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1ntroduction

In the theory of automorphic functlons it 1s 1mportant to investigate the
properties of the singular sets of the properly dxscontmuous groups. But we
seem to know nothmg about the size or structure of the singular sets of
Kleinian groups except the results due to Myrberg and Akaza [1], which state
that the singular set has positive capac1ty and there exxst Kleinian groups
whose singular sets have po/s1t1ve_1 dimensional measure. ,In our recent paper
[2], we proved the existehce of Kleinian groups with fundamental domains
bounded by five circles whose singular sets have positive 1-dimensional measure
and presented the problem whether there exist or not such groups in the case
of four circles. The purpose of this paper is to solve this problem. Here
we note that, by Schottky’s condition [4], the 1-dimensional measure of the
singular set is always zero in the case of three circles.

In §81-8 we shall give the more extensive criterion than that of the former
paper [2] for the singular sets of the Kleinian groups to have positive 1-
dimensional measure and define the general computing functions of order » on
a Kleinian group. In §4, using these computing functions we shall give the
example which solves the problem.

§ 1. Kleinian groups and isometric circles of linear transformations

1. Consider the properly discontinuous groups G of the linear transformations
which have the fundamental domain B, bounded by N mutually disjoint circles
{K;}{-:. Then there exist two different kinds of generators. A generator S,
of the first kind transforms the outside of a boundary circle K;, onto the inside
of a boundary circle K}, different from K;, and a generator S;, of the second
kind transforms the outside of Kj, onto the inside of Kj, itself. The former
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is the hyperbolic or loxodromic transformation and the latter is the elliptic
transformation Witﬁ period 2.

Let us start from B, and form a properly discontinuous group of linear
transformations with the fundamental domain B. Take 2p (N=2p)
boundary circles {H:, Hj}{.; from {Ki}{~;. Let S:be a hyperbolic or loxodromic
generator which transforms the outside of H; onto the inside of H;. We denote
by Si! the inverse transformation of S;. Then {S,:},il generate a Schottky
group G; whose fundamental domain B, B, is bounded by {H;, H!}i-,. Let
{T;}?-1 be the elliptic transformations with period 2 corresponding to the
remaining boundary circles {Kj}?.;, where N—2p=gq. Then {T;}?., generate
a properly discontinuous group G. whose fundamental domain B,D B, is the
outside of the boundary circles {K;}?.;. By combining two groups G; and G,
a new group G = G;*G:, which is generated by {Si}{., and {7;}{.,, is obtained
and is called a Kleinian group. It is easily seen that the fundamental domain
of G coincides with B,= B,;N B, and G is properly discontinuous.

2. We denote by ST the transformation obtained by composition of
transformations S and T contained in G, that is,

ST(z) = S(T(2)).

We put SS=S% and S*=S-S*"! inductively for any integer 2 (>1). For a
negative integer A, S* denotes (S™")'*'. Then any element S of G has the form

S= S(\’k) T‘J.k et Sl"l) Tj) S\Vo)) ViZ.,

¢} S(2) = Sop(Ti(* * = (T5,(Som()) * + +)),

where »; (i=0, ..., k) are integers and S(.;, denotes the |»;| product of gener-
ators of G, or their inverses and Tj, (T}, = identity) denotes the generator of
G.. We call the sum

K
m= 2|D,‘l+k
i=0

the grade of S. The image S(B,) of the fundamental domain B, by S (€ G)
with grade m (=1) is bounded by N circles S(H;), S(H}) and S(K;), (i=1,. . .,p,
Jj=1,...,4, N=2p+gq). For simplicity, we call the outer boundary circle
C"™ of S(B,), which is contained in the boundary of the image of B, under
some T ( € G) with grade m — 1, a circle of grade m. Circles {H;, H/}?-, U {K;}%.y;
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which bound B,, are of grade 1. The number of circles of grade m is obviously
equal to N(N—-1)"".

Denote by D, the N(N —1)" "ply connected domain bounded by the whole
circles of grade m. Evidently {Du} (m=0,1,...) is a monotone increasing
sequence of domains. The complementary set D% of D, with respect to the

extended z-plane consists of N(N —1)""!

mutually disjoint closed discs. The
set £E= (N Dj, is perfect and nowhere dense. ~We call E the singular set of
m=1

G. The group G is properly discontinuous in the complementary set of E.

3. For a linear transformation of the form

T(z) = %g:aé. ad—bc=1, cx0,

the circle I : |cz+d|=1 is called the isometric circle of the transformation
(See Ford [3]). The radius of I equals 1/|c|.

