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QUASILINEAR WAVE EQUATIONS AND RELATED

NONLINEAR EVOLUTION EQUATIONS*

YOSHIO YAMADA

Introduction

In this paper we consider the relations between quasilinear wave equa-

tions

( 1 ) utt - Σ tfί/grad u)utj + cut = f,

and related third-order differential equations

(2 ) uu - λΔut - Σ α*/grad u)uid + cut = / ,

(λ is a positive parameter) with the same initial conditions

(u(x, 0) = uo(x) ,

[ut(x, 0) = vo(x) ,

where x = (xl9 x2i - , xn), t ^ 0, u == W(Λ:, 0» Wί = 3u/3ί, w« = d2u/df9 ut =

du/dXi, uυ — d2uldXidxj9 grad w = (MJ, M2, , un) and Jw = 2]?-i w« I n equa-

tions (1) and (2), c is a real number and atJ = α^ (i, j = 1, 2, , n) axe

real smooth functions satisfying

Σ *ifyiX£, ^ αo(p)\ξ\\ |f |2 = ± fϊ,

for every 57 e iϊn, |^| ^ /o and f e i?TO, αo(ρ) being a positive non-increasing

function.

Equations of type (2) were first proposed by Greenberg, MacCamy and

Mizel [7] in the case n = 1. They have dealt with equations of the form

( 4 ) utt — σ(ux)uxx — λuxtx = 0, λ > 0 ,

to approach quasilinear wave equations for a nonlinear string model
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32 YOSHIO YAMADA

(5 ) utt - σ(ux)uxx = 0 ,

where σ is a positive smooth function. Their idea is based on the viscosity
method; —λuxtx in (4) may be considered as a viscosity term and the limit-
ing procedure λ j 0 will enable to find a solution of (4). However, they
have not obtained any relations between (4) and (5), although they have
established the technics to treat equation (4).

In Chapter I, we give a systematic study of equations (2) with initial
conditions (3). Mixed problems for equations of the form (2) have been
considered by several authors, Clements [1], Ebihara [4], [5], Tsutsumi [19],
Yamada [20] and Kozhanov, Lar'kin and Janenko [25]. However, their
technics are based on the Galerkin's method, which is not applicable to
our initial value problems. To overcome this difficulty, it is necessary to
seek a new approach. Our idea is to reduce the original problems to
the initial value problems for abstract evolution equations in a suitable
Hubert space, so that general theory for evolution equations may be applied.

We introduce the usual Sobolev space Hm of order m, where m is an
integer such that m JΞ> [τι/2] + 1. By defining a negative self-adjoint oper-
ator A by

Au = (A - ί)u for u 6 D(A) = Hm+2 ,

(D(A) = domain of A), initial value problem (2), (3) can be written as

(utt - λAut - B(u) + (c - λ)ut = /, t^ 0 ,

[u(0) = Wo, ut(0) = v0,

where

n

Now it is very convenient to introduce two unknown functions v(t)
and w(t) by

υ(t) = ut(t) and w(t) = Au(t).

Then (6) is rewritten in the following form

[U® = AU(t) + B(U(t)) + F(t), t^O,

where
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It is possible to show that A generates an analytic semi-group of
bounded linear operators, T(t), t^> 0, on Hm X Hm and that 5(17) is a
locally bounded and Lipshitz continuous operator in Hm X Hm. Therefore,
the differential equation in (7) may be regarded as a semilinear evolution
equation of parabolic type. Moreover, initial value problem (7) becomes
equivalent to the following integral equation

( 8 ) U(t) = T(t)U0 + P T(t - s)(B(U(s)) + F(s))ds .
Jo

It is not so difficult to solve (8); for example, it suffices to make use of
the fixed point theorem to obtain the local existence of a solution for (8).
Hence, returning to the original problem, we can get the local existence
result of solutions to (2). To extend a local solution u to an appropriate
interval, it is sufficient to derive a priori estimates for u by the usual
energy method. In general, the existence interval depends on u0, v0 and

