing in F.

Suppose that μ e F(E) has one of the following properties.

Nj . There exists a net (μi)ieI C P(2?) of cylindrical probabilities with

(β, ΐ)-moments such that μt -» μ in σe.

N2: There exists a uniformly cylindrically additive net (μi)ίeI c P(i?)

of cylindrical probabilities with (β, l)-moments such that μi -> μ in 7.

Then μou~ι extends to a £%%"-regular Borel measure on Fβ.

Proof Assume first that veP(E) has (β, l)-moments. Denote the

identity on E'* by tσ. Then t9 is vσ-integrable in E'J; that is, cσvσ: V&(E'*)

—> E" is a vector measure.

Since the sequence (ξn)neN is completing, it is bounded for the strong

topology β(E\ E) by the Banach-Mackey theorem (Schaefer [10] p. 194).

An extension of u to 25", still denoted by u, may be defined by u(x") =

ΣneNθtnx"(ξn)yn, x"eE". Since (ξn)neN is β(E', £)-bounded (x"(ξn))neN is

bounded for every x" eE", and the series converges in F because (yn)neN

is completing.

Now cava{^^{Ef^)) is a relatively weakly compact, and so strongly

bounded subset of E". Since (ξn)neN is β(E', £J)-bounded it follows that
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{<eσvσ(A),ξny:AeV&(E'*),neN} is a bounded subset of R. For every
ζ e F', (u o eσvσ, ζ> = ΣmeN ocn(tσ»,9 fn>(Λ> C> is a measure by the dominated

convergence, so uocaμσ = 2]w6iVtfκ</Λ, ?TC>:y« is a vector measure in F by

the Orlicz-Pettis theorem.

The scalar version of the Radon-Nikodym theorem implies that there

exists a sequence /„: E'* -» R, n = 1, 2, of /vintegrable functions such

that UolaVβ = ΣtneyOCn(fnK)yn'

Now the sequence (va(\fn\))neN is bounded, so 2near Wl/n| < ooμ,-a.e.

by monotone convergence. Again, (yn)neN is completing, so /: Ef* —> F

may be defined by f(ω) = ΣmeN^nfn((o)yn if Σ * e * l<*nll/n(ω)l < oo and 0 else-

where. Then u o cσvσ = fvσ.

Since v o w 1 is the cylindrical probability associated with (u o ̂ ŷ̂ , ŷ ),

the equality y o r 1 = ^°/" 1 holds on 5Γ(JB). Thus, the sequence (yn)wGiV

is contained in a separable Banach space G included in F such that

(voU-ί)ΐ(G) = l.

For the general case when there exists a net {μί)iBI satisfying condi-

tions (Nj) or (N2), the Banach space G included in F is fixed, since it was

constructed from u, and we have (μί

ou'1)t(G) = 1 for all iel. The con-

clusion now follows from Corollary 3.7 and Proposition 3.3.

The basic idea of this proof is quite common in the literature (Bradrikian

[1], Chi [2]), and with suitable modifications, an analogous assertion holds

for (β, p)-moments, p ^ 1.

Theorem 4.1 may be viewed as an extension of the result of

L. Schwartz [11], that nuclear maps between Banach spaces are 1-radonify-

ing. Substantially different techniques are used in [11].

Recall that a nuclear map u: E->F is defined just as in Theorem

4.1 except that the family (f n)nejv i s assumed to be equicontinuous in E1',

which is more than enough to ensure that it is completing.

We will call a continuous linear map u: E ->F quasinuclear, if there

exists a completing disked set B U Fy and a disked neighbourhood U of

zero in Ey such that u admits a factorization u = ψB°uQoφU9 where ψB:

FB—>F and φv: E —> Eυ are the natural maps, and u0: βπ —> FB is quasi-

nuclear between the completion Sv of EΌ and FB; that is, pB(uQ(x)) ^

Σ»etfiβn||£π(*)|, xeEσ, for some sequence (an)neN e £\ and (fn)n6jy bounded

in (EuY [8] 3.2.3.