By a transformation lengths and areas inside its isometric circle are
increased in magnitude and lengths and areas outside the isometric circle are
decreased in magnitude. A transformation carries its isometric circle into the
isometric circle of the inverse transformation. The radii of the isometric
circles of a transformation and its inverse are equal.

Let G denote a properly discontinuous group of linear transformations.
We suppose that, if an element of G transforms the point at infinity into itself,
then the element is the identity of G. Consider two arbitrary transformations
of G

M = _az‘_>c_' —_— =
T: T(2) = czid ad—bc=1, c*x0,
and

: 25 o S S

S:8(2) = iy o ad—Pr=1, r=0.

We assume that S= 7' The isometric circle of ST = S(7(z)) is the circle
|(ra+dc)z+ vb+dd|=1.

Denote by Is, Is, Ir, It and Iy isometric circles of S, S”!, T, T°! and ST,
respectively. Let gs, gs, gr, g} and gor be their centers, and let Rs, Rr and
Ry be radii of I, Ir and Igr.

As to these values, the relation
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Ry Rz
@) R = a5l = Tah— gl
holds.
If the grade of a tgansformation in G is m, its isometric circle is called an
isometric circle of grade m. The number of the isémetric circles with grade

m is obviously equal to N(N~—-1)""%,

§ 2. Measure of the singular sets of Kleinian groups

4. Given a set ¢ of points in the z-plane and a positive number 4, we
denote by I(4, ¢) a family of a countable number of closed discs U of diameter
£u<3 such that every point of ¢ is an interior point of at least one U.

We call the quantity

Ae= lima_,o [( inf 2 f;}]

18, 8)} UEL(8, €)

the »-dimensional measure of «.

In [2] we obtained the important criterion for the singular set F of a
Kleinian group G to have the positive y-dimensional measure. But we need a
more extensive one to get a deeper result about the property of the singular
set E.

5. Denoting by ;™ and by r{"*" (i=1,..., N—1) the radius of the
outer boundary circle C{™, that is, a circle of grade m and the radii of N —1
inner boundary circles C{"*" (i=1,..., N—1) of the image Bm of the
fundamental domain B, by a transformation S (& G) with grade m, we have
the following (See [11).

ProrosiTiON 1.  There exist positive constants Ky (< 1) and k, depending

only on B, such that
(3) kariM <y <Kor™,  (i=1,...,N-1.

Denote by Fa, the family of all closed discs bounded by circles of grade
n (=n). It'is easy to see that F,, is a covering of the singular set of our
Kleinian group G and by Proposition 1 that the diameter of any discs of Fy,
is less than a given 6 (>0) for sufficiently large #,.

For such covering Fn, we have the following important

Prorosition 2 ([11). Let F¥® be a covering of E constructed by discs in Fa,
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whose radii are not greater than /2 ky and let rc be the radius of a disc C in

Ff.‘,,k", where ky is a positive constant in Proposition 1. Then it holds

-7
() LE=lim inf 3 (@ro) s ’;0) A'E,

&0 ),5 &y c ?‘6 ko
{ "/o } € n/o

6. Now we shall give a sufficient condition for the singular set of G to

be positive. For this purpose we need a following lemma.
LemMma 1. Let

(my b(mi

(my . . Q(my a’z+
S ).Jz'__S (2) = ATl

be a transformation of grade m in G and denote by r{™ the radius of a boundary
circle Ci™ of S™ (B,). Then there exist positive constants k(G) and K(G) depending
only on G such that

(5) EG)(R™* < (ri™ W< K(G)(R™)*, i=1,2,...,N),
where R'™ =1/|c"™ | is the radius of isometric circle of S'™.

Proof. The radius 7{” of a circle C{™ of grade m by S'™(z) is given by

dS'™ (2) ' ldz|
2arm = § | BEE sl = § 1o e

where H is a suitable one in {H;, H}}/.iU{K;}¢., which S'™ carries into C{™.