Especially, to extend a local solution u to the whole interval [0, oo),
we have to get some a priori bounds for u on [0, oo). Roughly speaking,
this is possible if c is positive and the data (u0, v0, f) are sufficiently small
in a sense. Thus, we can get sufficient conditions under which initial
value problem (2), (3) has a global solution u. Moreover, as is expected
from the presence of the dissipative term cut (c > 0), the global solution
u does decay to zero as t-> oo when / Ξ O , The weighted energy method
yields precise decay estimates of such u.

In Chapter Π we shall establish the existence results for initial value
problems (1), (3) by making use of the existence results for initial value
problems (2), (3). One of the typical examples of equations (1) is the fol-
lowing

which describes the nonlinear vibration of a string for n — 1 and that of
a membrane for n = 2.

Though there are a number of researches on the quasilinear wave
equations (see e.g. Dionne [3] and Sobolev [18]), our approach based on

https://doi.org/10.1017/S0027763000019553 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019553


34 YOSHIO YAMADA

the viscosity method seems very new.

We now explain our idea. Let uι be a solution of initial value problem
(2), (3) (we put the superscript λ to specify the dependence of X). It is
natural to expect that uλ will converge (in an appropriate sense) to a func-
tion as λ I 0 and that the limit function u° will become a solution of initial
value problem (1), (3).

It is true that the local existence result in Chapter I assures the ex-
istence of a local solution uλ of (2) and (3). But this is unsatisfactory,
because the local existence interval [0, r] with some τ > 0 also depends
on λ and τ = τ(λ) may tend to zero as λ J, 0. Therefore, one needs to carry
out more delicate calculations than in Chapter I. By employing the energy
method, it is possible to show the existence of an interval [0, To], inde-
pendent of λ, on which any solution of (2) and (3) has a priori bounds
independent of λ. This assures the continuation of a local solution uλ of
(2) and (3) to [0, To].

It is in the standard way to prove that there exists a function u°(t)
= lim^ ι o uλ(t) for 0 <* t <̂  To (in a certain sense) and that the limit function
u° is a solution of (1) and (3) on [0, To]. Our local existence result for
(1), (3) obtained in this way is not new, but the approach via the viscosity
method seems simpler than the existing one due to Dionne [3].

When c is positive, we can also get the global existence result as in
the case of initial value problem (2), (3). The smallness condition on the
data (u0, vθ9 f) yields some a priori estimates for the solution to (1) and (3),
which enables the extension of the local existence interval to [0, oo). In
this sense, the dissipative term cut plays a role to stabilize solutions to
(1). Furthermore, it has a damping effect on solutions. In fact, if / =
0, one can derive the rate of the decay to zero for solutions to (1) as
t —> oo .

In this paper our investigation is restricted to equations of the forms
(1) and (2). But the methods presented here can be applied essentially in
the same way to equations of more general forms

utt — λΔut — Σ au(χ> t> u> & r a (l u> ut)Uij + b(x, t, u, grad u, ut) =

and

n

utt — Σ aij(χ9 >̂ u> Ŝ Q d w, ut)Uij + &(#, ί, w, grad w, wt) = / .
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Notation

We summarize some notation which will be used throughout this
paper.

Let x = (xu x2, , xn) £ Rn and dx = dxxdx2 dxn. Functions ap-

pearing in the present paper are all real (without their Fourier trans-

forms). As usual, denote by Lp (1 <̂  p <̂  oo) the space of all measurable

functions on Rn such that

RJu(x)\pdxJ if l£p< oo ,

II u\\Loo = ess sup I u(x)\ if p = oo .

If p = 2, U is a Hubert space with the inner product

(u, v) = u(x)v(x)dx .