A characterization of quasinuclear maps established by A. Pietsch [8]

3.2.6, yields the following consequence of Theorem 4.1.
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COROLLARY 4.2. Let E and F be locally convex spaces and let u: E-+F

be a quasinuclear map. Suppose that the cylindrical probability μ e Έ*(E)

satisfies either condition (N^ or (N2) of Theorem 4.1.

Then μou'1 extends to a &$-regular Borel measure on Fβ.

Theorem 4.1 and Corollary 4.2 give a class of cylindrical probabilities

which are regularized by nuclear maps between locally convex spaces.

There is therefore some resemblance with the theorem of Sazanov which

asserts that a continuous linear map u: E -> F between Hubert spaces E

and F is Hilbert-Schmidt if and only if for each μ e P(E) scalarly con-

centrated on bounded sets (respectively, the canonical Gauss measure ϊ),

the cylindrical probability μ o u~ι (respectively, ϊ o u'1) is cylindrically

concentrated on bounded sets in F (Schwartz [13]).

To give examples of cylindrical probabilities on some locally convex

space which are scalarly concentrated on weakly compact sets, but which

do not have the approximation properties Nj or N2, we appeal to another

result of L. Schwartz.

EXAMPLE 4.3. Let E be the space i™ endowed with its weak* topology

σ(l°°, Z1). Let F be the space lx with its weak topology σ(£\ £°°). Define

the map u: E-+ F by

u((Xn)neN) = (V(Π log' (n + l))Xn)neN ,

Then

so that u is certainly a map of the type described in Theorem 4.1. How-

ever, we also have

Σ Il(nlog2(n + I))log(nlog2(rc + 1)) = oo ,
neN

so from Schwartz [13] p. 347, there is a cylindrical probability μ e P(E)

scalarly concentrated on bounded sets such that μou'1 is not σ -additive

on £\

According to Theorem 4.1, μ cannot have either of the properties Nj

and N2.

It could be argued that cylindrical probabilities which do not have

the approximation properties Nj or N2 are mere curiosities, more so than

those whose Fourier transforms are not continuous. Indeed, it is easier
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to find examples of cylindrical probabilities satisfying Nj and N2 than it

is to find examples of those which do not.

PROPOSITION 4.4. Let μ be a cylindrical probability on the locally

convex space E such that μ is cylindrίcally concentrated on bounded sub-

sets of E.

Then there exists a sequence μn e P(-E), n = 1, 2, such that for each

neN, μn has (β, t)-moments and μn —• μ in the topology σc as n-± oo. In

particular, μ satisfies both conditions N t and N2.

Proof, Let Bn, n = 1, 2, be bounded subsets of E for which

[μ o φ-ψiόiBJ) ^ 1 - l/2n , n = 1, 2,

for all φ e Sf(E, Rk)9 keN.

Let v be the cylindrical probability induced by μ on JS^; that is,

identifying E with its canonical image in E/;,

= μ(A Π E), A e

Then v is cylindrically concentrated on the closures Bn of JB̂  in E">

n — 1, 2, , so by Prokhorov's theorem [13], it extends to a Radon mea-

sure on Ef

σ\ denoted again by v.

Define μn e P(£) by

μn(A n £ ) = v(A n Sn)MSn), A e ZW)

for λi = 1, 2, . Then

£>|: *eB»}, fe .B 7 , n = 1, 2, •

so each μn certainly has (β, l)-moments. It is easily verified that μn -> μ

in σc as n-> oo, proving the result.

COROLLARY 4.5. Lei E be a locally convex space which is the union of

a countable system of bounded subsets.

If μe P(-B) is σ-addίtίve, then there exists a sequence μn, n = 1, 2, ,

of cylindrical probabilities with (β, ΐ)-moments on E such that μn-+ μ in σc.

Proof. Let Bn, n = 1, 2, be an increasing family bounded subsets

of E such that E = ΌneNBn. Then

so that μ is cylindrically concentrated on the family {Bn: n = 1, 2, •}
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of subsets of E. Now appeal to the preceding assertion.

Thus, (/-additive cylindrical probabilities on Banach spaces satisfy

conditions Nx and N2, but it is well-known that they need not be scalarly

concentrated on weakly compact sets. The conditions Nj and N2 that a

cylindrical probability is approximable by cylindrical probabilities with

moments are therefore quite general.