Hence, we have

(m) 1 S idzl .
e Py |2+ (d'™ [c™)]?

Again we note that the point —d‘™/c‘™ is outside of B,. If we put

d=max |z+ (d™/jc"™)] and 8 =min |z+ (d™/c'™)|,
*EH 2EH
then
T, l.m, < ‘"”S ,_r_..__..l_
£ lemt = = e

where 7 is the radius of H.
Such inequalities hold for all circles of grade m. Hence, there exist
positive constants 2(G) and K(G) such that
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EGYR™PZ(r™P<K(G)(R™),  (u>0).

In fact, we may take £(G) as the minimum of (#/4%)** and K(G) as the maximum
of (r/69)*", when H runs in {H;, H}}’-,U{K;}%-; and S™ (m>1) varies inG.
q.ed.

By using this lemma, we can prove the following
TueoreMm 1. Let G be a Kleinian group defined in §1. If there exists a

positive integer v such that

(6) E(RS(MJ.-\:))"' Z_(Rs(m!)u, (O<,u<4, S(”H‘w =S""’-S“”)

s(v)

for radius Rsw) of any isometric circle Isw) of grade m and radii Rgm+v) = Rgtmig(v)
of (N —1)" isometric circles Ismsv) of grade m + v, where the right element T of
S'™ does not equal to the inverse of the left element T* of S'™ in S™ =SS,
then the (un/2)-dimensional measure of the singular set E of G is positive.

o

Proof. Take a covering Fr,* of E constructed by a finite number of closed

discs Dstmuy, . . . , Dgimgr, which are bounded by circles
7 Cstmy, o v ., Csimgy,

respectively, where Cymy (1<7j<@Q) is a circle of grade m;, that is, an outer
boundary circle of the image S'™'(By).

Denote IBiBo (m;) by m*. We amend the covering F%” in the following

manner : (il):]i:f m; — m™ is a integral multiple of », we leave the circle Csmj
untouched, and (ii) if m; —m* =pep+r, (0<r<p), where p is positive integer,
we replace the circle Csimp with the (N — 1)" ™" circles Csm, Csim, o vy Csimy') vmv
of grade m; contained in Cynjy, where m; — m™ =»(p+1). After such amendment
s

we get a new covering *F,° whose elements are all the discs bounded by the

circles of grade m™*+ v+p. Denote such circles by
(8) Cg(mx'\, Csl'mz’), o v oay CS(mR’), (QéR)

Then we get from (3) of Proposition 1 the following inequality
Q R

9 El(rs(m]))"'/zZK(v)_zl(ﬂr(mj'))wa, (QER),
J= j=

where rumy and 7gmy) are the radii of the circles (7) and (8), respectively and
K(») is the constant depending only on » and B,. By using (5) of Lemma 1,
we obtain
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R R
(10) S (7o V= (G) S (Rsimyn ¥,
j=1

j=1

where Rsmj) is the radius of the isometric circle of the transformation S'”%".

From the construction of *F%* there exist in (8) some systems { Wy},
each of which consists of (N — i)” boundary circles with the following properties:
(i) (N —=1)" circles of Wi, have same grade number m{, while the grade of
circles of different systems are not necessarily equal, (ii) (N —1)" circles of
each system Wi, are totality of inner boundary circles of S"*"~*'(B,) for a
transformation S"™*~*' of grade m; — v so that they are bounded by a circle

of grade mf — v.

These (N —1)" circles in Wi, are arranged N — 1 by N — 1 and are replaced
by circles of grade m; —1 and after that, we repeat also such procedure and
so on. After » time procedure, we reach to the circle of grade mi — », that
is, the outer boundary circle of S™~*(B,). By the assumption (6), it holds,
for each system,

S (Rstmus=—ygo)* = Ry,

s(v)

where > denotes the sum when S runs over all the transformations of grade

s(v)

» whose left elements are not equal to the inverse of the right element of
S After replacing (N —1)" circles of each system Wy, by a circle
Csome-v) of grade my — v surrounding them, that is, an outer boundary circle

of S"™ ¥ (B,), we have also a new covering of E consisting of closed discs

which are denoted by Dgwm*), Dsmy, ..., Dgmy. They are bounded by
circles
(11\ cslnu"), Cs(mz“‘, c e ey Cx(mu"), (U<R)