For simplicity, we write || || in stead of || \\Lt.
Let k be an integer ^ 1. The Sobolev space ΈP of order k on Rn is

defined by

Hk = {u; D%u e U for any α such that |α| <ί &} ,

where

g«i+...+«
—-ί —-, , an), \a\ = ^ + + an

and the derivatives are taken in the sense of distributions. We provide
Hk with the inner product

(μ, v)k = Σ Φiu, Dlϋ)

and the norm

An equivalent definition of ΈP is given with the use of the Fourier trans-
form. If u e L2, the Fourier transform u in U is defined by
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Λ n

where the integral convergence is taken in the sense of L2. Then

Denote by Cj3 the space of all infinitely differentiable functions with

compact support. It is well known that Cj° is dense in Hk for any k.

Let I be any subinterval of [0, oo) and let X be any Banach space.

We denote by C(I; X) (resp. CW(I; X)) the space of all functions u such

that u is strongly (resp. weakly) continuous from I to X. Cj(I; X) (resp.

C3

W{I X)) denotes the space of all functions u e C(I; X) (resp. CJJ\ X))

such that u is -times strongly (resp. weakly) continuously differentiable

from I to X We provide Cj(I; X) with the uniform (strong) convergence

topology on /.

Chapter I. Nonlinear Evolution Equations with Strong

Dissipative Terms

§1. Problems and results

In this paper we consider initial value problems for the following

differential equations

(1.1)

(1.2)

(1.3)

utt — λΔut —

u(x,

u£x,

(grad

0) =

0) =

I u)uίf H

uo(x),

υo(x),

h cw* = Λ xeRn, t >o,

where Λ is a positive constant and c is a real number. We sometimes call

the linear term —λΔut a "strong dissipative term". (This terminology is

due to Ebihara [4]).

An equation of type (1.1) was first proposed by Greenberg, MacCamy

and Mizel [7] for n = 1. They considered equations of the form

utt - σ{ux)uxx - λuxtx = 0, λ > 0 ,

to approach quasilinear wave equations of the form

utt - o{ux)uxx = 0 ,
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where a is a positive smooth function (see also the works of MacCamy and

Mizel [11] and Kozhanov, Lar'kin and Janenko [25]). For general n >̂ 2,

equations of type (1.1) have been treated by Clements [1], Ebihara [4], [5],

Tsutsumi [19] and Yamada [20]. However, problems treated by them are

mixed ones in a bounded domain with the Dirichlet boundary condition.

The initial value problems (1.1)-(1.3) have not been solved yet.

Throughout this paper we assume the following. Put N = [n/2] + 1

([•] denotes the Gaussian bracket) and let m be a positive integer satis-

fying m^iN.

(A.I) dijiη) belongs to the class Cm+ί(Rn) for every i, j = 1, 2, , n.

(A.2) atj(η) = aάi{η) for every η e Rn and i, j = 1, 2, , n.

(A.3) There exists a positive non-increasing function α0 satisfying

Σ <*<&%& ^ ao(p)\ξ\\ |f |2 = ± ξl ,
i l

Σ
ij l

for every η e Rn, \η\ ̂  p and ξ 6 Rn.

Now we begin with the local existence theorem for (1.1)-(1.3).

THEOREM I (local existence). Let u0eHm+2

9 voeHm and fe (^([O, oo);

Hm). Then there exists a positive constant τ such that the initial value

problem (1.1)-(1.3) has a unique solution u on [0, τ] satisfying

ueC([0, r ] ; Hm+2) Π C'tfO, τ]; Hm) Π ^ ( ( 0 , τ] ; Hm+2) Π C2((0, τ] ; Hm) .

In particular, u also satisfies

ueσ([0,τ];Hm+1) ifv0eHm+1 ,

and

u e σ([0, τ] Hm+2) ΓΊ C2([0, τ] i ί m ) i/ v0 e JSΓm+2 .

