HOMOLOGY OF NON.COMMUTATIVE POLYNOMHAL RINGS

R. SRIDHARAN

§1. Introduction

Let Γ be a ring with unit element and let A be the Ore extension of Γ with respect to a derivation d of $\Gamma[4,3]$. It is shown in [3] that $1 . g 1 . \operatorname{dim} A$ $\leqq 1+1 . \mathrm{gl}$. $\operatorname{dim} \Gamma$. It is not in general possible to replace this inequality by equality.

We consider here the special case where Γ is the polynomial ring in n variables over a commutative ring K. If d is a K-derivation of Γ then A becomes a K-algebra and we prove that if further A is a supplemented K-algebra, we have 1.gl.dim $A=1+1 . g 1 . \operatorname{dim} I^{\prime}$ (Theorem 1). The proof consists first in constructing a A-free complex of length $n+1$ for K, which we prove to be acyclic (Proposition 2) by putting a suitable filtration on this complex and passing to the associated graded. We use this resolution to prove that $1 . \operatorname{dim}_{\Lambda} K$ $=n+1$. We then employ a spectral sequence argument to complete the proof of Theorem 1. If A is not supplemented, Theorem 1 is not necessarily valid [5].

I would like to thank N. S. Gopalakrishnan for his help during the preparation of this note.

§2

Let K be a commutative ring with 1 and let $\Gamma=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over K. Let d be a K derivation of Γ into itself. Clearly d is uniquely determined by its values f_{i} on x_{i}. Conversely, given n polynomials $f_{i} \in I, 1 \leq i \leq n$, there exists a K-derivation d of Γ into itself with $d\left(x_{i}\right)=f_{i}, \quad 1 \leq i \leq n$.

Let Λ be the non-commutative polynomial ring in one variable x_{n+1} over I with respect to d. Then A is the K-algebra with generators x_{1}, \ldots, x_{n+1} and relations given by

Received November 5, 1964.

$$
x_{i} x_{j}-x_{j} x_{i}=0,1 \leq i, j \leq n \text { and } x_{n+1} x_{i}-x_{i} x_{n+1}=f_{i}, 1 \leq i \leq n
$$

Proposition 1. The K-algebra Λ is a supplemented algebra if and only if there exist $\alpha_{1}, \ldots, \alpha_{n} \in K$ such that $f_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0,1 \leq i \leq n$.

Proof. Let $\varepsilon: \Lambda \rightarrow K$ be a supplementation and let $\varepsilon\left(x_{i}\right)=\alpha_{i}, 1 \leq i \leq n$. We have

$$
\begin{aligned}
f_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=f_{i}\left(\varepsilon\left(x_{1}\right), \ldots, \varepsilon\left(x_{n}\right)\right) & =\varepsilon\left(f_{i}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\varepsilon\left(x_{n+1} x_{i}-x_{i} x_{n+1}\right) \\
& =\varepsilon\left(x_{n+1}\right) \varepsilon\left(x_{i}\right)-\varepsilon\left(x_{i}\right) \varepsilon\left(x_{n+1}\right) \\
& =0 .
\end{aligned}
$$

Conversely, let $\alpha_{j} \in K, 1 \leq j \leq n$ with $f_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0,1 \leq i \leq n$. Define $\varepsilon\left(x_{j}\right)$ $=\alpha_{j}, 1 \leq j \leq n, \varepsilon\left(x_{n+1}\right)=0$. It is easily verified that ε can be extended to a K. algebra homomorphism of Λ onto K.

From now onwards, we assume that Λ is a supplemented algebra, that is, there exist $\alpha_{j} \in K, 1 \leq j \leq n$ with $f_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0,1 \leq i \leq n$. It is easy to verify that there exists a K-algebra automorphism ϕ of,$~ \Lambda$ such that $\phi\left(x_{i}\right)=$ $x_{i}+\alpha_{i}, 1 \leq i \leq n$ and $\phi\left(x_{n+1}\right)=x_{n+1}$. Thus, we may assume without loss of generality that $\alpha_{j}=0,1 \leq j \leq n$ and the supplementation ε is given by $\varepsilon\left(x_{j}\right)=0,1 \leq j$ $\leq n+1$. We may now write