Theorem 4.1 may now be applied to a conuclear space, whose internal

structure is derived from nuclear maps.

Let ^ be a convex bornology in the locally convex space E. We say

that 86 is conuclear if each closed, disked set A e 86 is contained in another

closed, disked set B e f such that the natural injection j : EA-+ EB of the

completion of EA into the completion of EB is nuclear [13].

THEOREM 4.6. Let & be a complete, conuclear, convex bornology in the

locally convex space E.

Then μ e P(2?) extends to a 86^-regular Borel measure on Fβ if and

only if one of the following conditions holds.

(i) There exists a countable net (μ^ίeJ d P(E) of cylindrical proba-

bilities with (8$, ί)-moments such that μt —> μ in σc.

(ii) There exists a countable, uniformly cylίndrίcally additive net

(μdiei^^iE) of cylindrical probabilities with (86, l)-moments such that μc-^μ

in T.

Proof Nuclear maps send bounded sets into relatively compact sets,

so if 86 is conuclear and complete, then Si = 8^iT^ = Si<g.

Suppose first that v eP(E) has (Si, l)-moments. Then v obviously has

(τ, l)-moments and there exists a closed disked set A e J 1 such that eσvσ:

%>J£(Ef*) -> EA is a vector measure. Furthermore, there exists a closed,

disked set B e 86 such that j : EA-> EB is nuclear.

The cylindrical probability associated with the pair (cσvσ, vσ) on EA

factors through EB onto E, and it is easy to see that the result is v. From

Theorem 4.1, it follows that v*(Es) = 1.

The general case now follows from Lemma 3.1, Proposition 3.3, and

Corollary 3.7.

Conversely, if μ e P(E) extends to a ^^-regular Borel measure v on

E, then the normalized restrictions of v to a suitable increasing family of

Si—strictly compact sets yields the desired family of cylindrical proba-

bilities.
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According to the celebrated result of Minlos [13] p. 233, a cylindrical
probability on a locally convex space with a complete, conuclear, convex
bornology J*, extends to a ^-regular Radon measure on E if and only if
it is scalarly concentrated on the family St.

Thus, it appears a posteriori, that the class of cylindrical probabilities
which are scalarly concentrated on & coincides with that class possessing
the approximating property of Theorem 4.6 whenever £% is conuclear.
Example 4.3 shows that this equivalence is false in general. It is not
known whether there are bornologies other than conuclear ones for which
these classes coincide.

The introduction of generalized stochastic processes (random linear
functions) and cylindrical probabilities was initially related to problems
arising in quantum field theory. Some of the current techniques employ
approximations by constructions on the discrete space-time lattice as the
lattice spacing tends to zero. In this manner, the Euclidean quantum
field measure is obtained as a limit of the simpler lattice fields measures:
a technique reminiscent of Theorem 4.6 (see, for example, Glimm and Jaffe
[5]).

§ 5. Images by absolutely summing maps and the Radon-Nikodym
Theorem

The theme of the preceding section can be continued with absolutely
summing maps in place of nuclear maps. Again, the technique used is
to exploit the properties of the vector measure associated with a cylin-
drical probability with (τ, l)-moments. The relevant methods have been
developed by E. Thomas [14] for vector-valued Radon measures, but the
same argument applies to abstract vector measures as well.

First, a few notions from [8] are needed. Let £ be a locally convex
space. A family (xt)tGI c E is said to be summable if the family of finite
partial sums forms a directed Cauchy system. Now let % be a fundamental
system of disked neighbourhoods of zero in E. A family (Xi)iQI C E is
called absolutely summable if

ΣiPu(Xi) < oo
iei

for all UeW.
A continuous linear map is said to be absolutely summing if it maps

summable sequences into absolutely summable sequences.
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Let f(E) be the family of sequences (xn)neN ^ E such that

Σ
nGN

For each UeW, denote by εv the seminorm defined by

βNnβN

for every (xra)n6iVr 6 f(E). The space ^(JS) is assumed to be equipped with

the locally convex topology defined by the family {ε :̂ U e °W] of seminorms.

