HOMOLOGY OF NON-COMMUTATIVE POLYNOMIAL RINGS

R. SRIDHARAN

§ 1. Introduction

Let Γ be a ring with unit element and let Λ be the Ore extension of Γ with respect to a derivation d of Γ [4, 3]. It is shown in [3] that l.gl. dim $\Lambda \leq 1 + l.gl$. It is not in general possible to replace this inequality by equality.

We consider here the special case where Γ is the polynomial ring in n variables over a commutative ring K. If d is a K-derivation of Γ then Λ becomes a K-algebra and we prove that if further Λ is a supplemented K-algebra, we have $l.gl.dim \Lambda = 1 + l.gl.dim \Gamma$ (Theorem 1). The proof consists first in constructing a Λ -free complex of length n+1 for K, which we prove to be acyclic (Proposition 2) by putting a suitable filtration on this complex and passing to the associated graded. We use this resolution to prove that $l.dim_{\Lambda}K = n+1$. We then employ a spectral sequence argument to complete the proof of Theorem 1. If Λ is not supplemented, Theorem 1 is not necessarily valid [5].

I would like to thank N. S. Gopalakrishnan for his help during the preparation of this note.

§ 2

Let K be a commutative ring with 1 and let $\Gamma = K [x_1, \ldots, x_n]$ be the polynomial ring in n variables over K. Let d be a K-derivation of Γ into itself. Clearly d is uniquely determined by its values f_i on x_i . Conversely, given n polynomials $f_i \in \Gamma$, $1 \le i \le n$, there exists a K-derivation d of Γ into itself with $d(x_i) = f_i$, $1 \le i \le n$.

Let Λ be the non-commutative polynomial ring in one variable x_{n+1} over Γ with respect to d. Then Λ is the K-algebra with generators x_1, \ldots, x_{n+1} and relations given by

Received November 5, 1964.

$$x_i x_j - x_j x_i = 0$$
, $1 \le i$, $j \le n$ and $x_{n+1} x_i - x_i x_{n+1} = f_i$, $1 \le i \le n$.

PROPOSITION 1. The K-algebra Λ is a supplemented algebra if and only if there exist $\alpha_1, \ldots, \alpha_n \in K$ such that $f_i(\alpha_1, \ldots, \alpha_n) = 0, 1 \le i \le n$.

Proof. Let $\varepsilon: \Lambda \to K$ be a supplementation and let $\varepsilon(x_i) = \alpha_i$, $1 \le i \le n$. We have

$$f_i(\alpha_1, \ldots, \alpha_n) = f_i(\varepsilon(x_1), \ldots, \varepsilon(x_n)) = \varepsilon(f_i(x_1, \ldots, x_n))$$

$$= \varepsilon(x_{n+1}x_i - x_ix_{n+1})$$

$$= \varepsilon(x_{n+1})\varepsilon(x_i) - \varepsilon(x_i)\varepsilon(x_{n+1})$$

$$= 0$$

Conversely, let $\alpha_j \in K$, $1 \le j \le n$ with $f_i(\alpha_1, \ldots, \alpha_n) = 0$, $1 \le i \le n$. Define $\varepsilon(x_j) = \alpha_j$, $1 \le j \le n$, $\varepsilon(x_{n+1}) = 0$. It is easily verified that ε can be extended to a K-algebra homomorphism of Λ onto K.

From now onwards, we assume that Λ is a supplemented algebra, that is, there exist $\alpha_j \in K$, $1 \le j \le n$ with $f_i(\alpha_1, \ldots, \alpha_n) = 0$, $1 \le i \le n$. It is easy to verify that there exists a K-algebra automorphism ϕ of Λ such that $\phi(x_i) = x_i + \alpha_i$, $1 \le i \le n$ and $\phi(x_{n+1}) = x_{n+1}$. Thus, we may assume without loss of generality that $\alpha_j = 0$, $1 \le j \le n$ and the supplementation ε is given by $\varepsilon(x_j) = 0$, $1 \le j \le n + 1$. We may now write