$$
f_{i}=\sum_{1=j=j} f_{j i} x_{j}, f_{j i} \in \Gamma
$$

The matrix ($f_{i j}$) defines a Γ-linear map δ_{1} of the first homogeneous component $E_{1}^{\Gamma}\left(y_{1}, \ldots, y_{n}\right)$ of the exterior algebra over Γ in the variables y_{1}, \ldots, y_{n}, given by

$$
\delta_{1}\left(y_{i}\right)=\sum_{1 \leq j \leq n} f_{j i} y_{j}
$$

Let δ denote the extension of δ_{1} to a derivation of $E^{\Gamma}\left(y_{1}, \ldots, y_{n}\right)$ into itself.
We write $\bar{X}_{i}=\Lambda \otimes_{K} E_{i}\left(y_{i}, \ldots, y_{n+1}\right),(i \geq 0)$, where
$E_{4}\left(y_{1}, \ldots, y_{n+1}\right)$ is the $i^{t h}$ component of the exterior algebra over K in the variables y_{1}, \ldots, y_{n+1}. We identify \vec{X}_{0} with Λ. We define the left Λ-homomorphisms $\bar{d}_{k}: \bar{X}_{k} \rightarrow \bar{X}_{k-1}(k \geq 1)$ as follows:

$$
\bar{d}_{1}\left(1 \otimes y_{i}\right)=x_{i}, \quad 1 \leq i \leq n+1
$$

For $i \geq 2$,

$$
\bar{d}_{i}\left(1 \otimes y_{j_{1}} \cdots y_{j_{i}}\right)=\sum_{1 \leq k \leq i}(-1)^{k+1} x_{j_{k}} \otimes y_{j_{1}} \cdots \hat{y}_{j_{k}} \cdots y_{j_{i}} ; j_{1}<\cdots<j_{i}<n+1
$$

and

$$
\begin{aligned}
\bar{d}_{i}\left(1 \otimes y_{j_{1}} \cdots y_{j_{i-1}} y_{n+1}\right) & =\bar{d}_{i-1}\left(1 \otimes y_{j_{1}} \cdots y_{j_{i-1}}\right) y_{n+1} \\
& +(-1)^{i-1} x_{n+1} \otimes y_{j_{1}} \cdots y_{j_{i-1}}+(-1)^{i} \delta\left(y_{j_{1}} \cdots y_{j_{i-1}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\delta\left(y_{j_{1}} \cdots y_{j_{i-1}}\right) \in E_{i-1}^{\Gamma}\left(y_{1}, \ldots, y_{n}\right) & =\Gamma \otimes_{\kappa} E_{i-1}\left(y_{1}, \ldots, y_{n+1}\right) \\
& \subset \Lambda \otimes_{k} E_{i-1}\left(y_{1}, \ldots, y_{n+1}\right) .
\end{aligned}
$$

Proposition 2. The sequence

is a left Λ-free resolution of K considered as a left 1 -module through ε.
Proof. Since $\varepsilon \bar{d}_{1}\left(1 \otimes y_{i}\right)=\varepsilon\left(x_{i}\right)=0$ for $1 \leq i \leq n+1$, it follows that $\varepsilon \circ \bar{d}_{1}=0$. We now verify that $\bar{d}_{i-1}{ }^{\circ} \bar{d}_{i}=0,1<i \leq n+1$. We write $z=y_{j_{1}} \cdots y_{j_{i}}$. If $j_{i}<n+1$, we have $\bar{d}_{i-1} \circ \bar{d}_{i}(1 \otimes z)=0$ since, in this case, \bar{d}_{i} is the usual boundary homomorphism in the Koszul-resolution for K considered as a Γ-module [1, p. 151].

Let $j_{i}=n+1$. We write $y=y_{j_{1}} \cdots y_{j_{i-1}}$ and $\hat{y}_{k}=y_{j_{1}} \cdots \hat{y}_{j_{k}} \cdots y_{j_{i-1}}$. We have

