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IRREDUCIBILITY OF SOME UNITARY REPRESENTATIONS

OF THE POINCARE GROUP WITH RESPECT

TO THE POINCARE SUBSEMIGROUP, II

HITOSHI KANETA

Let P(3) and P+(3) be the 3-dimensional space-time Poincare group
and the Poincare subsemigroup, that is, P(3) = R3XSSU(1,1) and P+(3) =
V+(S)XsSU(l, 1) where V+(S) = [xl - x\ - x\ > 0, x0 > 0}. The multiplica-
tion is defined by the formula (x, g)(x\ gf) = (x + g*~1x'g~\ gg') for x, x' e R*
and g, gf € SU(1,1). Here x — (x0, xl9 x2) is identified with the matrix
/x0 x2 - ixλ
\X2 + IXi Xo/ m

The purpose of this paper is to give an affirmative answer to the
problem if there is any irreducible unitary representation of P(3) such
that its restriction to the semigroup P+(3) is reducible. To be more pre-
cise, we shall determine all P+(3)-invariant, closed proper subspaces for
the irreducible unitary representations (t/*>e, $v'ε)(η e R, ε = 0,1/2), which
are associated with the one-sheeted hyperboloid ViM(S) — {y\ — y\ — y\ =
— M2} (M > 0). As for the other irreducible unitary representations of
P(3) it is easy to show that they are irreducible even when they are
restricted to P+(3) (see [5], Theorem 5). Recall that all the irreducible
unitary representations of the 2-dimensional space-time Poincare group
are irreducible even when they are restricted to the Poincare subsemi-
group ([5], Theorem 1). Using, among other things, the results in § 1, we
shall show in the forthcoming Part III that the irreducible unitary repre-
sentations of the 4-dimensional space-time Poincare group whose irredu-
cibility relative to the Poincare subsemigroup remains unsettled in [5] are
reducible as the representations of the semigroup.

The basic tools of our approach are i) the eigenfunction expansions
for second order ordinary differential operators S£fc>, (see (1.1)), which are
connected with the Laplacian of SU(1, 1), and ii) rephrased versions of
the Hubert transform and the Frobenius method for ordinary differential
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equations with a regular singularity.

This paper consists of two sections and an appendix. In § 1 we

enumerate closed proper subspaces of L2(R) left invariant under the self-

adjoint operator S?ki7ι and a semigroup Tt = exp(ίt shτ) (t > 0) of multipli-

cation operators (Theorems 1.1-1.3). Toward the end of § 1 we shall

determine nontrivial sequences {Dk}kez+t(ε = 0,1/2) of subspaces such that

i) Dk is a closed, proper subspace of L\R) left invariant under JS?kt, and

Tt(t > 0), ii) F±>ktVDk c Dk±1, where F±tktη = - d/dr + ( ± ft + 1/2)thr ±

^/ch τ with domain H2(R), the Sobolev space of order 2 (Theorem 1.4). In

§ 2 we firstly define the representation (EΛ , &>6) (57 e i?, ε = 0,1/2) of the

group P(3), and then describe all the P+(3)-invariant, closed proper sub-

spaces ®Y in φ*'6 and &£ in £ M . Namely, there are four such subspaces

in φ°»° in the special case (η, ε) = (0, 0). It should be noted that Corollary

2.3 plays an important role in verifying that SU(l, 1) leaves BY in £>7'β

as well as 3P& in φ M . The appendix is devoted to a quick review of

Frobenius method in our context.

The author thanks Professor Nomoto, whose comments on the first

draft are highly appreciated.

Notation and terminology

Z is the set of integers and Z+ = {n e Z; n > 0}.

R is the set of real numbers, R+ = {λeR;λ>0 and JS* = jR\{0}.

C is the set of complex numbers, C* = C\{0} and T = {z e C, \z\ = 1}.

More subsets of C is to be defined. Dτ = {ze C; \Ίmz\< τr/2}, Dr = {ze C;

\Imz\ < π/2} and Dτ = Dτ\{±iπl2}. An element of these three sets will be

denoted by τ. Throughout the paper a — τ — iπ/2. A polynomial in log σ

with holomorphic coefficients will be denoted by h(σ, logσ), that is, h(σ,

log σ) = Σn=o (log σ)n hn(σ), where hn(σ) are holomorphic around σ = 0. For

a function f(σ) we denote by Rf(σ) the function /(— σ). An integral

f(τ) dτ will be abbreviated to \fdτ or </>. The relation α oc 6 for two

elements a and 6 in a linear space means a = cb for some c in C*.

Mm) n, m, ne Z+ + 1, is the set of complex m X n-matricβs and Mn =

Mw>w. Λf̂ " (resp. M^+) stands for the set of non-negative (resp. positive)

definite n X n-matrices. In means the unit matrix in Mn. For a matrix

A = (ajk) in Mm > n, we set A = (ajk), ιA = the transpose of A, A* = *A and

Cr(S)n (r = 0,1, , oo n e Z+ + 1) for a C°°-manifold S is the totality

https://doi.org/10.1017/S0027763000020006 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020006


UNITARY REPRESENTATIONS 149

of C^-valued Cr-functions on S. Cr

0(S)n = {/ e Cr(S)n; f is compactly sup-

ported}. C0(S)n = Cl(S)n. Hr(R), reZ+, is the Sobolev space of order r

on R. Hr(R)n means the direct sum Σl%i®Hr(R). Of course H0(R) =

L\R), the Hubert space consisting of C-valued square integrable functions

on i?. Let (B, Σ) be a measurable space, where B is a Borel set of Rn

and Σ is the set of all Borel sets in B. L2(B, μ) is the usual L2-space

defined in terms of a measure μ on (B, Σ). Let ρ(x) be a M++-valued

measurable functions on a Borel set B of Rn. Then L2(B, p) denotes the

Hubert space consisting of Cm-valued measurable functions f on B such

that f*(x) p(x)f(x)dx is finite. Here dx is the Lebesgue measure.
J B

Let L be a linear operator from Hλ to ίf2 When both Hj, 1 < j < 2,

are Hubert spaces, L* means the (formal) adjoint of L. In this paper a

Hubert space is assumed to be separable. LHt is the range of L, namely,

LHX = {Lh; h in i?i belongs to the domain of L}. For a subspace Ho of

JHi, L|iϊo denotes the restriction of L to the subspace Ho. Let D be a

subset of a Hubert space. Then DL is the set of all elements which are

orthogonal to D. || || and <, > denote the norm and the inner product in

a Hubert space (Cn, U(Bf μ), etc.) respectively. However, (x,y) = xoyo—

tfiJΊ — 2̂̂ 2 for Λ: = (x0, Λ?I, X2), y = (3Ό, 3Ί, ̂ 2) in i?3. Recall that </> is an

abbreviation to the integral f(τ)dτ. A closed subspace D of a Hubert

space is said to be invariant under a self adjoint operator L if P^L = LPD,

where PD denotes the orthogonal projection H~>D. As is well-known,

D is invariant under L iff the one-parameter unitary group exp(ίtL) leaves

D invariant.

Tt = exp(iZshτ) (ί > 0) is a continuous semigroup in L2(R) such that

TJ(τ) = exp(iί sh τ)/(τ). Gα = (αr -- i sh τ)"1 (Re α > 0) are resolvent operators

for the semigroup. By abuse of notation Ga also means the function

(a — ί sh τ)"1 of r. Finally, f means the derivative for either an absolutely

continuous function / on R or a holomorphic function f.

§1. Invariant subspaces common to &k,η and Tt{t > 0)

The purpose of this section is to determine all closed proper subspaces

in L\R) which stay invariant under the self adjoint operator <gktη with

domain H2(R) and the semigroup Tt(t > 0) on L\R);

(1.1) se*%n = - d2/dτ2 + (1/4 - ^2 + rf + 2 ^ sh τ)/ch2τ

(k 6 Z/2,5? 6 J?) ,
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(1.2) Tt = eitshτ.

To this end, first the case k = 0 or 1/2 will be discussed. Then the general

case can be dealt with by the aid of the following differential operator

(1.3) F ± ( t ( ί = - djdτ + ( ± k + 1/2) th τ ± 37/ch τ .

Throughout the rest of this section the suffix η will frequently be omitted.

In case (k, η) — (0, rj) or (1/2, 0) clearly j£f Λ reduces to an operator of

the following form.

(1.4) Jίκ = - d2/dτ2 + /c/ch2τ , K > 0 .