$$f_i = \sum_{1 \leq i \leq n} f_{ji} x_j, f_{ji} \in \Gamma.$$

The matrix (f_{ij}) defines a Γ -linear map δ_1 of the first homogeneous component $E_1^{\Gamma}(y_1, \ldots, y_n)$ of the exterior algebra over Γ in the variables y_1, \ldots, y_n , given by

$$\delta_1(y_i) = \sum_{1 \leq j \leq n} f_{ji} y_j.$$

Let δ denote the extension of δ_1 to a derivation of $E^{\Gamma}(y_1, \ldots, y_n)$ into itself.

We write
$$\overline{X}_i = \Lambda \otimes_K E_i(y_1, \ldots, y_{n+1})$$
, $(i \ge 0)$, where

 $E_i(y_1, \ldots, y_{n+1})$ is the i^{th} component of the exterior algebra over K in the variables y_1, \ldots, y_{n+1} . We identify $\overline{X_0}$ with Λ . We define the left Λ -homomorphisms $\overline{d}_k : \overline{X_k} \to \overline{X_{k-1}}$ $(k \ge 1)$ as follows:

$$\overline{d}_1(1 \otimes y_i) = x_i, 1 \leq i \leq n+1,$$

For $i \ge 2$,

$$\overline{d}_i(1 \otimes y_{j_1} \cdot \cdot \cdot y_{j_i}) = \sum_{1 \leq k \leq i} (-1)^{k+1} x_{j_k} \otimes y_{j_1} \cdot \cdot \cdot \hat{y}_{j_k} \cdot \cdot \cdot y_{j_i} ; j_1 < \cdot \cdot \cdot < j_i < n+1$$

and

where

$$\overline{d}_{i}(1 \otimes y_{j_{1}} \cdots y_{j_{i-1}} y_{n+1}) = \overline{d}_{i-1}(1 \otimes y_{j_{1}} \cdots y_{j_{i-1}}) y_{n+1}$$

$$+ (-1)^{i-1} x_{n+1} \otimes y_{j_{1}} \cdots y_{j_{i-1}} + (-1)^{i} \delta(y_{j_{1}} \cdots y_{j_{i-1}})$$

$$\delta(y_{j_{1}} \cdots y_{j_{i-1}}) \in E_{i-1}^{\Gamma}(y_{1}, \dots, y_{n}) = \Gamma \otimes_{K} E_{i-1}(y_{1}, \dots, y_{n+1})$$

$$\subseteq A \otimes_{K} E_{i-1}(y_{1}, \dots, y_{n+1}).$$

Proposition 2. The sequence

$$(*) 0 \longrightarrow \overline{X}_{n+1} \xrightarrow{\overline{d}} \overline{X}_n \longrightarrow \cdots \longrightarrow \overline{X}_1 \xrightarrow{\overline{d}} \overline{X}_0 \xrightarrow{\varepsilon} K \longrightarrow 0$$

is a left Λ -free resolution of K considered as a left Λ -module through ϵ .

Proof. Since $\varepsilon \overline{d}_1(1 \otimes y_i) = \varepsilon(x_i) = 0$ for $1 \le i \le n+1$, it follows that $\varepsilon \circ \overline{d}_1 = 0$. We now verify that $\overline{d}_{i-1} \circ \overline{d}_i = 0$, $1 < i \le n+1$. We write $z = y_{j_1} \cdot \cdot \cdot y_{j_i}$. If $j_i < n+1$, we have $\overline{d}_{i-1} \circ \overline{d}_i(1 \otimes z) = 0$ since, in this case, \overline{d}_i is the usual boundary homomorphism in the Koszul-resolution for K considered as a Γ -module [1, p. 151].