Similarly, given f{E}, the space of absolutely summable sequences in

E, the topology defined by the family {πσ: U e %} of seminorms, where

KuMneir = Σ Pu(*n), (*»)»eJV € f{E}
nGN

for each UeW.
Then a continuous linear map u: E -> F between locally convex spaces

E and F is absolutely summable if and only if it maps bounded subsets
of £\E) into bounded subsets of f{E} [8]. The definition of absolutely
summing maps given by Thomas [14] is thereby only formally different
from that of Pietsch [8].

For normed spaces, there is a useful characterization of these maps.
Namely, let u: E -> F be an absolutely summing map between the normed
spaces E and F. Let U be the closed unit ball of Er and || || the norm
of F. Then there is a Radon measure v on U equipped with the relative
σ(E', £)-topology such that | |M(*)|| ^ v(\(x, >|) for every xeE [8] 2.3.3. It

is clear that any map of this form is absolutely summing.

We first give a simplified proof of a result of L. Schwartz [11]. The

original proof uses the approximation property for the space of continuous

functions on a compact set, but it seems that vector measures lie at the

heart of these matters.

LEMMA 5.1. Let E and F be Banach spaces. If u: E~* F is absolutely

summing map, then u extends uniquely to an absolutely summing map u":

{E",τ{E",E'))-»F.

Proof. There exists a Radon measure v on the closed unit ball of Ef

such that

Kx) | | ^p( |<x, >D, xeE.

Let j : E —• L°°(v) be the injection identifying each xeE with its equivalence
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class in L°°(v). Then j is β(E, E^-τiL00, V) continuous, and so the dual map

/ : Ώ -• Eβ is continuous. Consequently, the bidual j " : En ->• L°° is σ(E", E')-

σ(L~, V) continuous, and so τ(E", E')-τ(Lr, V) continuous [10] IV, 7.4.

Because the inclusion of L°°(v) in Ώ(v) is σ(L°°> V)-σ{Lι, L°°) continu-

ous, it is τ(L°°, Ώ)-β(L\ L°°) continuous, so the map u"\ E"-> F can be

defined by factoring it through L°°(v) via the map j " : E" —> L°°(v).

Furthermore, the inclusion map

k: {Lr{v),σ{L-,U))-»V

is absolutely summing because the inclusion of L°°(v) in V(y) is absolutely

summing, and the unit ball of U(v) is σ((L°°Y, L°°)-dense in the unit ball of

Loo(v)/ by Goldstine's theorem. The composition of a continuous and an

absolutely summing map is certainly absolutely summing, so u" is abso-

lutely summing.

THEOREM 5.2. Let E and F be Banach spaces. Let u: E-^F be an

absolutely summing map. If the cylindrical probability μ e P(E) has (β, 1)-

moments, then μou~ι is cylίndrically concentrated on bounded subsets of F.

Proof. If μ has (β, l)-moments, then cσμσ: ίfJ^jEJ'*) -» E'J is a vector

measure with values in E". Denoting the natural inclusion of E into E"

by j , μ°j~1 is the cylindrical probability associated with the pair (cσμσ9 μσ)

(see, for example [7]). Suppose that u"\ E" -> F is the absolutely summ-

ing extension of u defined in Lemma 5.1.

Since u": E" —> F is absolutely summing, it maps bounded subsets

of iι(E") into bounded subsets of f{F}. In particular u" o cσμσ has bounded

variation in F. According to [7] Theorem 3, the (utr ° cσμa, //σ)-distribution,

(μ°j'~ί)ou"~1 is cylindrically concentrated on bounded sets in F. Since

u = u" oj9 the conclusion is immediate.

Similar arguments hold for p-summing maps and cylindrical proba-

bilities with (β, p)-moments for p > 1 [11]. In this case, the maps factor

through an ZΛspace, which is reflexive. It follows that the image measure

is cylindrically concentrated on weakly compact sets, so it extends to a

Radon measure.

By virtue of the relationship of vector measures with cylindrical pro-

babilities with (r, l)-moments, we have the following application of a

result of E. Thomas [14] 4.1. The passage from vector-valued Radon mea-

sures to arbitrary vector measures presents no problem.
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THEOREM 5.3. Let E and F be Banach spaces. Let u: E —> F be an

absolutely summing map. If μe P(-E) has (τ, ΐ)-moments, then μ ° w1 extends

to a Radon probability on E.