$$
\begin{aligned}
\bar{d}_{i-1} \circ \bar{d}_{i}\left(1 \otimes y y_{n+1}\right)=\bar{d}_{i-1}\left(\bar{d}_{i}(1 \otimes y) y_{n+1}\right) & +(-1)^{i-1} x_{n+1} \bar{d}_{i-1}(1 \otimes y) \\
& +(-1)^{i} \bar{d}_{i-1} \delta(y) .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \bar{d}_{i-1}\left(\bar{d}_{i}(1 \otimes y) y_{n+1}\right)=\sum_{1=k=i-1}(-1)^{k+1} x_{j_{k}} \bar{d}_{i-1}\left(1 \otimes \hat{y}_{k} y_{n+1}\right) \\
& =\sum_{1=k=i-1}(-1)^{k+1} x_{j_{k}}\left(\bar{d}_{i-1}\left(1 \otimes \hat{y}_{k}\right) y_{n+1}+(-1)^{i-2} x_{n+1} \otimes \hat{y}_{k}+(-1)^{i-1} \delta \hat{y}_{k}\right\} \\
& =\bar{d}_{i-1}\left(\sum_{1 \leq k=i-1}(-1)^{k+1} x_{j_{k}} \otimes \hat{y}_{k}\right) y_{n+1}+(-1)^{i-2} \sum_{1 \leq k=i-1}(-1)^{k+1} x_{n+1} x_{j_{k}} \otimes \hat{y}_{k}+ \\
& \quad+(-1)^{i-1} \sum_{1=k=i-1}(-1)^{k+1} f_{j_{k}} \otimes y_{k}+(-1)^{i-1} \delta\left(\sum_{1 \leq k=i-1}(-1)^{k+1} x_{j_{k}} \otimes \hat{y}_{k}\right) . \\
& =\bar{d}_{i-1} \circ \bar{d}_{i}(1 \otimes y) y_{n+1}+(-1)^{i-2} \sum_{1=k=i-1}(-1)^{k+1} x_{n+1} x_{j_{k}} \otimes \hat{y}_{k}+ \\
& \quad+(-1)^{i-1} \sum_{1 \leq k=i-1}(-1)^{k+1} f_{j_{k}} \otimes \hat{y}_{k}+(-1)^{i-1} \delta \bar{d}_{i-1}(1 \otimes y) . \\
& =(-1)^{i-2} x_{n+1} \bar{d}_{i-1}(1 \otimes y)+(-1)^{i-1} \sum_{1=k=i-1}(-1)^{k+1} f_{j_{k}} \otimes \hat{y}_{k}+ \\
& +(-1)^{i-1} \delta \bar{d}_{i-1}(1 \otimes y) .
\end{aligned}
$$

Hence

$$
\bar{d}_{i-1} \circ \bar{d}_{i}\left(1 \otimes y y_{n+1}\right)=(-1)^{i}\left\{\left(\bar{d}_{i-1} \delta-\delta \bar{d}_{i-1}\right)(1 \otimes y)-\sum_{1=k \leq i-1}(-1)^{k+1} f_{j_{k}} \otimes \hat{y}_{k}\right\} .
$$

Since δ is a derivation of $E^{\Gamma}\left(y_{1}, \ldots, y_{n}\right)$ and $\overline{\boldsymbol{d}}=\left(\bar{d}_{i}\right)$ restricted to $E^{\Gamma}\left(y_{1}, \ldots\right.$, y_{n}) is an antiderivation, it follows that $\bar{d} \delta-\delta \bar{d}$ is an antiderivation of $E^{\Gamma}\left(y_{1}, \ldots, y_{n}\right)$. Further,

$$
(\bar{d} \delta-\delta \bar{d})\left(y_{i}\right)=\bar{d}\left(\sum_{1 \leq j=n} f_{j i} y_{j}\right)=\sum_{1 \leq j \leq n} f_{j i} x_{j}=f_{i}, 1 \leq i \leq n
$$

Hence it is clear that

$$
\left(\bar{d}_{i-1} \delta-\delta \bar{d}_{i-1}\right)(1 \otimes y)=\sum_{1 \leq k \leq i-1}(-1)^{k+1} f_{j_{k}} \otimes \hat{y}_{k}
$$

Thus $\bar{d}_{i-1} \circ \bar{d}_{i}\left(1 \otimes y y_{n+1}\right)=0$.
Thus (*) is a complex of left Λ-modules and it is clear that $\operatorname{Ker} \varepsilon=\operatorname{Im} \overline{\boldsymbol{d}}_{1}$. To prove the exactness of (*) we define a suitable filtration of the complex

$$
0 \rightarrow \bar{X}_{n+1} \rightarrow \cdots \rightarrow \bar{X}_{0}
$$

whose associated graded complex is exact. By a well-known lemma on filtered complexes, the exactness follows immediately.