Let $j_i = n + 1$. We write $y = y_{j_1} \cdot \cdot \cdot y_{j_{i-1}}$ and $\hat{y}_k = y_{j_1} \cdot \cdot \cdot \hat{y}_{j_k} \cdot \cdot \cdot y_{j_{i-1}}$. We have

$$\overline{d}_{i-1} \circ \overline{d}_{i} (1 \otimes y y_{n+1}) = \overline{d}_{i-1} (\overline{d}_{i} (1 \otimes y) y_{n+1}) + (-1)^{i-1} x_{n+1} \overline{d}_{i-1} (1 \otimes y) + (-1)^{i} \overline{d}_{i-1} \delta(y).$$

Now

$$\begin{split} \overline{d}_{i-1}(\overline{d}_{i}(1 \otimes y)y_{n+1}) &= \sum_{1 \leq k \leq i-1} (-1)^{k+1} x_{j_{k}} \overline{d}_{i-1}(1 \otimes \hat{y}_{k} y_{n+1}) \\ &= \sum_{1 \leq k \leq i-1} (-1)^{k+1} x_{j_{k}} \{ \overline{d}_{i-1}(1 \otimes \hat{y}_{k}) y_{n+1} + (-1)^{i-2} x_{n+1} \otimes \hat{y}_{k} + (-1)^{i-1} \delta \hat{y}_{k} \} \\ &= \overline{d}_{i-1} (\sum_{1 \leq k \leq i-1} (-1)^{k+1} x_{j_{k}} \otimes \hat{y}_{k}) y_{n+1} + (-1)^{i-2} \sum_{1 \leq k \leq i-1} (-1)^{k+1} x_{n+1} x_{j_{k}} \otimes \hat{y}_{k} + \\ &+ (-1)^{i-1} \sum_{1 \leq k \leq i-1} (-1)^{k+1} f_{j_{k}} \otimes y_{k} + (-1)^{i-1} \delta (\sum_{1 \leq k \leq i-1} (-1)^{k+1} x_{j_{k}} \otimes \hat{y}_{k}). \\ &= \overline{d}_{i-1} \circ \overline{d}_{i}(1 \otimes y) y_{n+1} + (-1)^{i-2} \sum_{1 \leq k \leq i-1} (-1)^{k+1} x_{n+1} x_{j_{k}} \otimes \hat{y}_{k} + \\ &+ (-1)^{i-1} \sum_{1 \leq k \leq i-1} (-1)^{k+1} f_{j_{k}} \otimes \hat{y}_{k} + (-1)^{i-1} \delta \overline{d}_{i-1}(1 \otimes y). \\ &= (-1)^{i-2} x_{n+1} \overline{d}_{i-1}(1 \otimes y) + (-1)^{i-1} \sum_{1 \leq k \leq i-1} (-1)^{k+1} f_{j_{k}} \otimes \hat{y}_{k} + \\ &+ (-1)^{i-1} \delta \overline{d}_{i-1}(1 \otimes y). \end{split}$$

Hence

$$\overline{d}_{i-1} \circ \overline{d}_i (1 \otimes y y_{n+1}) = (-1)^i \{ (\overline{d}_{i-1} \delta - \delta \overline{d}_{i-1}) (1 \otimes y) - \sum_{1 \leq k \leq i-1} (-1)^{k+1} f_{j_k} \otimes \hat{y}_k \},$$

Since δ is a derivation of $E^{\Gamma}(y_1, \ldots, y_n)$ and $\overline{d} = (\overline{d}_i)$ restricted to $E^{\Gamma}(y_1, \ldots, y_n)$ is an antiderivation, it follows that $\overline{d}\delta - \delta\overline{d}$ is an antiderivation of $E^{\Gamma}(y_1, \ldots, y_n)$. Further,

$$(\overline{d}\delta - \delta\overline{d})(y_i) = \overline{d}(\sum_{1 \le i \le n} f_{ji}y_j) = \sum_{1 \le i \le n} f_{ji}x_j = f_i, \ 1 \le i \le n.$$

Hence it is clear that

$$(\overline{d}_{i-1}\delta - \delta\overline{d}_{i-1})(1 \otimes y) = \sum_{1 \leq k \leq i-1} (-1)^{k+1} f_{j_k} \otimes \hat{y}_k.$$

Thus $\overline{d}_{i-1} \circ \overline{d}_i (1 \otimes yy_{n+1}) = 0$.