Again, bornologies afford a quick extension for the approximating
case in locally convex spaces once the terms are defined appropriately.

DEFINITION 5.4. Let 36 and # be convex bornologies in the locally
convex spaces E, F respectively.

A continuous linear map u: E -> F is said to be &-%?-totally summing
if for each disked set B e 38, there exists a disked "set C e Ή such that
u(B) c C, and u: EB-+EC is absolutely summing.

If 38 and ̂  are the bornologies of all bounded sets, then we merely
say u is totally summing.

The terminology is suggested by the term totally summable in Defini-
tioy 1.5.1 of [8]. Moreover, a continuous linear map u: E-^F is totally
summing if and only if it sends bounded subsets of weakly summable
families £\E) into bounded totally summable families.

Quasinuclear maps between locally convex spaces are totally summing,
because the same holds true in normed space [8] 3.2.13. Furthermore, if
F is a space with property (B) [8] 1.5.5, then u e Sf(E, F) is totally sum-
ming if and only if it is absolutely summing.

A convex bornology 3% in the locally convex space E is conuclear if
and only if the identity on E is J'-J'-totally summing [8].

THEOREM 5.5. Let E and F be locally convex spaces with complete

convex bornologies 36 and <β respectively. Let u e &(E9 F) be a 38-^-totally

summing map. Suppose that μ e F(E) has one of the following properties.

(i) There exists a countable net (μi)ieI c P ( £ ) of cylindrical proba-

bilities with (βWΉ, l)-moments such that μi—>μ in σc.

(ii) There exists a countable, uniformly cylindrically additive net (μτ)ίeI

C V(E) of cylindrical probabilities with (βif^, ΐ)-moments such that μι->μ

in ϊ.

Then μou~x extends to a &%'-regular Borel measure on Eβ.

Proof. Consider first the case where v e Έ*(E) has (βiΓΉ, l)-moments.

Then for some disked set A e f , cavσ: %<$?(!£'*) -> EA is a vector measure,

and the (eavσ9 ^-distribution η on EA has (τ, l)-mements. The image of η

by the inclusion of EA in E is just v itself. Since u is ^-^-totally summing,
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there exists a disked set Be^ such that u(A) c B and u: EA->EB is

absolutely summing.

According to Theorem 5.3, the (u o cavσf ^-distribution extends to a

Radon measure on FB, so there exists a closed, separable subspace G of

EB such that (v o ir1)*(G) = 1.

In general, there exists a countable family FBi9 i = I of separable

Banach spaces with Biβtf for i e / such that

(μiou-1)*(FBι) = l, iel.

The conclusion now follows from Lemma 3.1, Corollary 3.7 and Proposition

3.3.

If the countability assumption is dropped, then Theorem 3.6 shows

that we may still conclude that μou'1 is σ-additive. Nevertheless, a close

look at Example 3.8 shows that uniform cylindrical additivity cannot also

be omitted from the assumptions. A simple example illustrates the type

of situation where these ideas are applicable.

EXAMPLE 5.6. Let λ be the Lebesgue measure on [0,1]. Define /:

[0,1] -> 1 ? M by

/(*)(*) = (s - *)-1/2

if s, t e [0,1], s Φ t and zero otherwise. Let Cs[0, 1] be the space of con-

tinuous functions on [0,1] furnished with the topology of pointwise con-

vergence.

Then the indefinite integral fλ of / with respect to λ has its values

in the space Cs[0,1], and the (fλ, ^-distribution μ has (r, l)-moments on

Cs[0,1]. The (fλ, λ )-distribution μ on 2?[M] is σ-additive, but it is not

cylindrically concentrated on bounded sets in J?c°'13.

Let ζ e C,[0,1]' be the evaluation functional at 0; that is, (g, ζ> = g(0)

for all g e C,[0,1]. Then

v = 1/2 ζμ

is a cylindrical probability on C5[0, 1] such that

v(|CD = 1/2

Thus v fails to have first order moments, but by suitably "smoothing" the

function /: [0,1] -> J?co'1] at 0, we can find a sequence vn, n = 1, 2, of

cylindrical probabilities with (τ, l)-moments on Cs[0,1] such that vn -> v
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in the topology σc on P(CS[O,1]).