Then there exist in (11) some systems { Wi, } which satisfy the above condi-

tions (i) and (ii) and hence, for each system of { Wi, ), it holds also

2( R_q(m,",— \a)g{"))“‘ = R,;(m,“/—‘z).
2
1

Repeating this procedure, we obtain the following

R
(12) }} (Rstmin) )= D1 (Rgm*)*,

J glm*)
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where m™ = min (m;) and the summation in the rlght hand side is taken over
1=5=Q
all transformations in G with grade m*. By a 31m11ar argument, if we put

m* =vepo+r1o, (1=r0<v), where p, is a positive integer, we see easily

(13) 2 (Rs(m.))u > L (Rs(fo))u = min ( 2 (Rs(n)) )

glm*) s(to) ) 1<'o<\‘ s(To)

where > denotes the sum with respect to all elements and their inverses of
8tTo)

grade 1o in G and in particular S, (ro=1), denotes a generator or its inverse.

Here the quantity in the right hand side of (13) is a positive constant. Thus,

for any covering F3* of E, we have from (9), (10), (12) and (13)

(14) E(rmmg))”’ = K* min ( 33 (Rsc)*) >0,

I=ty<v  g(Tp)
where K*= K(»)k(G). Putting 7= —‘2‘— in (4), we ‘can prove our Theorem
from (14) and Proposition 2. q.ed.
§3. General computing function of a Kleinian group-
7. Let us consider a transformation

S =SSN = STy« + Ty Ty, (S™ =S VT, T77% Tjna
(1<j<v—1) and T5'% Tk)

of a Kleinian group, where T% and Tj (1<j<v—1) are generators or their

inverses. Let Rs be the radius of the isometric circle of S®. Then we have

from (2)
Ry, Rgim+v-1) Rz Ry, Rgim+v-2)
Rg(m+v) =T = ; : 7 = e e e
7, " Zg(m w-:)l ]gn — Zgtmrv=1)| lgf, - gs(mm—z)l
Ry, Ry, Ry,
= 7 e e - ’Rs(m),
lgh s(M+\' l)l lgTz_gs(m-.w—z)! |gT\.—'gs(m)l
and therefore
Rsemivy \» v Ry, B
(15) ) = {——————1, (0<p<4).
( Rs(m) ) ;,1{ igl gs(1n+v-z)l } ( ¢

Noting that ’ gs(m) = S—(””(oo)g gs(m)T“ = T\T‘S_(M) (Oo), « o o gs(m)a'vf'\,_

1. Ti41

=gyme-n =T+ «TILTT'S™'™ (), (15) is also written in the form

( Ram+v) )u

Ry, :
Rs(m) : }PL

16) -1 , .
( i=1{ Ig'r.-_1 =Tt~ T7AT IS T (o) !
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Since &1 = Ti( @), ggmiv-iy= Tit1 - T7LT'S ™ () and TixTitl, &r;?
and gymsv-sy are contained in the different boundary circles of By and hence
each denominator of the product in the right hand side of (16) does ndt vénish.

If we replace ggm =S () by z in the denominator of (16) and fbrm
the summation with respect to all S (Tx= T') of grade » in G, we obtain

the following function

-y RT' . W,
(kv _ . : .
a7) Tk (&) = S%Ll}l{ lgrfl" i TIALT(2)] } ]
(Tyert identity, T3 % T,

where z varies on the closed disc bounded by H;, the boundary circle of B,
mapped onto the boundary circle H/, of B, by Tk. Since the (N —1)* denomi-
nators of (17) don’t vanish, f7.*(z) is continuous in the closed disc D;, bounded
'by H;, and hence uniformly continuous. It is obvious that
F4gwm) = 35 (LY

We call fi2(2) the p-dimensional computing function of order » on T%
and there exist N computing functions f#*(z) (¢=1; ..., N) in all, since
the last element T% of S™™ is any generator or its inverse of G. Such functions
(Ffi*(2)}, (k=1, ..., N) are called the u-dimensional computing functions
of order » on a Kleinian group G.