Thus (*) is a complex of left Λ -modules and it is clear that Ker $\varepsilon = \text{Im } \vec{d}_1$. To prove the exactness of (*) we define a suitable filtration of the complex

$$0 \to \overline{X}_{n+1} \to \cdots \to \overline{X}_0$$

whose associated graded complex is exact. By a well-known lemma on filtered complexes, the exactness follows immediately.

Let $F_p\Lambda$ be the K-submodule of Λ consisting of all elements of Λ of degree less than or equal to p in x_{n+1} . Then Λ is a filtered ring whose associated graded ring $E^{\circ}(\Lambda)$ is isomorphic to $K[x_1, \ldots, x_{n+1}]$ (See [5]). We define a gradation on $E_i(y_1, \ldots, y_{n+1})$ by assigning the degree 0 to y_i , $1 \le i \le n$ and the degree 1 to y_{n+1} . Moreover,

$$E_i(y_1, \ldots, y_{n+1}) = E_i(y_1, \ldots, y_n) \oplus E_{i-1}(y_1, \ldots, y_n) y_{n+1}$$

We define

$$F_b \overline{X}_i = [F_o \Lambda \otimes E_i(y_1, \ldots, y_n)] \oplus [F_{b-1} \Lambda \otimes E_{i-1}(y_1, \ldots, y_n) y_{n+1}].$$

It is easily seen that $\langle F_{p}\overline{X}_{i}\rangle_{p\geq0}$ is a filtration of \overline{X}_{i} and that $\overline{d}_{i}(F_{p}\overline{X}_{i})\subset F_{p}\overline{X}_{i-1}$. We thus get the complex

$$0 \longrightarrow E_{p}^{\circ}(\overline{X}_{n+1}) \xrightarrow{E^{\circ}(\overline{d}_{n+1}^{p})} E_{p}^{\circ}(\overline{X}_{n}) \longrightarrow \cdots \xrightarrow{E^{\circ}(\overline{d}_{1}^{p})} E_{p}^{\circ}(\overline{X}_{0}).$$

We have

$$E_b^{\circ}(\overline{X_i}) \approx [E_b^{\circ}(\Lambda) \otimes E_i(y_1, \ldots, y_n)] \oplus [E_{b-1}^{\circ}(\Lambda) \otimes E_{i-1}(y_1, \ldots, y_n)y_{n+1}].$$

Let now (X_i, d_i) be the Koszul resolution for K as a $K[x_1, \ldots, x_{n+1}]$ module. We define a gradation on $K[x_1, \ldots, x_{n+1}]$ by assigning degrees 0 to x_i , $1 \le i \le n$ and degree 1 to x_{n+1} . We introduce a gradation on X_i by setting

$$X_i^p = [K[x_1, \ldots, x_{n+1}]_p \otimes E_i(y_1, \ldots, y_n)] \oplus [K[x_1, \ldots, x_{n+1}]_{p-1} \otimes E_{i-1}(y_1, \ldots, y_n)y_{n+1}],$$

where $K[x_1, \ldots, x_{n+1}]_b$ is the p^{th} homogeneous component in the gradation of $K[x_1, \ldots, x_{n+1}]$ defined above. It is easily seen that $d_i(X_i^b) \subset X_{i-1}^b$, and that the sequence

$$0 \longrightarrow X_{n+1}^{p} \xrightarrow{d_{n+1}^{p}} X_{n}^{p} \longrightarrow \cdots X_{1}^{p} \xrightarrow{d_{1}^{p}} X_{0}^{p},$$

is exact for every p.