Let $F_{p} \Lambda$ be the K-submodule of Λ consisting of all elements of Λ of degree less than or equal to p in x_{n+1}. Then Λ is a filtered ring whose associated graded ring $E^{\circ}(\Lambda)$ is isomorphic to $K\left[x_{1}, \ldots, x_{n+1}\right]$ (See [5]). We define a gradation on $E_{i}\left(y_{1}, \ldots, y_{n+1}\right)$ by assigning the degree 0 to $y_{i}, 1 \leq i \leq n$ and the degree 1 to y_{n+1}. Moreover,

$$
E_{i}\left(y_{1}, \ldots, y_{n+1}\right)=E_{i}\left(y_{1}, \ldots, y_{n}\right) \oplus E_{i-1}\left(y_{1}, \ldots, y_{n}\right) y_{n+1} .
$$

We define

$$
F_{p} \bar{X}_{i}=\left[F_{p} \Lambda \otimes E_{i}\left(y_{1}, \ldots, y_{n}\right)\right] \oplus\left[F_{p-1} \Lambda \otimes E_{i-1}\left(y_{1}, \ldots, y_{n}\right) y_{n+1}\right] .
$$

It is easily seen that $\left\{F_{p} \bar{X}_{i}\right\}_{p \geq 0}$ is a filtration of \bar{X}_{i} and that $\bar{d}_{i}\left(F_{p} \bar{X}_{i}\right) \subset F_{p} \bar{X}_{i-1}$. We thus get the complex

$$
0 \longrightarrow E_{p}^{\circ}\left(\bar{X}_{n+1}\right) \xrightarrow{E^{\circ}\left(\bar{d}_{n+1}^{p}\right)} E_{p}^{\circ}\left(\bar{X}_{n}\right) \longrightarrow \cdots \xrightarrow{E^{\circ}\left(\bar{d}_{1}^{\circ}\right)} E_{p}^{\circ}\left(\bar{X}_{0}\right) .
$$

We have

$$
E_{p}^{\circ}\left(\bar{X}_{i}\right) \approx\left[E_{p}^{\circ}(\Lambda) \otimes E_{i}\left(y_{1}, \ldots, y_{n}\right)\right] \oplus\left[E_{p-1}^{\circ}(\Lambda) \otimes E_{i-1}\left(y_{1}, \ldots, y_{n}\right) y_{n+1}\right] .
$$

Let now (X_{i}, d_{i}) be the Koszul resolution for K as a $K\left[x_{1}, \ldots, x_{n+1}\right]$. module. We define a gradation on $K\left[x_{1}, \ldots, x_{n+1}\right]$ by assigning degrees 0 to x_{i}, $1 \leq i \leq n$ and degree 1 to x_{n+1}. We introduce a gradation on X_{i} by setting

$$
\left.\begin{array}{rl}
X_{i}^{p}=\left[K\left[x_{1}, \ldots, x_{n+1}\right]_{p} \otimes E_{i}\left(y_{1}, \ldots, y_{n}\right)\right] \oplus & {[K}
\end{array}\right]\left[x_{1}, \ldots, x_{n+1}\right]_{p-1},
$$

where $K\left[x_{1}, \ldots, x_{n+1}\right]_{p}$ is the $p^{t h}$ homogeneous component in the gradation of $K\left[x_{1}, \ldots, x_{n+1}\right]$ defined above. It is easily seen that $d_{i}\left(X_{i}^{p}\right) \subset X_{i-1}^{p}$, and that the sequence

$$
0 \longrightarrow X_{n+1}^{p} \xrightarrow{d_{n+1}^{p}} X_{n}^{p} \longrightarrow \cdots X_{1}^{p} \xrightarrow{d_{1}^{t}} X_{0}^{p},
$$

is exact for every p.
Clearly $E_{p}^{\circ}\left(\bar{X}_{i}\right) \approx X_{i}^{p} . \quad$ Since for any $\varphi \in F_{p-1} \Lambda$ and $y_{j_{1}} \cdots y_{j_{i-1}} \in E_{i-1}\left(y_{1} \cdots\right.$ y_{n}, we have $\varphi \delta\left(y_{j_{1}} \cdots y_{j_{i-1}}\right) \in F_{p-1} \bar{X}_{i-1}$, it follows that $E_{p}\left(\bar{d}_{i}\right)=d_{i}^{p}$. Thus the complex ($E_{p}^{\circ}\left(\bar{X}_{i}\right), E_{p}^{\circ}\left(\bar{d}_{i}\right)$) is isomorphic to (X_{i}^{p}, d_{i}^{p}). Since (X_{i}^{p}, d_{i}^{p}) is exact, it follows that $\left(E_{D}^{\circ}\left(\bar{X}_{i}\right), E_{p}^{\circ}\left(\bar{d}_{i}\right)\right)$ is exact and hence (*) is exact. Since \bar{X}_{i} is clearly a free left A-module, the proposition is proved.