As to the global existence of solutions to (1.1)-(1.3), we have

THEOREM II (global existence). Assume that c is positive. Let u0 e

Hm+Z, v0 e Hm+1 and fe C f̂O, oo); Hm) Π C([0, oo); Hm+ί). Then there exists

a positive number d (which depends on λ, c, m, n and D^aυ (\a\ ̂  m + 1))

such that, if the data (uθ9 v0, f) satisfy

m a x [ | | W o | | m + 2 , | |ϋo |U+i, J

then the initial value problem (1.1)-(1.3) has a unique solution u on [0, oo)

satisfying
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u e C([0, oo); Hm+2)Π C'tfO, oo); Hm+1)f] ^((0, oo); Hm + 2)Π C2((0, oo); Hm) .

In addition, u satisfies

(1.4) sup| |M(ί)| |m + 1<oo ,

(1.5)

(1.6) Γ\\ut(s)\\2

m+2ds < oo ,
Jo

(1.7) Γ
Jo

Theorem II assures the existence of a bounded global solution u of

(1.1)-(1.3). So we may investigate the asymptotic property of such a global

solution u. For simplicity, we set / = 0.

THEOREM IΠ (asymptotic decay). Assume c > 0 and f = 0. Lei w 6e

£/*e solution of (1.1)-(1.3) in Theorem II. ΓΛen u decays as follows.

(1.8) || grad u(t) \\l+1 = O(t~') as ί > oo .

(1.9) || M|(ί) II2,,! = OiΓ1) ast — • oo .

(1.10) \\Mt)\\l = O(r2) as t > oo .

(1.11) ||grad ut(f)\\l = O(Γ2) as ί > oo .

§2. Some Lemmas

In this section we shall prepare some lemmas which will be used later.

LEMMA 2.1. Let F, G and H be non-negative continuous functions on

[o,n if

F(tY ^ Γ G(τ)F(τ)dτ + Hit), O^t^T,
Jo

then

F(t) < 4 Γ G ^ ) d τ + SUP #(s)'/2> O^t^T.
2 Jθ O^sg t

Proof. Put

X(s) = Γ G(τ)F(τ)dτ and H^t) - sup H(s) .
Jθ O^s^ί
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It follows from the assumption that

ds = 2 = =

Integrating the above inequality over [0, t], we obtain the conclusion.

[q.e.d.]

For the Sobolev space Hk, the following result is well known (see e.g.

Mizohata [14] or Sobolev [18]).

LEMMA 2.2 (Sobolev's lemma). Let u e Hk(k :> 1).

( i ) If k^N= [n/2] + 1, then, for \a\ ̂  k - N, Da

xu belongs to SI {the

space of all bounded continuous functions on Rn). In addition,

\\D"XU\\L~ ^ C| |M||Λ for \cc\<>k- N,

where C is a positive constant depending on a, k and n.

(ii) If k <I N — 1, then u belongs to Lv with

— e [ — - —
p L2 n'

In addition,

\\u\\LP^C\\u\\k,

where C is a positive constant depending on p, k and n.

Moreover, we have the following result based on Sobolev's lemma.

LEMMA 2.3. ( i ) Let m = N {= [n/2] + 1) and let u3 (j = 1, 2, , r)

belong to Hm. If multi-indices v3 {j — 1, 2, , r) satisfy 2ϋ5-i 1̂ 1 ^ m9 then

DtuιDx

2u2 - Dζur e U .

In addition,

where C is a positive constant depending on n, ι>\ v2, , vr.

(ii) Let m^N+1 and let u1 e Hm, uj e H™'1 (j = 2, 3, , r). If

multi-indices v} (j = 1, 2, , r) satisfy \vι\ ^ \v*\ (j = 2, 3, , r) and 2]J-i | ^ |
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In addition,

l i f t V W - Ώζu*\\ £ C\\υ}\\m Π H^IU., ,

where C is a positive constant depending on m, n, v\ ι?9 , iΛ

Proof. For the proof of this lemma, see e.g. Mizohata [14, Chapt. 7].