Clearly $E_p^{\circ}(\overline{X}_i) \approx X_i^p$. Since for any $\varphi \in F_{p-1}\Lambda$ and $y_{j_1} \cdot \cdot \cdot y_{j_{i-1}} \in E_{i-1}(y_1 \cdot \cdot \cdot y_n)$, we have $\varphi \delta(y_{j_1} \cdot \cdot \cdot y_{j_{i-1}}) \in F_{p-1}\overline{X}_{i-1}$, it follows that $E_p^{\circ}(\overline{d}_i) = d_i^p$. Thus the complex $(E_p^{\circ}(\overline{X}_i), E_p^{\circ}(\overline{d}_i))$ is isomorphic to (X_i^p, d_i^p) . Since (X_i^p, d_i^p) is exact, it follows that $(E_p^{\circ}(\overline{X}_i), E_p^{\circ}(\overline{d}_i))$ is exact and hence (*) is exact. Since \overline{X}_i is clearly a free left Λ -module, the proposition is proved.

Theorem 1. Let K be a commutative ring with 1 and let Λ be the K-algebra generated by x_1, \ldots, x_{n+1} with the relations $x_1x_j - x_jx_i = 0$, $1 \le i$, $j \le n$, and $x_{n+1}x_i - x_ix_{n+1} = f_i$, $f_i \in K[x_1, \ldots, x_n]$, $1 \le i \le n$. If Λ is a supplemented K-algebra, and K is considered as a left Λ -module through the supplementation, we have $1.\dim_{\Lambda} K = n + 1$. Further $1.g1.\dim \Lambda = n + 1 + g1.\dim K$.

Proof. As remarked earlier, we may assume that there exists a supplementation ε with $\varepsilon(x_i)=0$, $1\leq i\leq n+1$. It follows from Proposition 2 that $1.\dim_{\Lambda}K\leq n+1$. We now prove that $1.\dim_{\Lambda}K=n+1$. For this we first compute \overline{d}_{n+1} . Let $w=1\otimes y_1\cdots y_{n+1}\in \overline{X}_{n+1}$ and $w_i=(-1)^{i+1}1\otimes y_1\cdots \hat{y}_i\cdots y_{n+1}\in \overline{X}_n$, $1\leq i\leq n+1$. We have

$$\overline{d}_{n+1}(w) = \sum_{1 \le i \le n} x_i w_i + x_{n+1} w_{n+1} - \sum_{1 \le i \le n} f_{ii} w_{n+1}$$

$$= \sum_{1 \le i \le n} x_i w_i + (x_{n+1} - \sum_{1 \le i \le n} f_{ii}) w_{n+1}.$$

Let θ be the automorphism of Λ given by

$$\theta(x_i) = x_i, \ 1 \le i \le n$$

$$\theta(x_{n+1}) = x_{n+1} - \sum_{1 \le i \le n} f_{ii}.$$

We have

$$\overline{d}_{n+1}(w) = \sum_{1 \leq i \leq n+1} \theta(x_i) w_i.$$

Thus
$$\operatorname{Ext}_{\Lambda}^{n+1}(K, M) = H_{n+1}(\operatorname{Hom}_{\Lambda}(\overline{X}, M)), ({}_{\Lambda}M)$$

$$= \operatorname{Hom}_{\Lambda}(\overline{X}_{n+1}, M)/B^{n+1}$$

where $B^{n+1} = \{g \in \operatorname{Hom}_{\Lambda}(\overline{X}_{n+1}, M) | g(w) = \sum_{1 \leq i \leq n+1} \theta(x_i) h(w_i), \text{ for some } h \in \operatorname{Hom}(\overline{X}_n, M)\}$. It is clear that the K-isomorphism $\operatorname{Hom}_{\Lambda}(\overline{Y}_{n+1}, M) \approx M$ given by $g \to g(w)$ induces an isomorphism

$$\operatorname{Ext}_{\Lambda}^{n+1}(K, M) \approx M/\theta(I)M$$

where $I = \text{Ker } \epsilon$. In particular $\text{Ext}_{\Lambda}^{n+1}(K, \epsilon^{-1}M) \approx M/IM$. Taking M to be any K-module and considering it as a left Λ -module through ϵ , we find that

$$\operatorname{Ext}_{\Lambda}^{n+1}(K, _{\theta^{-1}}M) \approx M.$$

Choosing M to be nonzero we find that $1.\dim_{\Lambda} K = n + 1$.