8. We take a generator or its inverse 7; and consider the x dimensional
computing function f,;*(z) of order » on 7i. Then f}2*(2) is defined in the
closed disc Dy; : |z~ ar;|<rr; bounded by Hr, which is a boundary circle of B,
mapped onto Hz, by Ti. Since f7:*(z) is uniformly continuous in Dr,, we can
choose ¢ depending only on any small e, so that it holds | f{¥(2) — fF#'v(2')| <e
for z and 2’ satisfying |z—2'| <4 in Dy,.

.Denote by E; the subset of E contained in Dr,. - Since, from Proposition 1,

any radius '™

of circles of grade m is equal or less than K 7V (K;<1),
which tends to zero for m - «, there exists a grade number 7, depending only
on § so that for any S = SV T; (m=m,) there is z, € E; such that gsm € Ds(z,),
where D;(z,) denotes the disc with center z, and with radius 6. Hence it can

be seen that
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(18) l!f}'j“‘(zn)— V(g <e,  (m=my).
Suppose that
(19) fEz)> A, for any z€ E;.
Then we have from (18) and (19)
LF2 (gsm)| 2 IF8™ (201 = 15 (ggom) = F2(20)| > 4 = e
Now we prove the following

TueoreM 2. Let G be a Kleinian group whose Sundamental domain is bounded
by N boundary circles as in §1. If

(20) M >4>1, (G=1...,N)
on the singular subset E; of E contained in the boundary circle Hr, (i=1, ..., N)

of B, respectively, then the singular set E of G has the positive (%)-dimensional

measure.

Proof. For any i, take ¢ so small that it may hold ; ~e>1(i=1, ..., N).
Then we can determine ‘the grade number m, such that the inequalities

fE(gem)>2i—e>1, (S =S"VTy, m=2m, ; i=1,...,N).
hold. Hence we have the following inequalities

E(Rs(m%-v))“' = (Rs(rm)p', (S(Mh‘) =88 0« u<4)

S\v)

for radius Rgm of any isometric circle I4m of grade m and radii Rswms of
the (N —1)" isometric circles Isimson of grade (m+wv). Thus, by Theorem 1,
we get the theorem. q.ed.

9. In order to determine the positiveness of the p-dimensional measure of
E, it is important to seek for the values A; (i=1, . .., N) as sharp as possible
one can.

If we put z;+1(2) = Tih- - - T7LT2) (=1, . .., »—1)in (17), we obtain

- Ry Ry, Ry s
21) £ (2) = e ot v L v e
( /7 mzwl lg1;1—22(z)l lgr;_'l-z;(z)l lgr;‘—zl ]

Denote by Ds the minimum closed subdomain, which is contained in D bounded

by the boundary circle Hs mapped onto H% by S and further contains: the
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singular subset of E contained in Hs. We put z.,(D5,) =D/, and note that
E?«e-lcl);i-&—e'
Let

(22) {:(2), ..., 2i(2), ..., 2.(2), 2}

be a coordinate of » complex numbers, where z€ D7, and zj(z) € D, (2<j<»).
Since the number of S™™ =TS = T7'T;'+ -+ T;' with T7's Tk is
(N —1)""%, there are (N - 1) number of coordinates in all.

Let only the first component z. in (22) move freely in DJ for fixed z;(z)
(3<j<v). Then we have

(23) @z min 3| R, . _Rn ]”
ey " g -Z~(z>' " lgryt— 22 lgr;1- 2l -
on Df,, where (z) & ( D7) denotes that the first component z: of each coordinate
with the form (22) moves in each minimum closed subdomain Df. We note
that there are such (N —1)""! closed subdomains.
After this procedure, let only the second component z; of each coordinate
with the form (22) move freely in Dy for fixed z;(z) (4<j<v). Thén we have

f2(2)= min { min [ " 1*} on D5,

(z0E(F3)  (EnE(R7 sV)

where (z;) € (D) denotes that the second component z; of each coordinate
with the form (22) moves in each minimum closed subdomain D¥. There are
such (N—1)""2 closed subdomains. Repeating this procedure, we obtain the

following inequality :

(24) fEM@DzZmin{ min {--+{ min 3L " he e}
=Dy, (2VERY) (z)E([ 3 V)
on Dr,, where (z)) (Df), (i=2,...,v) denote that z moves in a minimum

closed subdomain DF. If we denote the right hand side of (24) by Az, we get
the following

(25) D= K, (k=1,...,N).