[q.e.d.]

Now we are in a position to show the next fundamental lemma which

will be of frequent use. For convenience, put

Mk(p) = sup {\Da

ηai3(η)\; 1 <L i, j £ n, \a\ ^ k, for η e Rn with \η\ <; p}

and denote by C(a, 6, •) various positive constants depending on α, b, .

LEMMA 2.4. Suppose that (A.I)

( i ) Let u, veHm+2. Then

vtJ\\m

( 2 1 } ^ C(m, n){Mm(||grad w|U)(l + ||grad u\\$\\A(u - u)||m
+ Mm+1(||grad M|U + ||grad ι;|U)(l + ||grad u |β + ||grad ϋ|β)

X| |J ι ; |UI |grad(M-i;) | | m },

/or ei βry 1 ̂  i, j ^ n.

(ii) Let ueHm+2 and let \a\ ̂  m. Then

(2.2)
^ C(a, Λ)M |β|+1(||grad u\\J)(l + ||grad u\\$a)) \\Au\\lω

/or 1 ̂  i, j ^ n, where N(ά) = max {|αr|, iV}.

(iii) Lei u,veHm+2 and let \a\ <ί m.

w)^} - aυ(gra.d u)Da

xvtj\\

(2.3) ^ Cfe n)M |β |(||grad u\U(l + || grad uWUftf

X ||Ju|U (

for 1 ̂  ί, j ^ n, where N(ά) = max {|α|, N}.

Proof. ( i ) Let u, v e i ϊ m + 2 . Decomposing α^(grad w)w^ — α^(grad i ; )^

as

α^ferad u)(uij-vij) + {a^(grad u) - α^ίgrad υ)}υtJ=Iι(u9 v) + I2(u, u),

we shall estimate each !*(#, ι;), ί = 1, 2.
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By Leibnitz' formula,

(a W M g r a d u)}Drβ(utj - υtj) ,
/

where a = (al9 a2, , an\ β = (βu β2, , βn) ,

and β ^a means βj ^ a5 for every 1 ^ j ^ n. From the chain rule of a

composite function, it becomes that D^α^ίgrad u)} is expressed as a linear

combination of functions of the form

(D αuXgrad i*)Π D^kp, ukp = du/dxkp ,
3 3 = 1

where \γ\ ̂  |j8|, q ^ |^| and |j8| = Σl=i\βp\ Since ueHm+2 (m ^ iV) and

lα "" β\ + Σp-i Ii8pl = M, it is possible to show with the use of Lemma 2.3

that

(2.4) WD&iμ, v)\\ ̂  C(a, n)M |β |(||grad u\U)(l + ||grad u\\^

with N(a) = max{\a\,N}9 where we have used the following inequalities:

for any s ^ 0,

and

(These inequalities can be derived from PlanchereΓ theorem

Hence it follows from (2.4) with \α\ ̂  m that

(2.5) \\Uu, υ)\\m £ C(m, τι)Mm(||grad u\U)(l + ||grad u\t)\\Δ(u -

To estimate I2(u, v), we note

αίy(grad ύ) — α^(grad 1;)

= Σ ^-(β grad w + (1 - 0) grad u)^(wfc - vk)
k=iJo dηk

Therefore, for \α\ ^ m,
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D Mu, υ) = Σ f " W α ^ g r a d u) - α,,(grad v)}D°x~%}
β£<* \ β /

Σt(0)()\D\^
ί | « * - i \ β / \ γ / Jo I dηί |

Since Dx{βatjldηk{θ grad u + (1 — θ) grad υ)} is expressed as a linear com-

bination of functions of the form

•ijXθ grad u + (1 - θ) grad v) fl Dr*(θukp + (1 - θ)vk) ,

where \δ\ <* |f| + 1, q <; |^| and |^| = Σll-i \τp\> i* follows from Lemma 2.3

that

(2.6) i | i % ( w ' ϋ ) l 1 = C ( ^ ^)Mι«ι+i(llgrad tt|U + ||grad v\U)\\Av\\Nia)