Now each vn will not be σ-additive on Cs[0,1], but by mapping C[0,1]

into U(λ) via the canonical inclusion u, each vn © u'1 extends to a Radon

measure on L1^), as does vo u'\ In this case, we can verify this directly,

but u is absolutely summing so Theorem 5.5 also covers the situation.

We now consider the case when the underlying locally convex space

E has a Radon-Nikodym property; that is, all vector measures in a certain

class are differentiable with respect to scalar measures. These notions

seem to be tied to an underlying boundedness structure in the locally con-

vex space.

DEFINITION 5.7. Let 36 be a complete convex bornology in the locally

convex space E. Then 8& is said to have the Radon-Nikodym property if

for every measurable space (Ω, Sf)9 and every vector measure m: y —>E

absolutely continuous with respect to a scalar measure μ: Sf —> [0,1] such

that m has finite J3-variation, ΰ e f [7], there exists a function f: Ω -> E

with the following properties:

( i) m = fμ;

(ii) there exists a partition Ωney, n = 1,2, of Ω and closed disked

sets Bn e3#, n = 1, 2, * containing B such that /: Ωm -> EBn is Bochner

μ-integrable in EBn [3].

We say that & as the strict Radon-Nikodym property if for each

closed, disked set B e369 there exists a single closed, disked set C e f

containing B such that vector measures with finite B-variation have a

Bochner integrable density in Ec.

The Radon-Nikodym property for the bornology ^ 0 of all bounded

subsets of a Banach space is systematically treated in the monograph of

Diestel and Uhl [3], Obviously the Radon-Nikodym property and strict

Radon-Nikodym property coincide for this case. It suffices to establish

either of these properties for the case when (Ω, Sf) — ([0, 1], &Φ[0, 1]) and

is the Lebesgue measure on [0,1],

We are really only concerned with the Radon-Nikodym property, but

bornologies with the strict Radon-Nikodym property have been character-

ized in terms of geometric criteria. To see this, call a continuous linear

map u: E-+E(&) denting [(&)σ-dentίng] if for every closed disked set

B e 399 there exists a closed disked set C 6 39 such that u(B) c C and u(B)

is a dentable (σ-dentable) subsets of Ec (for details see [3]).
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Bornologies with the strict Radon-Nikodym property have similar

properties to conuclear bornologies, except that nuclear maps are replaced

by denting maps. Indeed, let us say that the complete, convex bornology

38 has the strict Lebesgue-Nikodym property if for every closed, disked

B e 8$, there exists a closed disked set C e J* containing B such that every

i^-valued vector measure has a strongly measurable [3] density in Ec.

Then it follows from [14] and Theorem 4.6 that 38 is conuclear if and only

if it has the strict Lebesgue-Nikodym property.

Spaces with the strict Radon-Nikodym property (for their bounded

sets) therefore constitute a wider class than those for which the strict

Lebesgue-Nikodym property holds. In particular, only finite dimensional

Banach spaces have the Lebesgue-Nikodym property.

The relationship between the variation of vector measures and cylin-

drical concentration of cylindrical probabilities [7] yields the following

characterization of the Radon-Nikodym property.

THEOREM 5.8. Let & be a complete, convex bornology in the locally

convex space E. The following conditions are equivalent

(i) 38 has the Radon-Nikodym property.

(ii) Each cylindrical probability μ e Έ*(E) with (r, ϊ)-moments which is

cylindrically concentrated on the family 38 is cylίndrically concentrated on

^-strictly (weakly) compact subsets of E.

Cylindrical probabilities satisfying (ii) therefore extend to J^-regular

Borel measures on Eβ. The extension of this result to the limiting case

has the following form. The method of proof is by now familiar and is

accordingly omitted.

THEOREM 5.9. Let 38 be a complete convex bornology in the locally

convex space E. Suppose that 38 has the Radon-Nίkodym property. Assume

also that μ e F(E) has one of the following properties.