§4. Examples of Kleinian groups whose singular sets have
positive 1-dimensional measure

10. In our recent paper [2], we proved the existence of Kleinian groups

with fundamental domains bounded by five circles whose singular sets have
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positive 1-dimensional measure and presented the problem whether there exist or
not such groups in the case of four circles. Here we note that, by Schottky’s
condition [4], the 1-dimensional measure of the singular set is always zero in
the case of three circles.

In this chapter, by using the conditions (for x=2) of Theorem 2 and the
method of No. 9, we shall show the existence of Kleinian grou‘ps'with fundamental
domains bounded by four circles whose singular sets have positivé 1-dimensional
measure.

As the preliminary to give our example, at first we shall show how to
construct a transformation 7 which maps the outside of a circle H onto the
inside of another circle H', where H and H' have equal radii, though in
generally we can set up infinitely many such transformations.

Denote two circles by
H:l|lz—ql=r, H :lz-¢ql=7

If T is restricted by the conditions: ¢' = T() and g¢= T (), it is easily
seen that T has the following form

(26) 2 =T = 12=(a0 + r'e”) |
z—q

where 6 is any real number and the isometric circles Ir and Ir- are H and H'
respectively.

11. Secondly we shall give two lemmas which we shall need later.

LemMma 2. Let Pi=P(R, 0) and P»= P(R, =) be fixed on real axis in the

complex z-plane and P = Plr, 0) move on the fixed circle C, : |zl=r. Then the
2

Sfunction fiP)= ETP]%Z of P attains its minimum at the points on the imaginary

axis, where PP; denote the distances between P and P;.

Proof. By using the polar coordinates, we obtain

N S 1 _
fir, 0)= R*+7*—2 Rrcos @ + R*+7*+2 Rrcos 6
2(R* +7%) .
= RErh-dRicesyt ) fixed)
Hence the minimum is attained at 6 = g or —g-n'. q.e.d.
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Lemwa 3. Let Pi=P(R, — 2). Pi=P(R ) and Py=P(R, =) be fired

3 3
in the complex z-plane, and P= P(r, 0) move in the fixed closed disc U : !zlg—lzi-
3
Then the function f(P) = ﬁi—T attains its minimum at the origin.
=1 1

Proof. As in Lemma 2, we obtain the following representation of f(P):

f(r, ) = 1 + 1 o

R*+ 72—2chos(% - 0) R4 7*-2 chos(-g~ + 0)

S 1 ..
R2+7%*+2 Rrcos @

If we differentiate with respect to @ for fixed », we have

. w . T
of  2Rr sin(5- ~0) o sin( 5 +0) )
o0 — (R™+r?)? 2 Rr T \\? 2 Rr ™ 2
{1 - *R‘g—_{_—;{ COS(—3— el 0)} {1 - _‘R’z-—_*_rz CO?(? +0)}
+ sind 9
{1 2 Rr 0}2 = -16—a2(2+a)(2—a) sin 3 6,
+ Ritr? cos
where a = ~g,~l—ei,~ (£1). Hence the values which satisfy the equation of —9
Ri+r o8
. 4 w
in 0§0§~3~- are 0 and KN
Since

P(r, 0) (or P(r, —7«?})) is the point at which f(r, §) attains the minimum (or
the maximum) for any fixed 1"(0_3_7'_3~ _123)

We differentiate f(7, 0) with respect.to 7, and see that jiﬁ;rgl has only

one zero point in 0<7»< £- at which f(», 0) takes the maximum value in

2
osrs R, Hence the inequality
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70,0 =3 <f(F 0)=-2s
implies that f(0, 0) is the minimum value of f(7, 0) in 0<7< 12? and hence
that of f(», 6) in U. g.ed.
12. Example. The case of N=4.
Consider the three circles H; (j=1, 2, 3) with centers a; = 2450

(7=1,2,3; = —1) and equal radii v3 —e¢, respectively. We let these three
circles H; (j=1, 2, 3) correspond to the elliptic transformations S; (=1, 2, 3)
with period 2.

Then we obtain a Fuchsian group G; of the second kind with the fixed
circle |z|=1+¢. The singular set of G, is on the circle |z|=1+¢ and is
nowhere dense. Next we describe a circle H; with center at the origin and
the radius 2—v 3 and let it correspond to the elliptic transformation S; with
period 2.