We shall search for closed proper invariant subspaces common to Jί κ and

Tt (t > 0). To begin with, denote by Φ = (φu φ2) the solution of an ordinary

differential equation {Jίκ — X)Φ = 0 with initial value \ιΦ, W)T=0 — I2, the

unit matrix. Since /c/ch2r is integrable and Jίκ is positive definite, there

exists a so-called spectral density p on R+ satisfying the following con-

ditions i) — iϋ) [4].

i) p is an M2

++-valued continuous function on R+.

ii) The operator & : L2(i?) ~> L2(R+, p) (refer to the Notation) defined

by

(1.5) &f{λ) = lim ί ^(r , λ)f(τ)dτ
iV-oo J \t\<N

is an onto isometry, whose inverse J^"1 is given by

(1.6) &-χgiτ) = lim f Φ(τ, X) p(λ)g(λ) dλ .

iii) &Jf&-χgift = λg(λ) if λg(λ) lies in U(R+, p).

On the other hand the equation {Jίκ — λ)ζ = 0 has a regular singularity

at r = ίπ/2, that is, σ = 0. The Frobenius method yields linearly inde-

pendent solutions ζ±(τ, X) which, being holomorphic in DTχC, admit the

following expansions around τ — ίπ/2;

Σz±tnσn) if κφl/4,
n=0 /

(1.7) ζ+ = σ"

ζ- = ζ+ logσ + σ^Σ z-,n°
n) if * = 1/4,

\w = l /

where α ± = (1 ± VT=^1ΛΓ)/2 and 2:±f0 = 1. Set ζ = (ζ_, ζ+), and define X(λ)
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e M2 and s±(λ), r±(λ) e Λf2fl as follows.

(1.8) ζ

where u± = '(1 ± 1,1 + 1) or '(0, 2) according as K Φ 1/4 or not. Now we

are in a position to introduce invariant subspaces

(1.9) Dr± = &-\g e L%R+, p); *s±(λ)g(X) = 0 a.e.}.

Notice that ^DK

± = {r±heL2(R+, p); heD(R+,r* pr)}. This is because

<s±r± = 0.

THEOREM 1.1. Let D be a closed proper subspace of L\R). Then D is

invariant under the self adjoint operator Jί κ and the semigroup Tt = eit&hτ

(t > 0) iff it coincides with one of Dκ

±.

For the proof we prepare two lemmas and two propositions.

LEMMA 1.1. (i) The domain Dτ = {|Imr| < ττ/2} is holomorphically iso-

morphίc to a domain {Im z Φ 0 or z e (0,1)} via the map z = (1 + ί sh τ)/2.

(ii) Let f(τ) be holomorphίc in Dτ. Then f(τ)/Vz(l — z) is holomorphic

in {Rez < 1} iff f(τ) can be expanded as ΣΓ=o^^ 2 n + 1 near τ = iπ/2, where

σ = τ — i7r/2.

Proof. It is easy to see that z is a univalent function sending Dτ onto

{Im z Φ 0 or z e (0,1)}. Since the derivative z' does not vanish on Dτ, (i)

follows. To verify (ii), assume that f(τ)lVz(l — z) is holomorphic in a

neighborhood of z = 0. Then f(τ)\*J~z is holomorphic too. Since V z is

a holomorphic odd function of σ in a vicinity of σ — 0, /(r) has the desired

expansion. Conversely, assume that / satisfies the condition. Then F(z)

f(τ)/Vz(l — z) is holomorphic in {Re z < 1}\{Z < 0}. Notice that F admits

an analytic continuation across the line {z < 0}, for z = (1 + ί sh r)/2 is a

local isomorphism of C\{ίπn/2; neZ}. By the condition on / we see that

F(x + ίO) = JP(X - ίO) for any negative JC > - ε (ε > 0). Therefore F(^)

is holomorphic in {Re z < l}\{0}. Since F(z) is bounded in a punctured

disc {0 < \z\ < ε}, 2 = 0 is a removable singularity. This completes the

proof of (ii). Q.E.D.

The next proposition is concerned with the Hubert transform.

PROPOSITION 1.2. (i) Assume that F(z) is holomorphic in {Re z < 1}.

If the integral \F(x + iy)\vdy (p > 1) is bounded on x < 1 — ε, ε > 0, then
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f = 0 for a < min{Reα, 1 - e}.
z — a

(ii) Assume that F(z) is holomorphic in a strip 1/2 — 2ε < Re z < 1/2

+ 2ε, ε > 0. If the integral ί \F(x + iy)fdy is bounded on [1/2 - ε, 1/2 + ε],

then F(z) has the following integral representation in 1/2 — ε < Re z < 1/2

+ ε

Jl/2 + ε-ioo/ ζ — Z1/2-•-««

Proof To prove (i), we apply a lemma [9, p. 125] to F to show that

the integral in question is independent of a. On the other hand Holder's

inequality implies that the integral tends to zero as a~> — oo. Now (i)

follows. The statement (ii) is well-known [9, p. 130]. Q.E.D.

As to an estimate of the solution Φ(τ, X) we have the following

LEMMA 1.3. Let Ψ(τ, X) e Mίt 2 be a solution of the following equation

with initial value %Ψ, Ψf)τ=o = I2;

{- d2/dτ2 + (α + b sh τ)/ch2τ - λ}Ψ(τ, λ) = 0 , a, b e C.

.Fix λQe R+. Then for any ε > 0 2/ιere exisί positive K and d such that

i) \Ψ(τ, λo)\ + | r ( r , Jo)I < £• 0/1 A Π {|Re r| > 1} ,

ii) \Ψ(τ, X)\ + \Ψ'(τ, X)\ < Ke^ on R X {\λ - λo\ < δ}.

Proof We shall prove the existence of K satisfying only i), for we

can argue similarly to show the existence of K and δ satisfying the

condition ii). Put S = (^ZΓJ _ J y ) > and define χ by the relation ι(Ψ9 ψ')

— S<expί "7 /—5)rfX Then we note that χ(τ, λQ) is bounded on

J5rn{|Re τ\ = 1} and that χ' = V(τ)χ, where | V(r)| is bounded by a function

y(Re τ) on ϊ) r Π {|Re r| > 1}. Here v is integrable on I = (— oo, — 1] U [1, oo).

Consequently the integral \V(τ + iε)\dτ is bounded on |ε| < τr/2. Hence

χ(r, Jo) is bounded on S>r\{|Rer| < 1} (see Problem 1 [1, p. 97]), from which

follows that \Ψ{τ, λo)\ + \Ψ'(τ, Λ)| is bounded there. Q.E.D.

Let δ be an atomic measure on a finite subset Λ of R such that

δ({λ}) = 1 for each λeΛ, p2 be an M2

++-valued Borel measurable function

on a Borel set B of R. Set # p = L2(Λ, ί), ί ί α c = L2(B, ^) and # = HpφHac.

We denote by eiU, ί e J?, the one-parameter unitary group acting on H as

multiplication.

https://doi.org/10.1017/S0027763000020006 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020006


UNITARY REPRESENTATIONS 153

Then we have

PROPOSITION 1.4. A closed subspace D of H is invariant under the

one-parameter group eίtλ iff there exist a subset Ao of A, disjoint Borel subsets

Bx, B2 of B (Λo and B3 may be a null set) and a Borel measurable function

s on Bx with values in M2f {̂0} almost everywhere such that D coincides with

a 10) L ^ 0 ' δ ^ ® ^ g l 9 g z ) 6 Hac'(gl> 8*>8 = ° α*e on Bu (gu gl) = °
α.e. outside Bι}®{t(gl9g2)eHae;(gug2) = 0 a.e. outside B2}.

Proof It suffices to show that the conditions are necessary. We re-

gard eίtλ as a representation of R in H, and apply Theorem 8.6.6 [2] to

this representation. Then there exist a subset AQ of A and disjoint Borel

sets of B such that the representation in D is unitarily equivalent to the

following representation

ί@ emdδ(λ)φ Γ eUidλ® [2] ί@ eUidλ
J Λo J B\ J B2

in H = L\AQ, δ) Θ L2{Bλ) Θ [2]L2(JB2). Let U: H -> D be an onto isometry

ensuring the equivalence. By Proposition 8.4.6 [2] U sends L2(A0, δ) in H

onto U(A0, δ) in Hp while L\B,) Θ [2]L2(B2) in i ϊ into ίία c. Choose f, e L\BZ),

i = 1, 2, such that jf, ^ 0 a.e. on Bu and denote by JD1? D2ί and A2 the

closed subspaces of Hac cyclically generated by the vectors %hu h2) =

17(0, Λ, 0, 0), \hn> h12) = C7(0, 0, /2, 0) and ^ ^ /ι22) = [7(0, 0, 0, /2) respectively.