Theorem 1. Let K be a commutative ring with 1 and let Λ be the K-algebra generated by x_{1}, \ldots, x_{n+1} with the relations $x_{t} x_{j}-x_{j} x_{i}=0,1 \leq i, j \leq n$, and $x_{n+1} x_{i}-x_{i} x_{n+1}=f_{i}, f_{i} \in K\left[x_{1}, \ldots, x_{n}\right], 1 \leq i \leq n$. If A is a supplemented K-algebra, and K is considered as a left 1 -module through the supplementation, we have $1 . \operatorname{dim}_{\Lambda} K=n+1$. Further $1 . g 1 \cdot \operatorname{dim} A=n+1+\mathrm{gl} \cdot \operatorname{dim} K$.

Proof. As remarked earlier, we may assume that there exists a supplementation ε with $\varepsilon\left(x_{i}\right)=0,1 \leq i \leq n+1$. It follows from Proposition 2 that $1 . \operatorname{dim}_{\Lambda} K$ $\leq n+1$. We now prove that $1 \cdot \operatorname{dim}_{\Delta} K=n+1$. For this we first compute \bar{d}_{n+1}. Let $w=1 \otimes y_{1} \cdots y_{n+1} \in \bar{X}_{n+1}$ and $w_{i}=(-1)^{i+1} 1 \otimes y_{1} \cdots \hat{y}_{i} \cdots y_{n+1} \in \bar{X}_{n}, 1 \leq i \leq$ $n+1$. We have

$$
\begin{aligned}
\bar{d}_{n+1}(w) & =\sum_{1=i \leq n} x_{i} w_{i}+x_{n+1} w_{n+1}-\sum_{1=i \leq n} f_{i i} w_{n+1} \\
& =\sum_{1=i=n} x_{i} w_{i}+\left(x_{n+1}-\sum_{1=i \leq n} f_{i i}\right) w_{n+1} .
\end{aligned}
$$

Let θ be the automorphism of A given by

$$
\begin{aligned}
& \theta\left(x_{i}\right)=x_{i}, 1 \leq i \leq n \\
& \theta\left(x_{n+1}\right)=x_{n+1}-\sum_{1=i=n} f_{i i} .
\end{aligned}
$$

We have

$$
\bar{d}_{n+1}(w)=\sum_{i=i=n+1} \theta\left(x_{i}\right) \dot{w}_{i} .
$$

Thus $\operatorname{Ext}_{\Lambda}^{n+1}(K, M)=H_{n+1}\left(\operatorname{Hom}_{\Lambda}(\bar{X}, M)\right),\left({ }_{\Lambda} M\right)$

$$
'=\operatorname{Hom}_{\Lambda}\left(\bar{X}_{n+1}, M\right) / B^{n+1}
$$

where $B^{n+1}=\left\{g \in \operatorname{Hom}_{\Delta}\left(\bar{X}_{n+1}, M\right) \mid g(w)=\sum_{1=i=n+1} \theta\left(x_{i}\right) h\left(w_{i}\right)\right.$, for some $h \in$ Hom ($\left.\bar{X}_{n}, M\right)$. It is clear that the K-isomorphism $\operatorname{Hom}_{\Lambda}\left(\bar{X}_{n+1}, M\right) \approx M$ given by $g \rightarrow g(w)$ induces an isomorphism

$$
\operatorname{Ext}_{\Lambda}^{n+1}(K, M) \approx M / \theta(I) M
$$

where $I=\operatorname{Ker} \varepsilon$. In particular $\operatorname{Ext}_{\Lambda}^{n+1}\left(K, \theta_{-1} M\right) \approx M / I M$. Taking M to be any K-module and considering it as a left Λ-module through ε, we find that

$$
\begin{equation*}
\operatorname{Ext}_{\Lambda}^{n+1}\left(K, \theta^{-1} M\right) \approx M \tag{*}
\end{equation*}
$$