X (1 + ||grad u\\®a) + ||grad ι;||^β))||grad (ii - v)\\N(a) ,

with iV(α) = max{|α|, N}. Since (2.6) with |α| ^ m yields

ϋ)||w ^ C(m, Λ)AfΛ+1(|| grad M|U + ||grad v\\J)\\Av\\m

X (1 + Hgrad M||; + ||grad upIIgrad (i* - ϋ)||m ,

we obtain (2.1) by combining (2.5) and (2.7).

(ii) Let ueHm+2 and |α| <; m. By Leibnitz' formula

( 2 g) Dϊ{atJ(grsLά u)utJ} — α*/grad u)Da

xuί3

= Σ (^
0<βέa \ β

where β > 0 means that βk ^ 1 for some β. For convenience, set Dl(k) —

djdxk. Then, for some 1 ^ k <I n,

= D>-™{± - § ^u)} = D > { ±

Σ

Hence, as in (i), (2.8) is expressed as a linear combination of functions of

the form

where 1 ^ \β\ £ \a\, | r | ^ |)8| - 1, |*| ^ | r | + 1, Q £ \r\ and \γ\ = Σ?=ilrPl

https://doi.org/10.1017/S0027763000019553 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019553


WAVE EQUATIONS 43

Consequently, applying Lemma 2.3 we can deduce

(grad u)utj} - α*/grad i^Dlu^

[ -11

Σ ||Ztf {J%(α«,(grad z*K, - a«,(grad u)DiutJ}\n
l α ' l ^ l J

11/2

φ ) ( l + ||grad tt||^e))||Jtt|&(e) ,

which is the desired inequality (2.2).

(iii) Let u, veHm+2 and let |α| ^ m. As in the proof of (2.2), it is

seen that Djjα^grad u)vί3} — α^(grad u)DxVij is expressed as a linear com-

bination of functions of the form

where l^\β\^ \a\, | r | ^ |]8| - 1, | ί | ^ Irl + 1, 9 ^ Irl and | r | = ΣU \ϊPl

Hence (2.3) follows with the use of Lemma 2.3. [q.e.d.]

§3. Abstract formulation

In this section we shall formulate the initial value problem (1.1)-(1.3)

to an abstract initial value problem in the Sobolev space Hm with m ̂ >

N(=[n/2] + D.
We first define a closed linear operator A with dense domain D(A)

in Hm by

(31)
v * ' UM (J-1)W ΐoτueD(A).

It is easy to see that A is a negative self-adjoint operator in Hm. There-

fore, A generates an analytic semi-group of bounded linear operators T(t),

t^>0, on Hm. Moreover, it follows with the aid of PlanchereΓs theorem

that

(3.2) \\T(t)u\\m^\\u\\m for ueHm .

The original problem (1.1)-(1.3) can be written as

(3.3) utt - λAut - B(u) + (c - λ)ut = f, t^ 0 ,

(3.4) u(0) = u0 ,

(3.5) ut(0) = v0 ,

where B(u) = ΣUJ=I CLi3{gΐdΔ. u)utj. By Lemma 2.4 (i), B(u) has the follow-

ing property:
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\\B(u) - B(v)\\m £ C(m, τι){Mm(||grad u\U)(l + | |grad u\\£)\\Δ{u - v)\\m

( 3 6 ) + Mw+1(||gradM|U + ||grad u|U)||Ji;||m

X (1 + ||grad u\\Z + ||grad u||S)||grad (u - ϋ)\\m) ,

for u, v e D(A) ,

where C(m, n) is a positive constant depending on m and n.

Let T> 0 be fixed. Assuming w0 e ίfm+2, u0 e Hm and /e C^tO, T] ffm),

we intend to seek a solution w of (3.3)-(3.5) within the class

(3.7) u e C([0, Γ] Hm+2) Π ̂ ([0, Γ] # m ) Π ̂ ((0, Γ] Hm+2) ΓΊ C2((0, T] Hm).