For the sake of simplicity assume that both Bί and B2 are non-null sets.

In case either Bx or B2 is a null set, we can argue similarly. Note that

(hu ho) and (hn, hί2) do not vanish a.e. on Bγ and B2 respectively. Moreover,

det(/^;) Φ 0 a.e. on B2, for if it happened to vanish on a set of positive

measure, the representation in D210 D22 contains a subrepresentation

of the multiplicity one, which contradicts Theorem 8.6.6 [2]. Since the

Fourier transform for L\R) is injective, it is not hard to see that D21Θ A 2

constitutes the third component of (1.10). Finally Dλ = {rh e Hac; h e L2(BU

r*p2r)} coincides with the second component of (1.10) with s = l - Λ (hu h2).

Q.E.D.

We are ready for the

Proof of Theorem 1.1. 1) We shall prove the sufficiency of the con-

dition. To begin with, we note that Dκ

± are closed proper subspaces

variant under Jf κ. Indeed 8F exp(ίt^Vκ)^r'1, teR, is the multiplication
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operator eίtλ in L2(R+, p). In order to see that Tt (t > 0) leaves Dκ

± invariant,

it suffices to show that the resolvent Ga (Re a > 0) of the semigroup sends

a dense subspace JΓ~1{r±/i; he CQ{R+)1} in Dκ

± into Dκ

±, that is,

(1.11) 'sM[^Ga^-'r±h](λ) = 0, he C0(R+y .

To verify (1.11) we shall show that

(1.12) J 's&yΦiτ, λ)GaΦ(τ, ξ)p(ξ)r±(ξ)dτ = 0 .

Note that (1.11) follows from (1.12) immediately by integrating the both

sides of (1.12) with respect to a signed measure h(ξ)dξ (we can safely

change the order of integration on account of Lemma 1.3). To show (1.12),

put, for positives λ and f,

IaM = J 'ζ(τ, λ)Gaζ(τ, ξ)dτ, β = X-yX" 1 = (^,) ,

Then, using the relation ί J J\ Y ( _ i o) = "" ί γ " 1 ( i e t Y» t h e l e f t s i d e o f

(1.12) can be written as

(1.13) " Λ

See (1.8) for the definition of υ±9 ζ and X. We shall show that

(1.14) Jβ i l, t = (* °) if KΦ 1/4 , (* *) if K = 1/4 ,
\0 */ \* 0/

(1.15) β = (* °) if KΦ 1/4 , ( ° <°» if K = 1/4 ,

to the effect that JaM is diagonal or of the form ί ί *j according as

A; ̂  1/4 or not, which proves (1.12) since (1.13) turns out to vanish. To

see (1.14), let R be an operator assigning a function f(σ) to /(— σ) and

Jfκ(σ) be the differential operator Jίκ expressed in terms of σ — τ — k/2.

Then RoV£σ)R = Jf κ{p). This relation gives rise to a symmetry of coeffici-

ents z±f7l in (1.7). That is,

(1.16) z±tn(- ΐ)n = z±t% if K Φ 1/4, z+tn(- ΐ)n = z+tn if K = 1/4.

In particular ' ζ ^ (resp. %+ζ+) can be expanded as ΣΓ=oCnσ
2n+1 ^ e ^ r σ == 0

in the case K Φ 1/4 (resp. K = 1/4). Since JΛ ί i ϊ f is equal to
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( L 1 7 ) p i α c ( r , w - ^ d,, , = (1 + i s h τ)/21l/2-io

(1.14) follows from Proposition 1.2 (i) in view of Lemmas 1.1 and 1.3.

Finally, to see (1.15), let g belong to C0(i?+)2 Since aGa converges to the

identity operator as α:->oo, there is a sequence an tending to oo such

that aJ^GaJP'^S converge to g a.e. In other words

(1.18) an ί IanM p(ξ) tX(ξ)g(ξ) dξ > tX(X)g(λ) a.e. as n -> oo .

Set ιXg = \a, b). Then, if K Φ 1/4, the first (resp. second) component of

the left side of (1.18) does not depend on b (resp. α), while the right side

of (1.18) is equal to ι(ρ2Za — pί2b, — p2ίa + pnb). Thus p12 = β2ί = 0 if K Φ

1/4. Similar argument, together with the fact that p is diagonal, yields

pn z=z 0 if K = 1/4. This completes the proof of (1.15). 2) We shall show

that the condition is necessary. Applying Proposition 1.4 to the one-

parameter group eίtλ on L2(R+, p), we define Borel sets Bu B2 of R+ and a

Borel measurable function s with values in M2)1\{0} a.e. on Bx. Since the

image GaD is dense in D, det(^Gafί,β
rGaf2) Φ 0 a.e. on B2 for some f19

f2 e D. If Bz is not a null set, the determinant does not vanish a.e. on

i?+, for it is holomorphic in a neighborhood of i?+. Therefore, if B2 is

not a null set, D = L2(R), which is a contradiction. Thus we may assume

that B2 = φ and B1 = R+ on account of the analyticity of ^Gaf(λ), feD.

Set r - ( J J)s. Then J^D - {rλ e D(R+, p); h e L2(R+, r*pr)}. Conse-

quently we can replace r and s by real analytic functions SFGaJ, fe D\{0}

and f - Λr respectively. Since rh, h e C0(R+)\ belongs to JΓD, we have
ts(λ)[#rGa&

r~1rh](λ) = 0 on i?+. Letting h converge to the Dirac measure

supported at ξ eR+, we obtain (ts(λ)Φ(τ, λ)GaΦ(τ, ζ)p(ζ)r(ξ)) = 0. Namely,

(1.19) '(X-Wλ) Ja,^_ J ^(X-^Xf) - 0 , Re α > 0 .

Put X^s = £(α, 6). Then (1.19) implies, by Proposition 1.2 (ii), that the

following function of z — (1 + i sh τ)/2

(α ζ-ζ-pnb - b ζ+ζ+P22a)lVz(l-z), K Φ 1/4 ,

α(C-C.ft2 + ζ-ζ+pMVz(l - z), Λ: = 1/4 ,

is holomorphic at z — 0, from which it is immediate that

a(X)b(ξ) = b(λ)a(ξ) = 0 for K Φ 1/4, while a(λ)a(ξ) = 0 for Λ: = 1/4.
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Since a as well as b is real analytic, either a or b must vanish identically

if K Φ 1/4, and a = 0 if K — 1/4. Thus there exists a Borel measurable

function c± with values in C* such that s = c±s± a.e. Q.E.D.

We return to the study of invariant closed subspaces common to jSf0
and Tt it > 0). In case a± = 1/2 ± ίη, denote by ζOι±, ζ0, Xo, s0>± and rOf±,

respectively, ζ±, ζ, X, s± and r± in (1.8). Then we define subspaces Dl±

of U(R) by

(1.20) Dl± = J ^ f e e L2(i?+ ^ 'So.^teW = 0 a.e.},

where >̂0 is the spectral density for «5?0 with respect to Φo and J^o stands

for the isometry associated with the eigenfunction expansion. Here, Φk,

feeZ/2, is the solution of the following ordinary differential equation;

(1.21) (J2ffc - λ)Φk(τ9 J) = 0, /CΦfc, ^ ^ = 0 = U

Thanks to Theorem 1.1 Z)£± are invariant, closed proper subspaces for Jδfo

and Tt (t > 0), and there are no other closed proper subspaces with the

invariant property.

We proceed to the study of invariant closed subspaces common to

SPιβ and Tt (t > 0).

LEMMA 1.5. The selfadjoint operator JS?1/2, V, ηεR, has no eigenvalues.

Proof. Consider a selfadjoint operator M1/2>v = i\ n Λd /dτ +

iη(l θ ) / c h τ w i t h d o m a i n HάRy $> P 2 8 7 ί- W e n o t e t h a t (UM1/2ιVU*)2

=-Ŝ i/2 . θ ^ i / 2 , . , for a unitary matrix 17= (-, 1 ) / \A2". This relation
\J. 1//

implies that an eigenvalue of &ί/2t±η, if any, is equal to zero, because

JS?i/2,±, has no positive eigenvalues in virtue of Theorem 4 [4], Now assume

that / is an eigenvector corresponding to the eigenvalue zero, say, of ϋ?1/2> r

Then (UM1/2ιVU*)2t(f,0) = 0. This contradicts the fact that Mι/2>v has no

eigenvalues by Theorem 2 [4] Q.E.D.