Choosing M to be nonzero we find that $1 \cdot \operatorname{dim}_{\Lambda} K=n+1$.
We now prove that l.gl. $\operatorname{dim} \Lambda=n+1+\operatorname{gl} \operatorname{dim} K$. If gl. $\operatorname{dim} K=\infty$, since 1.gl.dim $\Lambda \geq \mathrm{gl} . \operatorname{dim} K$ [2, p. 74, Prop. 2], we have 1.gl.dim $\Lambda=\infty$ and we have the required equality. Suppose then that $\operatorname{gl} \operatorname{dim} K=m<\infty$. Let $\Gamma=K\left[x_{1}, \ldots\right.$, x_{n}]. In view of [6, Th. 1] or [3], it follows that 1.gl.dim $\Lambda \leq 1+1 . g 1 \cdot \operatorname{dim} \Gamma=$ $n+1+\operatorname{gl} \operatorname{dim} K$. To prove equality, we need the "maximum term principle" [2] for spectral sequences. The map $\varepsilon: \Lambda \rightarrow K$ gives rise to a spectral sequence (see [1, p. 349]).

$$
\operatorname{Ext}_{K}^{p}\left(A, \operatorname{Ext}_{\Lambda}^{q}(K, C)\right) \Rightarrow \operatorname{Ext}_{\Lambda}^{n}(A, C),\left({ }_{K} A,{ }_{\Lambda} K_{K},{ }_{\Lambda} C\right)
$$

Since gl.dim $K=m$ and $1 \cdot \operatorname{dim}_{\Lambda} K=n+1$, we have that $\operatorname{Ext}_{k}^{p}\left(A, \operatorname{Ext}_{\Lambda}^{q}(K, C)\right.$) $=0$ if $p>m$ or $q>n+1$. Thus $\operatorname{Ext}_{\Lambda}^{r}(A, C)=0$ for $r>m+n+1$ and we have an isomorphism

$$
\operatorname{Ext}_{R}^{m}\left(A, \operatorname{Ext}_{\Lambda}^{n+1}(K, C)\right) \approx \operatorname{Ext}_{\Lambda}^{m+n+1}(A, C)
$$

Let A be a K-module such that $\operatorname{ldim}_{K} A=m$. Then, there exists a ${ }_{K} C^{\prime}$ such that $\operatorname{Ext}_{K}^{m}\left(A, C^{\prime}\right) \neq(0)$. Consider C^{\prime} as a left Λ-module through ε and take $C={ }_{\theta-1} C^{\prime}$, where θ is the automorphism of Λ defined above. We have by (*), $\operatorname{Ext}_{\Lambda}^{n+1}(K, C) \approx C^{\prime}$ and thus

$$
\operatorname{Ext}_{\Lambda}^{m+n+1}(A, C) \approx \operatorname{Ext}_{k}^{m}\left(A, C^{\prime}\right) \neq(0)
$$

Hence gl.dim $A \geq m+n+1$. This completes the proof of the theorem.
Remark. If Λ is not a supplemented algebra, we may have 1.gl.dim Λ $<n+1+\mathrm{gl} . \operatorname{dim} K$. In fact, let $\Gamma=K\left[x_{1}\right]$, where K is a field of characteristic 0 .

The K-algebra Λ on generators x_{1}, x_{2} with the relation $x_{2} x_{1}-x_{1} x_{2}=1$ is an Oreextension of Γ and l.gl.dim $\Lambda=1$ [5].

References

[1] Cartan, H. and S. Eilenberg: Homological Algebra, Princeton University Press, 1956.
[2] Eilenberg, S., A. Rosenberg and D. Zelinsky: On the dimension of modules and algebras VIII Nagoya Math. J. 12, 71-93 (1957).
[3] Gopalakrishnan, N. S.: On some filtered rings. Proc. Ind. Acad. Sci. 56, 148-54 (1962).
[4] Ore, O.: Theory of non-commutative polynomials. Annals of Mathematics. 34, 480-508 (1933).
[5] Rinehart, G. S.: Note on the global dimension of certain rings Proc. Amer .Math. Soc., 13, 341-46 (1962).
[6] Roy, A.: A note on filtered rings (to appear).