Combining the Fuhcsian group G; with G genérated by S:only, we obtain
a Kleinian group G, that is, a combination group G,*G., whose fundamental
domain B, is connected and bounded by four circles H; (j=1, 2, 3, 4).

For convenience of the calculation, we consider the limit case ¢e=0. Then
B, is no more connected and the fixed circle of G; is |z|=1.

Denote by D; (j=1, 2, 3, 4) the closed discs bounded by H; (=1, 2, 3, 4)
and by V the closed unit disc. Then the singular set E of G lies in the inside
of Vn \U D,} The generating transformations of G have the following forms

J=1

(see (26)):

21 ‘1_ UG-
i) = V3" \/§ . (=123

‘_____, .
(27) e T 28
( 73 2+ o=

]
S4(Z) = ——~(2 ~ \/z3 )’e ’

(6 ; Y real number).

By the symmetricity of the figure, it is sufficient to calculate the values
of the computing functions fi*(z) and f&"(z) of order » in VN D, and Dj,
respectively.

48 Case of order »=1.

(a) 1t holds that in VN D,
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3 2 52

.

2 lz—ajl |z]?
We see from Lemma 2 that it attains the minimum at z=7 in VN D,. Hence

i) > ?—-+ (2-v3)*> 0928 on VND,.

The condition (20) of Theorem 2 is not satisfied.
(b) It holds that in D,

(q?))(z) = i (J§)2 .

= lz—ajl
Since f{'(z) attains the minimum in D, at the origin from Lemma 3, it holds

9

FOrz) = (‘_/‘zi)zx 3= = 2.25.

In the cases of order »=2, 3, 4, we can not obtain the desired results.
But in the case of order » =5, we do succeed as shown below.
(ID Case of order v = 5.
The 2-dimensional computing function of order 5 is as follows:
2 2
) = ?5 lgrt = T{‘?I‘e;"'Tr‘T;’(N g - T{}’e;‘zI‘T;'(z)!’
oo R o RW Rn
lgryt =~ TOT D g - T5 ' @F " e — 2|
($S® = TTTTTy, T;'> Tjv (1£5<5)),

(28)

where ze D (TexT5 V).

By the symmetricity of the figute, it is sufficient to calculate the values of
FP%2) and f5*(2) in VN D, and D,, respectively, according as T is Si or S..

Now we shall give some preliminary appreciations.

(a) We denote by >)'" the sum taken over all the S =S“7T, with
the same S = T5TuT3T,. By (I) we have

S R,

o e i = 0.92 292
!g-,.l—l _ (S“’)"’(;)[‘ = 0.928 or 2.25

according as 73 is one of Si, S: apd S; or 7>=5;.

(b) We denote by >.'® the sum taken over all the S = S'® 7,7\ with
the same S'® = 757.T;. See the table from above.
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(b. 1) The case of 75=S;. By (a) and Lemma 2, we have

2(2) R}l R;-, >0.928 2 R;:
g1 = (ST @ gyt = ST @DF T ni s gt — (ST @F
3 6 -t
= —~ - -.
+225x% FEEGRR: 20928 x o +225% (2-V3)

In the cases of T3=3S; or S; we have the same.
(b.2) The case of T5=S:;. From (a) and (I) we have

Sy 2 . R;" - =20928 > Ry, -
lgr;‘ — (su:)-l(z)lz lgr;‘ _ (S(a))—l(z) ‘- Ta=8;, 82, 8y lgr;l — (S(a))-l(z) la
. =0.928 x 2.25.
Thus we obtain the last column of the table.
TABLE
T: T
T3 - = =
2 [ (S®)=1(z) 2 _ | (S¥)-1(2)
T: Ra, &5 | ‘moves in | 11 [ Rz, ! 817" | ‘moves in
| S1 3 a1 ' a
Sa2 3 a: Sa 3 as D:nV a
St (2—5/ 3)2 a c2
S1 i 3 a1 ca
S S3 3 as DinVv Sz 3 a:z DinV 1
St {(2—~/3)Y aq c
S1 3 a1 a
Si |(2-4/3)Y a¢ | S2 3 a: Dy a
! Ss 3 a3 €1
I & 3 az a
S1 3 a1 Ss 3 as DinV 2}
Si |(2—=~/3)Y a a
¢S 3 a1 a
Si S: 3 a D, Y] 3 | as D0V a
| S [(2-~/3)7 a a
St 3 a1 a
Ss 3 a3 Sz 3 | @ DinV a
Si [(2—-+/3)Y a e
T 2 _ T (2) 2 T T (2) B
T Ty l Ry, & | moves in | 1° Ry, 877" | ‘moves in | is not
s T. Ts less than
]= 2!2) R;l R;,