Since the function (1/4 — k2 + rf + 2£)? sh τ)/ch2 τ is integrable, the

spectral matrix for jδffc relative to Φfc has an M2

++-valued continuous density

ρk on R+ due to Theorem 4 [4]. On account of Lemma 1.5 we can define

an onto isometry J^1/2: L\R) -> L2(R+9 p1/2) and its inverse ^yl in a similar

way as (1.5) and (1.6) respectively. To define invariant subspaces -D?/2,±

we first note that the equation (1.21) has a regular singularity at τ = iπ/2,

the indicial roots at which are 1/2 ± (iη — k). Therefore, the equation (1.21)
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for k = 1/2 has linearly independent solutions ζ1/2,±(τ, λ) which, being holo-

morphic in Dτ X C, admit the following expansion near σ — 0.

(1.22) ζkt± = jw-vίf: zk,±,nσή , zk§±t0 = 1,

where k = 1/2. It should be noted that (ζ1/2 |-, d/2,+) = Φ1/2 if 37 = 0. Let

us define Xk(λ) e M29 skt±(λ), rk) ±(λ) e M2fl in terms of Φk and ζkt± as in (1.8),

and set, for k = 1/2,

(1.23) Dl± = ̂ H g e L2(E+, ^ ) ; ^ , , , 0 ) ^ ) = 0 a.e.}.

Then, repeating the argument in the proof of Theorem 1.1, we get the

next theorem.

THEOREM 1.2. Let D be a closed proper subspace of U(R). Then the

self adjoint operator ϋ?1/2, η and the semigroup Tt (t > 0) leave D invariant

iff D coincides with one of D?/2i±.

From now on we shall be concerned with a general =£ffc. The following

lemma shows close relations among the operators =£?fc and F±t1c (see (1.3)).

LEMMA 1.6. Let F±tk and ££k be the differential operators on C°°(R).

( i ) F^tk±1F±tk= - J?k - (k ± 1/2)2.

(ii) &k±ιF±ιt = F±tk&k.

(iii) FU = - F*,k±u F*tkF±t k = J?k + (k± 1/2)2.

(iv) If f satisfies (j£?fc — λ)f = 0, then (jgffc±1 — λ)F±tJ = 0. In particular

F±,kΦk = Φk±1X±tk9 where

=(
±>k \λ

Proof, Simple calculation is enovigh to verify (i)~ (iii). The statement

(iv) follows from (ii). Q.E.D.

As to eigenfunctions for j£?fc we assert

LEMMA 1.7. Let f±k>±1c, k > 1/2, be an absolute continuous function on

R such that F^f±kf±k)±k - 0. Set f±k±m,±k = F ± f ± ϊ ± m τ l . F±}±kf±k,±k, meZ+.

( i ) f±k±m,±k lies in H2(R), satisfies the equation

(1.24) {J?±k±m + (kT l/2y}f±k±m>±k = 0,

α/zd ίαifees ίΛe following form near a = 0.
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(1.25)

(ii) f±t±m,±Jj), as a function of z — (1 + i sh τ)/2, is bounded on

{\z\ > 2}.

Proof. The function f±k)±k is clearly a constant multiple of the function

(ch τγ
k+ι/2 exp(±η 1/ch ί dt\ which lies in L\R) as well as its derivative.

By Lemma 1.6 (i) we note that f±kι±k is an eigenfunction of J£?±fc corre-

sponding to the eigenvalue — (k + 1/2)2. Since 1/2 ± (ίη — kf) and 1/2 ±

(iη — kf) are indicial roots at σ = 0 for the equations F^>Ίc, / = 0 and

(j£V — Λ) / = 0 respectively, /±fc>±fc can be expanded as (1.25) for m = 0.

From now on only fkt1c will be discussed. By Frobenius method, together

with what we have proved, it can be easily seen that the equation (1.24)

for m = 0 has linearly independent solutions ζ± such that

(1.26) ζ± =

where ζ+oc/fc fc. Let <$?k(σ) stand for 3?k represented in terms of the vari-

able σ. Using the relation RJ£k(σ)R = J?k(σ), we can show that (—ϊ)nz±)n

= z±t7l. It is now immediate that (— ΐ)nzn = zn when m = 0. This proves

(i) for m = 0. To show (i) for any m, we can proceed by induction on m,

keeping in mind that F + , f e + m _ r F+>kζ+ takes the form σί/2+ί*-k-m(ΣZ=oZnσ
n),

z0 Φ 0. To prove the statement (ii) we note that the equation (1.21) can

be written as

(Λ 97v / d2 22-1 d
( L 2 7 ) +

where z = (1 + i sh r)/2 and ?Ffc(2, >ί) = Φk(τ, X)- The indicial equation at

2 = oo for the above equation is a2 + Λ = 0. Since f±k±m,±k satisfies (1.24),

it assumes the form z~k+1/2Q^n=oyn z~n), y0 Φ 0, near z — oo. This is because

f±k±mt±k(τ) i n H2(R) tends to zero as r-> ±oo (i.e. z->l/2± ioo). Q.E.D.

DEFINITION. Let notation be as in Lemma 1.7. We denote by e±k±7ϊlt±k,

m e Z+, the normalized eigenvector /±fc±m,±fc/||/±fc±m,±fc|| of S£±k±vι corresponding

to the eigenvalue — (k T 1/2)2. Let Ak be the set of eigenvalues of ££k

and Ek be the Hubert space L2(Λk, δk), where f̂c is an atomic measure on

Λk such that δk({λ}) = 1 for each λ e Λk.

We already know that Ak = φ if \k\ < 1/2. It will be proved in the

following proposition that
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Λ = {-(/ + ll2Y;j = k9k + l9 •••< - 1/2} if A < — 1/2,

= {- (j - 1/2)2; j = k, k - 1, . < 1/2} if k > 1/2.

According to the eigenfunction expansion theorem for Sfk (see [1, p. 251])

we can define an onto isometry ϊFk : L\R) -> L2(R+, pk) 0 Ek and its inverse

J ^ 1 as follows.

(1.28)

= <β*f j , f> for J = - {; - (sign ^)l/2}2 e Ak

= lim ί
Λr-oo Jo<|r|

(1.29)
®Σjg(-{j-(άg*k)ll2γ)eΛtJ.

Here !θfc is the spectral density for £fk relative to Φk. The next Propo-

sition is concerned with the spectral property of J£?fc.

PROPOSITION 1.8.

( i ) The set of eigenvalues Λk, \k\ > 1/2, is given as above.

(ii) Pk+1(λ) = - X+,Mp* ιX-]kM\ λ e R+,

where X±tk stands for the same as in Lemma 1.6.

Proof We shall prove the assertion (i) only for k > 1/2. Assume

that an / in H2(R)\{0} satisfies {S£k - λ)f = 0 for k = 1 or 3/2. Then

(JSffc_! - λ)F_ikf = 0 by Lemma 1.6 (ii). Particularly F_,kf belongs to H2(R).

Since S£k_x has no eigenvalues, we conclude that F_fkf = 0. Consequently

a possible eigenvalue for J ^ is — (k — 1/2)2 by Lemma 1.7. Conversely,

the same lemma implies that —{k — 1/2)2 is really an eigenvalue. Recalling

the well-known fact that the multiplicity of an eigenvalue for Jδffc is one,

(i) has been proved in this case. Working by induction on k, we can

complete the proof of (i). If g belongs to C0(i?+)2, / = ̂ ^g lies in the

domain of J£?fc and tends to zero as |τ| -> oo. Integration by parts, together

with Lemma 1.6 (iv), yields ^k+ίF+f1cf = X*~£g. Therefore we can re-

present F+fkf in two ways;

[ p ;
R+

which results in (ii), for X_k is a real matrix. Q.E.D.

We are in a position to define invariant closed subspaces Dv

kt± in

L2(R). Since sk>± and rk>± for k = 0, 1/2 are defined in connection with
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Dv

k±, k = 0, 1/2, the following definition makes sense.

(1.31) Dlt± = &l\g 6 D(R+, Pk); *8kt±(λ)g(λ) = 0 a.e.} Θ &ΐ Ek>± ,

where Ek>± = Ek iΐ ± k> 0, while [{0} if ± k < 0. The following is one

of the main theorems in this section.

THEOREM 1.3. Let D be a closed proper subspace of L2(R). Then the

self adjoint operator ££kt η and the semigroup Tt (t > 0) leave D invariant iff

D coincides with one of Dlt±.

To prove the theorem we need a lemma.