We now prove that $l.gl.\dim \Lambda = n + 1 + gl.\dim K$. If $gl.\dim K = \infty$, since $l.gl.\dim \Lambda \ge gl.\dim K$ [2, p. 74, Prop. 2], we have $l.gl.\dim \Lambda = \infty$ and we have the required equality. Suppose then that $gl.\dim K = m < \infty$. Let $\Gamma = K[x_1, \ldots, x_n]$. In view of [6, Th. 1] or [3], it follows that $l.gl.\dim \Lambda \le 1 + l.gl.\dim \Gamma = n + 1 + gl.\dim K$. To prove equality, we need the "maximum term principle" [2] for spectral sequences. The map $\varepsilon : \Lambda \to K$ gives rise to a spectral sequence (see [1, p. 349]).

$$\operatorname{Ext}^{p}_{K}(A, \operatorname{Ext}^{q}_{\Lambda}(K, C)) \Longrightarrow \operatorname{Ext}^{n}_{\Lambda}(A, C), (KA, KK, \Lambda C).$$

Since gl.dim K = m and $l.dim_{\Lambda}K = n + 1$, we have that $\operatorname{Ext}_{K}^{p}(A, \operatorname{Ext}_{\Lambda}^{q}(K, C)) = 0$ if p > m or q > n + 1. Thus $\operatorname{Ext}_{\Lambda}^{r}(A, C) = 0$ for r > m + n + 1 and we have an isomorphism

$$\operatorname{Ext}_{K}^{m}(A, \operatorname{Ext}_{\Lambda}^{n+1}(K, C)) \approx \operatorname{Ext}_{\Lambda}^{m+n+1}(A, C).$$

Let A be a K-module such that $1.\dim_K A = m$. Then, there exists a K such that $\operatorname{Ext}_K^m(A, C') \neq (0)$. Consider C' as a left Λ -module through ε and take $C = 0^{-1}C'$, where θ is the automorphism of Λ defined above. We have by (*), $\operatorname{Ext}_{\Lambda}^{n+1}(K, C) \approx C'$ and thus

$$\operatorname{Ext}_{\Lambda}^{m+n+1}(A, C) \approx \operatorname{Ext}_{K}^{m}(A, C') \neq (0).$$

Hence gl.dim $\Lambda \ge m + n + 1$. This completes the proof of the theorem.

Remark. If Λ is not a supplemented algebra, we may have l.gl.dim $\Lambda < n+1+\text{gl.dim } K$. In fact, let $\Gamma = K[x_1]$, where K is a field of characteristic 0.

The K-algebra Λ on generators x_1 , x_2 with the relation $x_2x_1 - x_1x_2 = 1$ is an Oreextension of Γ and l.gl.dim $\Lambda = 1$ [5].

REFERENCES

- [1] Cartan, H. and S. Eilenberg: Homological Algebra, Princeton University Press, 1956.
- [2] Eilenberg, S., A. Rosenberg and D. Zelinsky: On the dimension of modules and algebras VIII Nagoya Math. J. 12, 71-93 (1957).
- [3] Gopalakrishnan, N. S.: On some filtered rings. Proc. Ind. Acad. Sci. 56, 148-54 (1962).
- [4] Ore, O.: Theory of non-commutative polynomials. Annals of Mathematics. 34, 480-508 (1933).
- [5] Rinehart, G. S.: Note on the global dimension of certain rings Proc. Amer .Math. Soc., 13, 341-46 (1962).
- [6] Roy, A.: A note on filtered rings (to appear).