lgrl‘l - (8(4))‘1(z)lz 4 !grz‘l — (S(a))—l(z)lg .

1= 0928 x ,? +225%(2- V32
¢ = 0.928 X 2.25.
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(c) We denote by >)'* the sum taken over all the S with the same 7.
See the._table from below.
(c.1)  The case of T5=S:. Using (a), (b), Lemma 2 and (I), we have

I, =S1@ R, ) R, . R;-‘
" lgrr1 = (ST g1 = (SR g1 = T T (D
. Rz,
lgryi— T35 (2
R: 3
2 8 3
= (ax 2 g = TOT@F 2% g = TI’T{’(z)lz) *

2
83

X
U gy - TP
2 2
Re 7 +aX -q; =1 2) ’
| lgsri— T1'T: ()]

+(C;X >3

T3=8;, Sz |g1';1 - TA-I ;l(z)

2
83

x —————————————————————
}gs;'“ T;](Z)Iz

+ax 3 Ri, X J
Y nednen e = TOTS@F T gt - T @
;{g‘ X o+ (2=-V3)x cz} PN Rz, +225(2=V3)’ xer
7 Ty=82, 81 lgr;‘ - 5—.‘(2)12
2 — _
> {(%) +225(2=V3)*}er+ g (2~V3)%e.

In the cases of 75=S; or S; we have the same.

(c.2) The case of T5=S;. Similarly we have

R:,

6 Sl B
Tq=8, 83, 8 lng—l - T;,(Z)Iz

[th{ = Xa+(2- \/-3—)2&}

>2.95 x ,‘]5 Xei+2.25% (2=v3)xe,

Now we can show that f7*(z) >1 for any Ts.
(A) The case of Ts=S:. Inthis case T; takes on S;, S; and S;. Hence,
by (c) and Lemma 2, we have
R%, R& RS,

F @) =T x - 2 T x M+ I, X
8 S2 ]gs;l _ zlz Sy Igs;' _zlz 8 lgs‘_l _ zlz

=[{(8) +225x @-VE} xar Sa-yDixa]x 5 Xn

7 s s | grpt — 2fF
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+@=v3)ix{225% & xa+225x 2-vI) xaf

= S[{(8) +225x 2= VB xat S@-VE)xa ]+ @-VB)x
x {2.25 x 2} X6+ 225X (2 = V3)PX c2} > 1.002004.

(B) The case of Ts=Si:. T; takes on Si, S; and Si, so that we have

re@ z[{(8) +225x 2=V xa+ §(2- V3] x225> 221887,

Thus we see that the condition of Theorem 2 is satisfied and have

TueoreM 3. Under Kleinian groups whose fundamental domains are bounded
by mutually disjoint N (=4) circles, there exist ones whose singular sets have
positive 1-dimensional measure.

Recalling our result about Poincaré theta-series [1], we have the following

CoroLLARY. Under Kileinian groups whose fundamental domains are bounded
by mutually disjoint N (=4) éircles, there exist one, the ( — 2)-dimensional Poincaré
theta-series 6:(2) with respect to which does not converge in D*, where D* denotes
the compact subdomain of E° given ‘by deleting the suitable neighbourhoods of the
poles of 6:(2) and their transforms on G from any compact subdomain D C E°.

13. Considering the Schottky subgroups G* of G given by inversion method
(see [21), we have the following

TureoreM 4. There exist - Schottky groups whose fundamental domains are
bounded by 6 boundary circles and whose singular sets have positive 1-dimensional
measure.  The ( —~ 2)-dimensional Poincaré theta-series 0:(z) with respect to such
Schottky group does not converge in D*.
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