LEMMA 1.9. Let λ be positive.

( i ) 's fc f±(J)r fc,±(J) = O.

(ii) If either ηeR* or keZ+ 1/2, then

If η = 0 and keZ, then

Φk(τ,λ)skι±(λ), Φk(τ,λ)Pk(λ)rk>±(λ)

In the above O(σa) denotes a holomorphic function on Dτ which assumes

the form σα(Σ~=0 cn σ
2n), c0 Φ 0, near σ = 0.

Proof. The relation (i) holds for k = 0, 1/2. Since X_tk(λ)X+tk_x{λ) =

— λ — (k — 1/2)2, (i) follows from the definition of skt± and rk>±. As to

the statement (ii) only the functions Φkskt± will be examined. We recall

that

Φksk>± = 2ζkt+ if (k, 7]) = (0, 0) while 2ζfc,± if A = 1/2 or k = 0, 5 e iϊ* .

Therefore (ii) is valid for k — 0, 1/2. Assume that (ii) holds down to

k < 0. To proceed by induction on &, we note that

cnσ
a+2n) = {1/2 ± ( - i 9

0 /

F_,kΦk(τ, λ)sk>±(X) =-{X + (k

Let Φksk>± take the form 2]n=oCnσ
α+2w, c0 ̂  0. Then it can be easily seen

that if 1/2 — (— iη + k) — a vanishes, dn is equal to zero unless Re (a +

2n - 1) > Re{1/2 - (k - 1) + H?}. This is due to the fact that F_,kΦksk)±
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is a nonzero solution of the equation {^k-χ — X) f = 0 whose indicial roots

at σ = 0 are 1/2 ± (k — 1 — ι^). This proves (ii) for k < 0. In case £ > 0,

we can argue similarly, using the equality F+)1iΦksk)± = Φk+1sk+ί)±. Q.E.D,

Proof of Theorem 1.3. The proof is much like that of Theorem 1.1.

We may assume that k Φ 0, 1/2, and shall prove the theorem in the case

k > 0. On account of Lemmas 1.1, 1.3, 1.7 and 1.9, Proposition 1.2 (i) yields

the following equalities.

J %t+(λ) <Φfc(τ, X)Gaζk(τ, ξ)σk(ξ)rk>+(ξ)dτ = 0 ,

T, λ)Gaek>j(τ)dτ = 0 ,

r, ξ)Pk(ξ)rk,_(ξ)dτ = 0 ,

- 0 ,

where Λ and ξ are positive. We can show, as in the proof of Theorem 1.1,

that the first two and last two equalities imply the invariance of Dη

kt+ and

-D|,_ under the semigroup Tt (t > 0) respectively. Here we used the fact

that ektj = cek>j for some constant c, |c| = 1. On the other hand, £Pk clearly

leaves D | j ± invariant. Conversely, let D be a proper closed subspace with

the desired invariant property. Arguing as in the proof of Theorem 1.1,

we see that

ΰ = Σ Θ K,Λ θ Fΐ\g e L\R+, Pk); ts(X)g(X) = 0 a.e.}
j€l

for some subset / of {k, k — 1, , 1 or 3/2} and a real analytic function
s on R+ with values in M2ιl\{0} a.e. Denote by ζfcf±(r, X) linearly independent

solutions of the equation (££k — X)ζ = 0 such that they are holomorphic

in Dτ X C and have the following expansion near a = 0.

ζk>+ = ^ * c " - * ) ( l + f; zk,±>2nσ
2n), if VeR* or

\ 71 = 1 /

Set ζfc = (ζfc,_,ζfc,+), and define Xk by ζft = ΦfcXfc. Then, it can be shown,

as in the proof of Theorem 1.1, that the symmetric matrix Xk

xpk

tXk

1 is
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diagonal in the case either η e R* or k e Z + 1/2 while the matrix assumes

the form ί j in the case η — 0 and keZ. It is not hard to see that

in the former case one of the components of Xk

λs must vanish identically

while in the latter case the first component of X'^ must vanish (see the

proof of Theorem 1.1). This means that there are, at most, two possibilities

for s. Therefore, since Dv

ky± possess the invariant property, there exists a

C*-valued measurable function c+ or c_ such that s — c+skt+ or c_sfe>_ a.e.

on R+. Suppose s = c+sfc>+. We must show that I = {k9 k — 1, , 1 or

3/2}, provided η e iϊ* or k + 1/2 e Z (recall that skt+ = sfc>_ in the case when

η = 0 and k e Z). On account of Lemmas 1.1, 1.3, 1.7 and 1.9, using

Proposition 1.2 (ii), we can show that for any eigenvector ektj, there exists

an a\ Re af > 0, satisfying

(ektj(τ)Ga,Φk(τ, ξ)Pk(ξ)rk,+(ξ)> Φ 0

so that <ek^{τ)G(X^k-
λrk^K} Φ 0 for some h e C0(R+y. This means D = Dlf+,

that is, I — {k, k — 1, — , 1 or 3/2}, for D is ^-invariant. Next, assume

s = c_sfe,_. We must show that I = φ, provided η e i?* or k e Z + 1/2. To

this end, we note that for any eigenvector ekfj and positive λ> there is an

a', Re a! > 0, such that

on the same basis as above. This implies that I = φf since ts(X)[^r

kGaf](X)

= 0 a.e. for any feD. Finally, we note that for any eigenvectors ektί and

ektj, there exists an a', Reα ; > 0, such that (ektί, Ga,ek>jy Φ 0. This means

I = φ or {k, k — 1, , 1 or 3/2}. Since sft>_ = skt+ in the case η — 0 and

& e Z, Theorem 1.3 has been shown for k > 0. In case £ < 0, we can

argue similarly. Q.E.D.

We set Wk = L2(R) for k e Z/2 and regard <£fc as a selfadjoint operator

in Wfc and F±fk as an operator sending Wk into VFfc±i. It is the next

theorem that will be used in § 2.

THEOREM 1.4. Let {Dk}kez+ε, ε = 0, 1/2, be a nontrίvίal sequence of

closed subspaces of Wk. Then the sequence {Dk} fulfils the following two

conditions iff it coincides with one of

{DU,{Dl,+}ifveR* or 1/2,

{•D»,sign(-*+i/»}, {£>*,-}> iDl+} <™d {•D£,SIgn(ί:+1/2)} if η = ε = 0 .
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i) Dk is invariant under the self adjoint operator ££k>J} and the semi-

group Tt (t > 0).

ii) F±tkfVDk c Dk±ί, where the domains of F±fk>v are H2(R).

Proof We shall first show the sufficiency of the condition. Assume

that an / in H2(K) satisfies &r

kf = rkt±h, heL2(R+, rl±Pkrkt±). Then inte-

gration by parts yields

(1.32) &k+1F+,kf= - rk+1§±h, &k.,F_J=\\ + (k -

Making use of Lemma 1.6, we can verify easily that for k, \k\ > 1/2,

(1.33) F±,kek>j = ± (sign k)J{fr±ϊWZΓ{Γz (sϊgnWfi}2ek±1,,.

By (1.32) and (1.33) the sequences mentioned in the theorem satisfy the

conditions i) and ii). Conversely, let {Dk} be a nontrivial sequence satisfying

i) and ii). In view of Theorem 1.3 and the relations (1.32) and (1.33), {Dk}

must coincide with one of the aforementioned sequences, provided some

Dk is a proper subspace. Therefore it remains to show that all Dk are

proper subspaces. To this end, suppose Dk = L\R) for some k. Let us

show that Dk±1 = L2(R). In fact, on account of the equality GaF±k =

F±ykGa + Gr

a it is not hard to see that if an / in (Dk±1)
1 is orthogonal to

the image GaF±,kCo(R), then / = 0 . Assume now that Dk_ί = {0} and

Dk Φ {0} for some k. This contradicts Theorem 1.3 and (1.32). Thus each

Dk must be proper for the sequence {Dk} to be nontrivial. Q.E.D.

Before concluding this section we shall rewrite the relation (1.32) in

a more convenient manner. For this purpose, introduce Hubert spaces

Dv

kt±, Dη

k± and an onto isometry Iv

±>*k : Dv

k>± -> Dv

k)±, keZ + ε, as follows.

£>l± = {rk)±h e D(R+, Pk); h e U(R+} r?,± Pkrkt±)} Θ Ekι± .

(1.34) Dl>± = D(R+)®Ekf±.

(IV:krk9±h)(λ) = <fkl±(λ), Pu(λ)rk,±{λ)y/2Kλ), λ > 0 ,

IV°k\Ekί± = the identity operator.