(i) There exists a countable net (μt)ieI of cylindrical probabilities with

(τ, ϊ)-moments on E, each of which is cylindrically concentrated on the

family 38, such that μi —> μ in σc.

(ii) There exists a countable, uniformly cylindrically additive net (μώiei

e P(2£) with (τ, ί)-moments, each of which is cylindrically concentrated on

3$, such that μt —• μ in the cylindrical topology ϊ.

Then μ extends to a 8§<g-regular Borel measure on Eβ.

The converse clearly holds by limiting the extension of μ to compact
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sets of positive measure

COROLLARY 5.10. Let & be a complete, convex bornology with the

Radon-Nίkodym property in E.

If μe P(E) is cylindrically concentrated on £3 and scalarly concentrated

on weakly compact convex subsets in E, then μ extends to a ^^-regular

Borel measure on Eβ.

Proof. Let v denote the extension of the cylindrical probability in-

duced by μ on E" to a Radon measure on E". There exists weakly com-

pact subsets Bn of E", n = 1, 2, which are the closures of the disked

sets Bne& in E" such that

v(Bn) ^ 1 - 1/2/2, n = 1, 2, . . . .

Let vn = y.Bnvjv{Bn), n = 1, 2, and put

μn(A ΠE) = vn(A), A e &(E'J), n = 1, 2, • . .

If j n : Lo(v)->L°(vn) is the restriction map, and if M: E' ->L°(v) is the

random linear function associated with μ, then Mn = j n o M is the random

linear function associated with μn9 n = 1, 2, .

Moreover, Mn(E') c L°°(̂ n) and

Mn: E'β-»L~(vn)

is continuous. Now M: E'τ -> Lo(r^) is continuous because μ is scalarly

concentrated on weakly compact convex sets [13] p. 265, so Mn: E'τ —> L°(vn)

is also continuous. It follows from Theorem 2.4 that each μn e P(E) has

(τ, l)-moments and is cylindrically concentrated on 2Bn. Clearly μn—>μ

in σc and an application of Theorem 5.9 finishes the proof.

The Banach space version of Corollary 5.10 was obtained by

W. Schachermayer [9]. The bornological completeness theorem mentioned

in Section 2 is used in an essential way. For probability theory on, say,

a space of operators, it is crucial to assume only local completeness and

not completeness of the whole space (it will only be quasicomplete in

cases of interest).

Suppose that the space F is quasicomplete and that the family ^ 0 of

bounded subsets of F has the Radon-Nikodym property. Let u: E->F be

a totally summing map from the Banach space E into F. Now an ab-
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solutely summing map between Banach spaces is weakly compact (by

virtue of the factorization through an L°° and L1 space), so Theorems 5.2

and 5.9 show that for any cylindrical probability μ —• V(E) satisfying

conditions NΊ or N2 or Theorem 4.1, for countable nets, μou~x extends to

a ^o^-regular Borel measure on F. Indeed, it follows from [12] that this

is a characterization of quasicomplete spaces F for which 3$^ has the

Radon-Nikodym property.

The arguments used here concerning vector measures are very general,

but they are of relevance to most spaces which arise in applications of

functional analysis. For example, it is well-known that each of the com-

mon spaces of distributions is nuclear, and the collection of bounded sets

in these spaces is conuclear.

In quantum field theory, one is forced to deal with such things as

operator-valued distributions; that is, writing £f for the space of rapidly

decreasing functions, E for the associated Hubert space of states, analysis

on the locally convex space J^ s (^, &S{E)) is relevant [5]. For example,

if the statistical behaviour of a large collection of relativistic quantum

fields were to be determined, then a probability measure needs to be de-

fined on the space &s(<Sf, J£?S(Z?)) (or some subspace of it) in the same

manner in which classical statistical mechanics deals with the collection

of continuous evolving configurations of a dynamical system. The math-

ematical foundations of such a quantum statistical field theory are not

yet at hand, but the techniques developed here for establishing the re-

gularity of cylindrical probabilities on vector spaces may well be relevant

in future.

This work is a portion of the author's doctoral dissertation at The

Flinders University of South Australia under the supervision of Igor

Kluvanek. The guidance of Professor Kluvanek is gratefully acknowledged.
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