Furthermore, for F±sk with domain H^R), set

F+,k}± = iv:k+i^k+iF+,k(iv:k^ky
ι,

A,, ) ± - iv^&u-tF^iv:^)'1.

Then (1.32) yields

(1.35) F±ik>sh(X) = +Vλ + (k± If2fh(λ), heC0(RJ , s = + or - .
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This is because <rkί±{λ), pk(λ)rkt±(λ)> = {λ + {k- l/2)2}<rfc_1>±0), ,
by virtue of the definition of rk>± and Proposition 1.8 (ii).

§ 2. P+(3)-invariant subspaces for the representation (£/''% φ576)

We begin by defining the representation (Uv'ε, £>*'*) of the group P(3)

(see the introduction for the definition of P(3)) associated with the one-

sheeted hyperboloid ViM(S) = {yl — yl — yl = — M2}, M > 0, after Mackey

[7]. Let G be SU(1,1), and ωj9 1 < j < 3, be one-parameter subgroup of G;

L t/2 sh t/2\ ω(t) = ( c h *l2 { s h l^\
L t\2 ch ί/2/ ' ωi \ - i sh ί/2 ch ί/2/ '
72 o

G acts on R3 as y g = g*yg9 where y = (y09 yu y2) is identified with a matrix

(v + iy y*Z ιyi\ l t c a n b e e a s i l y s e e n t h a t t h e o r b i t o f y = M ( i o)
is FiΛί(3) and that the isotropy group at y is Go = {± ω2(ί); ίe i ϊ } . Let

7r,,e, 22 e 1?, ε = 0, 1/2, be an irreducible unitary representation of Go such

that πηyt(± a)2(t)) = ( ± ϊ)2sexpiηt. We can identify the factor space G0\G

~ (R*X8Go)\(RzXsG) with VίM(S) via a projection/? of G onto ^ ( 3 ) defined

by p(g) = 5*3^. As is well known, the measure dy = dy1dy2/^|j'ol o n
 ^J»/(3)

is G-invariant. Let $'?'δ be the set of C-valued measurable functions on

P(3) such that

, go) (x, g)) = e^>πMf(x> g), go € Go,

and that |/(x, ^)|2, which is a function on ^^(3), is integrable relative to

the measure dy. Then $ViS equipped with the inner product </, h) =

fhdy give rise to a Hubert space, which we denote by | ) 7 ' β again. Let

Uη**(x9 g), (x, g) e P(3), be a linear operator on $η>β defined by

t

\

[U^(x, g)f](x', βO = f((x\ g'){x, g)).

It is well-known that (Uv>% &v'ε) is an irreducible unitary representation

of P(3) associated with VίM(S) and π^ε. We prefer to realize this repre-

sentation in L2(V^(3), dy). For this purpose, note that a map p(α)i(τ)α)8(ί))

of i? X (0, 2π) into 1^(3) is a diffeomorphism onto an open dense set of

1^(3), and fix a Borel measurable section se of ViM(3) into G such that

seop(ωι(τ)ωz(θ)) = ω^ω^θ) for (τ, θ) eR X (0, 2ττ). Then we can define an

equivalent representation (Uv>% L2(ViM(3), dy)) as follows.
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( 2 1 } #'"<*, g)f(y) = e^>πv,ε(go)f(yg) ,

(0, se(y))(x, g) = (*', go)(O, se(y.g)), goeGo.

Clearly (r, θ) e i? X (0, 2π) is a system of coordinates on an open dense set

of ViM(3). Simple calculation yields

(yo> Vu yϊ) = M(sh T, ch τ sin θ, ch τ cos θ) , d j = ch τ dr cW .

Therefore, by identifying L2(ViM(S), dy) with &>* = L2(β X (0, 2TΓ), ch τ dτdtf)

in a trivial manner, we obtain a representation (E/*'e, φ57'') equivalent to

the one (Uη>% φη*ε) above. From now on the former realization will be

discussed. By (2.1) it is easy to see that

Let o)j, 1 < j ' < 3, be an infinitesimal operator of the one-parameter unitary

group Uv>6 (0, ωj(t))9 and put

Δ = — ω\ — ω\ + ω\, F± = — ω1 + ίa>2, H3 = ίω3.

To be more precise, J stands for the self adjoint extension of a symmetric

operator — ω\ — ω\ + ω\ whose domain is the Garding space, while the

domains of F± are the intersection of the domains of ωx and ω2. Using

(2.1), we can easily get expressions for the restrictions ω3\C^(R X (0, 2TΓ)).

That is,

ω1 — cos θ dτ — th τ sin θ dθ + iη sin θjch τ ,

ω2 — — sin 0 dr — th τ cos # d̂  + iη cos #/ch r ,

o)3 = dθ.

In particular,

F ± = - e^^a r + th τ dθ + ^/ch r) .

Put y^ '̂ε = {/e φ57'5; iϊ 8/ = A/}, k e Z/2. Then φ^ = 2 ^ θ ^ 1 ' % since eigen-

values of H3 lie in Z/2 (see Lemma 2.1). Furthermore, it is not hard to

show that # Ί ' ε = {0}, keZ + ε, and

1fV = {/(r)β-"'; /e L2(i?, ch τ)}, k e Z + ε .

Now put Wfc - L2(R), keZ/2, and define an onto isometry J r : YΓ|'S ->Wk

by e/r(/(r)e" t M) = /(τ)Vchr/2τr. Then an onto isometry J*'£ : ξ ) * ' 6 - * ^ =

Σfcez+e θ Wfc arises naturally, namely J ' ' s = 2 f c e ^ + ε Θ J ^ ' It is immediate

that
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(2.2) J " Ί 7 " β ( ί / A Γ , 0, 0, e)J^~ι = eίtshτ.

U s i n g t h e expl ic i t forms of ωj9 1 < j < 3, w e o b t a i n , for keZ + ε,

( , Ji JJί - = :?, . ,+ 1/4,

See (1.1) and (1.3) for the definition of J£kίV and F±)k>η respectively. To

be more precise, we can verify the equality (2.3) only on CQ(R). Since

JγΔJγ~x is selfadjoint, the first equality in (2.3) follows from Theorem 4.3

[6, p. 287]. On the other hand, the second equality is understood to hold

on SICK). We regard Dv

ki± (see (1.31)) as a subspace of Wk and introduce

closed subspaces 9ιγ dW% ε = 0, 1/2, and °̂±'J C W° as follows.

/n Λ\ ~^± ~ ZuikGZ + ε ^ v k 1Λ,± 9

ί5>0,0 _ V (Φ) 70,0-1 r>°
-^±1 — Z j f e e ^ ^ ^ A ; ^A,sign(±i; + l/2)

Now we are ready to state main theorems of this paper.

THEOREM 2.1. Let & be a closed proper subspace of ξ>v'ε. Then 2) is

P+(S)'invariant iff it coincides with one of ^ ε (and °̂±'J, provided (rj, ε) =

(0,0)).

THEOREM 2.2. The representations of SU(l, 1) realized in @γ, Q)*i\ and

@Y decompose into irreducible ones, respectively, as

J- (-1/2 + ̂ ,8)°^ © ^ -keZ++ί+ε vB 1 (i,β) ,
R +

J- (-1/2 + ̂ , 0 ) ^ j
R +

T(_ί/2 + iV>0)dη® Σ_kez++ί Θ (TYM) ©i^ίfc.o))
-R-r

See the following passage for the definition of the representation T(_1/2+iη,e)

and Γa,f).

Remark. It is known [8] that the representation of SU(1, 1) in ξ>v'ε

decomposes into irreducible ones as

[2]

The rest of this section will be devoted to the proof of the above

theorems. We begin by reviewing some properties of irreducible unitary

representations of G = SU(1,1). We retain the notation due to Vilenkin
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[10, Chapter VI]. Thus T«,t) with either (£, ε) = ( - 1/2 + iη, 0), η > 0, or

(£9 ε) = (•— 1/2 + ίη91/2), η > 0, stands for a representation belonging to the

continuous series, while Γ(Λ0> with — 1 < ^ < — 1/2 is a representation

belonging to the supplementary series. In this paper the representation

Γ* f 0 with either (£, ε) = (£9 0), - ί e Z+ + 1, or (£, ε) = (4, 1/2), - / e Z +

4- 1/2, is said to belong to the discrete series, even though Tf_1/2Λ/2) is not

a member of the discrete series in the sense that it is not contained in

the regular representation of G as a direct sum component. Recall that

C°°(T) (resp. a subspace of C°°(T)) is dense in the representation space

#,,. (resp. HtJ of Γ ( Λ 0 (resp. TfM)).

LEMMA 2.1. ί b r the irreducible unitary representation 5P(Λβ) or T 7 ^ o/

G = SU(1,1), de/me operators ωj9 l<j<3, F±9 Hz, Δ and spaces τ^fc,

^ e Z/2, as for the representation (Uη>% $Qv>ε). Then iΓk = {exp{— i(k — ε)̂ }}

if keZ + ε and if exp{— i(k — ε)θ} lies in the representation space, while

#"fc = {0} otherwise. In addition,

F±e-«*-)* = (±k- ^)β-<c*-.±i>* f J = - ^ + 1) .

Proof The function exp{— i(^ — ε)^} is known to lie in Ψ*ky if it

belongs to the representation space. Since such functions form a complete

orthogonal basis of the representation space, dim τΓfc < 1. Thus 14r

k is

obtained. The remaining part of the lemma is well-known [10, p. 299 and

p. 334]. The sign of t(ί + 1) on p. 334, however, is misprinted. Q.E.D.

A corollary of the next proposition plays an important role in our

discussion.

PROPOSITION 2.2. Let the notation be as in Lemma 2.1. Each iωj9

l<j<3, restricted to the algebraic sum ΣkBZ/z®iΓk is essentially self-

adjoint in the representation space.

Proof. Let iϊΛβ,c be the algebraic sum Σk 0 ifk, and denote by ώ3 the

restriction ωj\Hi>tsC. Set, further, C°° = C°°(Γ) Π H£jε, where T stands for

the unit circle and H£it is the representation space. Since a function

T«,*)(g)f(et$) o r T^s)(g)f(eίθ) is smooth o n G x T for any fe C°°, C°° lies in

the domain of ωό and invariant under Tiiit) or Tflyβ). Here we used the

fact that the uniform convergence in C°° implies the convergence in He

Let ώj be the restriction ωf|C°°. We shall show that iώ3 is essentially

selfadjoint. Evidently iώj is symmetric, so it remains to show that the
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image (ωό — ά)C°° is dense in H£tB for any a, Re a ψ 0. For this purpose,

assume that an / in ϋΓΛβ is orthogonal to the image. Then, since T(gye)(g)

or Tft,ε)(g) leaves C°° invariant, we have

<ZVoM*))(*>j ~ <*)Φ> /> = 0, . φ e C- ,

or a similar relation for T(*,e). Multiply the both sides by β"αί, and inte-

grate on JR+ or — R+ according as Re a is positive or negative. Then it

follows that (φ, /> = 0, which implies / = 0, as desired. Thus iώj is

essentially selfadjoint. To complete the proof, it suffices to show that the

closure of ώ3 is an extension of ώj9 for ώj C ώό. To this end, we note first

that ώj is a differential operator with smooth coefficients on T. Secondly,

the partial sum of the Fourier series for any fe C°° lies in Htttte and they

and their derivatives uniformly converge to / and its derivative respectively.

Now clearly the closure of ώs is an extension of ώs. Q.E.D.

COROLLARY 2.3. For the irreducible unitary representations TiM be-

longing to the continuous series and Tf4it) belonging to the discrete series

in our sense, define £2-spaces ί\% and £)% as follows.

m = {(α*)*e*+..**+<*>; Σk\at\* < oo}.

Put £)^e = {(ak) e £l,e; ak = 0, \k\ > n, for some n e Z+}, and define ί%,e

similarly. Then operators iώj9 1 < j < 2, with domain £itttC (resp. ί\%^ are

essentially selfadjoint in £2

£tε (resp. £]%), where ώj are defined as follows.

Let fk = (ak) be an element of either £),t or £)% such that ak = 1 and ak, — 0,

k' Φ k, and set F± = — ώt + iώ2. We require

FJk = + Vy2 + (k± l/2)2/fc±1 in £2.

£)(k ± l ± l ) / f c ± 1 in

± £ ±T)/ f c ± 1 in £% .

Proof. Let the notation be as in Lemma 2.1, and set

ek = mfeexp{— i(k — ε)^}/||exp{~ i(k — e)θ}\\eHit9, where \mk\ = 1.

In case (£, ε) is a parameter of the continuous series, we can choose mk

so that mkjmk^ = — \k + £\/(k + £). In other cases, set mk = 1. Then it

can be easily seen that the restriction of ωj9 j = 1, 2, in Proposition 2.2

is unitarily equivalent to ώj in the above lemma. Q.E.D.
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The next lemma is concerned with a pair of one-parameter unitary

groups.

LEMMA 2.4. Let Hj9 j = 1, 2, be Hilbert spaces, and Uβ) be one-para-

meter continuous unitary groups on Hj with the infinitesimal operators

Ωj — dUj{t)jdttr=0. If Hλ is a closed subspace of H2 and there exists an

essentially selfadjoint operator iΩ such that Ω c Ωj9 j = 1, 2, then U^t) =

U2(t) on H,.

Proof. Let Ω be the closure of Ω. Then iΩ is selfadjoint and clearly

Ω c Ωj. Consequently, for any n e Z+ + 1 and h e Hx we have

Ω(l - n-'ΩY'h = Ωj(l - n~Ώ^h, j = 1, 2.

That is, Ω(l - n'ιΩ)-1 = β/1 - n-Ώj)-1 on Hx. By the representation

theorem for the continuous semigroup [11, p. 248] we get

(exp tΩ)h = lim{exp tΩ(l - rrWy^h = (exptΩ^h , h eHx.
TO—oo

Q.E.D.

We return to the representation (Uη'% &η'e). Recall the definition of

the subspaces J5|5±, Dli± and the isometry Iγik introduced in (1.34). Let

us define auxilary Hilbert spaces Dl% DQ/U Dl% D°fl9 Dlε and D^\ as follows.

1J± — ^kez + ε W -t-/fc,± > - ^ ± 1 — -̂  Jte-ZΓ ^ -^λ;, sign (±fc +1/2) >

D~?,e _ y (Φ) Π1? Π°'° — y Ph Π°

In terms of the isometries ^ k : Z)| 5 ± -+Dlt± and /^;fc : j5j ϊ ± - > J D J > ± we can

define onto isometries . F r : D'±'e -> Dl'% &*& : D°±'? -> D°£, Iγ : J5?

±'ε -> Dlε

and I±'i : D°±'? —• J9°±'J in an obvious manner. Let DγtC be a dense subspace

{(hk) e i3^ ε ; hk e C0(i2+) ® Efc,±, hh = 0 for large |A|}, and put

Similarly we define j3°£c and ̂ 0

±1°sC.

LEMMA 2.5. Lβί ω;, 7 = 1, 2, 6β ίΛe infinitesimal operator of Uv'ε(0, ωβ)).

Then the restriction iωj\^v

±^c is essentially selfadjoint in ^ \ In case (£, ε)

= (0, 0), 50 is the restriction iω5\Qι^c in &£.

Proof. Only the operator iωό\^% 1 < j < 2, is to be discussed. Denote

it by iώj, and set ώj = I^^^J^ώ^^^J^)-', F± = -ώ.T ίώ2. First,
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suppose k is a negative integer, we recall the definition of eki n given after

Lemma 1.7. Evidently {$Fkekf n; n = k, k + 1, , — 1} is a basis of Ek. On

account of (1.33) a closed subspace £!n, — n e Z+ + 1, of Dl'0 spanned by

{̂ fĉ fc.nί k = n, n — 1, •} is invariant under F±. Moreover, Corollary 2.3,

together with (1.33), implies that iώj is essentially selfadjoint in ίln. As

one can see easily, this assertion is valid even for n e Z+ + 1. It remains,

therefore, to show the essentially selfadjointness of iώj in Σkez Θ L2(R+)

C JDJ'°. To this end, let C0,c be the algebraic sum Σkez® C0(R+), and we

shall prove that the image (iώj — z)C0,C9 Im z Φ 0, is dense in Σkez Θ L2(R+).

If h = (hk) is an element of C0,c such that hk, — 0 for kf Φ k, then we have

by (1.35) the following.

iώjh(λ) = ( , 0, ajk(λ)hk(λ), 0, bjk(λ)hk(λ), 0, . •),

where αJfc and bjk are smooth functions on i?+. We consider an operator

iώj(λ) in S2 = Σkez® C with domain ί\ = {(αk) e £2; ak = 0 for large |Jfe|}

such that

ιώ,(^)βfc = ( , 0, ajk(λ), 0, 6Jfc(i), 0, •)

for ek = (•••, 0, 0,1, 0, 0, •)• It follows from (1.35) and Corollary 2.3 that

iώj(λ) is essentially selfadjoint. Suppose an h in Σkez®L2(R+) is orthogonal

to (iώj — z)Co,c, I m 2 ΐ 0. Then we obtain

ajk(λ)KM) - z*hk(X) + bjk(λ)hk+ί(λ) = 0 a.e. on R+ .

Since iώX )̂ is essentially selfadjoint in £2, (hk(λ)) is a zero vector in ί2 a.e.

This means Λ = 0 in Σkez 0L2(i?+). We have shown that iώ, is essentially

selfadjoint in Σkez Θ L2(R+), for it is symmetric. Q.E.D.

We are ready for the proof of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. We shall prove the sufficiency first. Set 3f\%

= ®Y Π Wl% SJ;°±1 = 3P& Π WY. It is evident that [7^(0, ωz(t)) leaves

^|;e

± (and $1% as well, provided (37, ε) = (0, 0)) invariant. By (2.2) and

Theorem 1.3 Uη>* (t, 0, 0, β), t > 0, also leaves 9γ invariant. We note that

P+(3) is topologically generated by the subsemigroup {(t, 0, 0, e); t > 0} and

the subgroup {(0, g);geG}> and that so is G by one-parameter groups

u)j(i), j = 2, 3. To complete the proof of sufficiency, it is enough to show

that £/*'e(0, ω2(t)) keeps ®γ (and 0°± ί as well, if (η, ε) = (0, 0)) invariant.

But this fact is an immediate consequence of Lemmas 2.4 and 2.5. Secondly,
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we shall show the necessity of the condition. Assume that Of is a P+(3)-

invariant closed proper subspace of $v'e. Since (t, 0, 0, e) e P(3) commutes

with (0, ω3(s)) 6 P(3), @kε = ^{\1Tγ is invariant under £Λ"(ί, 0, 0, e), * > 0.

Moreover, 0 being G-invariant, we have

Thus 0 must coincide with one of @γ (and 0°±'J, provided {η, ε) = (0, 0))

in virtue of (2.2), (2.3) and Theorem 1.4. Q.E.D.

Proof of Theorem 2.2. Let Θ\\'± and @°k'?±1 be the same as in the above

proof. First consider the case ε = 1/2. Then S)\% = {0}, keZ and

dim (β\\L θ F+@lϊhJ) = 0 , h Z + + ε ,

(2.5) dim(Sl;L θ i^.^'Λ,-) = 0 or 1

according as — k = 1/2 or — £ e Z+ + 3/2 .

These relations imply that among the representations belonging to the

discrete series only the representations T+kiβ), — keZ+ + 3/2, are contained

with multiplicity one in @ηj*. Since the following unitary equivalences hold

(J -

the representations Γί.^+ί^,), η > 0, are contained in ^L's as

Consequently the representation (JJ^% @ηjε) of G admits a decomposition

as stated in Theorem 2.1. We can argue similarly for the representation

of G in $)γ. Secondly, assume that ε = 0. We shall confine our discus-

sion to the representation (E7°'°, S?'0). Since Ψ~γ = {0} for k £ Z + ε, &°£

={0}, keZ + 1/2. Moreover, dim (0<$ θ F^^x, ! ) = 1 for ke Z\{0}. This

means that among the representations in the discrete series only Tfki0)9

— keZ+ + 1, are contained with multiplicity one in SJ'°. On account of

the following unitary equivalences

{Δ - l/4)|^°o;; ~ <?Q),\Dl+ ~ Γ λdλ.
J R +

We conclude that the representations T(_1/2+iJ?>0), f) > 0, are contained as
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We have verified Theorem 2.2 for the representation in SJ'0. Q.E.D.

Appendix

The first lemma is concerned with an n-th. order equation assuming

the following form.

(A.I) znw{n) + zn-'φ, X)w(n'1) + + cn(z9 X)w = 0,

where cj9 1 < j < n, are holomorphic in {\z\ < ί j X {\λ\ < δ2}, c3(0, λ) being

constant.

LEMMA A.I. (i) If the above equation has a solution of the form

za(l + zh(z, log z)), then a is an indicial root, that is,

(A.2) ( α - 1) • -(a- n+ D + φ, λ)(a- 1) •(«- n + 2)+ .. + cn(0, ί) = 0 .

(ii) Suppose aj9 1 <j < k, are roots of (A.2) such that a5 — aj+1 is a

positive integer and that there are no other roots in Z+ + ak. Assume

further that ah 1 <j < k, is a simple root while ak is an mk-ple root Then

there exists a system of solutions Wj(z, X), 1 < j < k + mk — 19 such that wjy

being holomorphic in {0 < \z\ < ε; argz Φ π/2} X {|̂ | < δ2} for some positive

ε depending on δ29 takes the following form.

z?*(l + zh(z)), j = l,

z«J(l + zh(z, log z))9 2 < j < k ,

za*((log z)j~k + zh(z, log z)), k < j < k + mk,

where h(z) and h(z, log z) stand for, respectively, a holomorphic function

and a polynomial in log z with holomorphic coefficients.

Proof. To verify (i), it suffices to compare the coefficients of za on

the both sides of (A.I). The Frobenius method yields (ii) [1, p. 133]. In-

deed, put L = zndn\dzn + zn-1c1d/dzn-1 + + cn, and denote by f(a) the

polynomial on the left side of (A.2). As is well known, we can find a

formal series

φj(z, λ, a) = zaΣ djp(λ, a)zp , dj0 = (a - a^~ι,
ί>=0

such that Lφj — f(ά)za(a — a^'1. Take δ so small that there is no roots

of f(a) in {\a — aό\ < δ) except for a3. Then it can be shown that djp(λ, a)

is homomorphic and \djp(λ, a)\ < K2p+\ K > 0, in {\a - a,\ < δ) X {\λ\ < δ2}.

Setting (Xj = ak for j > k, it suffices to put
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Wj(z, X) = (d/dodizl. φj(z, λ, a), l < j < k + m k .

By Osgood's lemma [3] w3 is holomorphic in {0 < \z\ < 1/K; arg z Φ π/2}

X {\λ\ < δ2}. Q.E.D.

Next consider a differential equation

(A.3) d/dzw = A(z,X)w, A(z,X) = £ Am{λ)z™,
m = - l

where A(z, X) is an Mn-valued holomorphic function on {0 < \z\ < £J X

{\λ\ < δ2}, A_x{0, X) being constant.

LEMMA A.2. (i) // the above equation has a solution of the form

za(p + zh(z9 log z)), then (A_i — a)p = 0.

(ii) Assume that aj9 1 <j < k, are characteristic roots of A_1 such that

(Xj — aj+1 is a positive integer and that there are no other characteristic

roots in Z+ + ak. Assume further that aj9 1 < j < k, is a simple root. Then

there exists a system of solutions Wj(z, X), 1 < j < k, such that wjy being

holomorphic in {0 < \z\ < e; arg z Φ π/2} X {|̂ | < 2̂} for some positive ε de-

pending on δ2, takes the following form.

zaί(p, + zh(z)) for j = 1, Z"J(J>J + zh(z, logz)) for Kj <k,

where (A_x — a3)pj = 0. The functions h(z) and h(z, log z) stand for the

same as in Lemma A.I.

Proof. Compare the coefficients of za~l on the both sides of (A.3).

Then (i) follows. The Frobenius method yields (ii) [1, pp. 136-137]. To be

more precise, let ψ(z, λ9 a, s0) be a formal series Σ^=o smzm+a such that ψ'—Aψ

= (a — A_^sQza~\ where ψ7 denotes the formal series Σ^ = o (^ + m)za+m~\

Then each component of sm (m > 1), is a rational function of a. Let δ be

small enough so that only a5 is a characteristic root of A_x in {\a — aά\

< δ}. When s0 = pu there exists a positive K such that \sm(λ9 a)\ < K2m+1

in {|̂ | < 2̂} X {\a — exj\ < δ}. We can set wλ(z, X) = ψ(z, λ, aupϊ). When

So = (a — ajY^pj (j > 1), sm(λ, a) is holomorphic and \sm(λ, a)\ < K2m+ί in

{Ul < &>} X {\<x — OCJ\ < δ] for some positive K depending on δ2. In this

case, set

wfa X) = (3/9α)ί:i^(2, λ, a, s0), j > 1.

The desired analyticity follows from Osgood's lemma [3]. Q.E.D.
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