For this purpose, we shall reduce second-order equation (3.3) to a

system of first-order equations (cf. Krein [9, Chap. 3] and Yamada [21]).

Introduce two unknown functions v and w by

(3.8) v = ut and w = Au .

Since A is closed and it has a bounded inverse A'1 (recall definition (3.1)),

equation (3.3) is rewritten in the form

ίυt(f) = λAv(t) + B(A-ιw(t)) + (λ- c)v(t) + f(t),

\wt(t) =

System (3.9) may be regarded as a single equation in the product space

Hm X Hm:

(3.10) Ut(t) =

where

Thus the original initial value problem (3.3)-(3.5) is reduced to another

initial value problem for (3.10) with the initial condition

(3.11)

Furthermore, it is easy to verify

(3.12) Ue C([0, T];HmXHm)Π (?(((>, T];HmXHm),

if u is a solution of (3.3)-(3.5) in the class (3.7).

Conversely, let U be a solution of (3.10), (3.11) satisfying (3.12). Then
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(3.13) u(t) = u0 + Γ v{s)ds
Jo

will be a solution of (3.3)-(3.5). In fact, we have

PROPOSITION 3.1. Let u0 e Hm+\ v0 e Hm and fe C'flΌ, T]; Hm). If u is

a function satisfying (3.3), (3.4), (3.5) and (3.7), then U = \υ9 w) defined by

(3.8) satisfies (3.10), (3.11) and (3.12).

Conversely, if U = l(v9w) is a function satisfying (3.10), (3.11) and (3.12),

then u defined by (3.13) satisfies (3.3), (3.4), (3.5) and (3.7).

Proof. The first part is evident from the preceding consideration.

We shall prove the latter half. Let 17 be a function satisfying (3.10)-

(3.12) and define u by (3.13). Since υ e C([0, T] Hm) Π C'βO, T]; Hm), it

becomes easily that u belongs to C'QO, T]; Hm) Π C2((0, T]; Hm) and that

it satisfies

(3.14) utt(t) = λAut(t) + B(A-ιw(t)) + (λ - c)ut{t) + f(t) ,

on (0, T]. Moreover, wt = Aut e C((0, T];Hm) implies u e ^((0, Γ]; Hm+2).

On the other hand, note

rt rt

u(t) — u(ε) = ut(s)ds = v(s)ds

for any 0 < e < T. Hence, since A is closed, we have

Au(i) — Au(ε) = Av(s)ds = wt(s)ds = w(t) — w(ε) ,

from which, by letting ε | 0, it follows that

(3.15) Au(t) = w(t) on [0, Γ] .
Since we C([0,3P] Hm), (3.15) implies we C([0, Γ]; fl"m+2) By (3.14) and

(3.15), it is easy to verify (3.3). Thus we complete the proof. [q.e.d.]

Proposition 3.1 assures the equivalence between initial value problem

(3.3)-(3.5) within class (3.7) and initial value problem (3.10), (3.11) within

class (3.12). So we may deal with (3.10), (3.11) to solve (3.3)-(3.5).

It is easily verified that A is a closed linear operator with dense

domain D(A) = Hm+2 X Hm (in Hm X Hm). Moreover, A also generates an

analytic semi-group of bounded linear operators T(t), t ^ 0, on ifm X Hm
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where T(t) is the analytic semi-group generated by A. It is convenient

to provide the product space Hm X Hm with the following norm

\\U\\m = \\v\\m + \\w\\m, U='(υ,w).

Then it follows from (3.2) that

||Γ(ί)E7L = \\T(λt)v\\m + \\λ'ι{T(λt) - I}υ + w\\m

(3.16) / 9 \ / 9 \

( ) NIL ^ (l + j) l l U\\M

for U = '(*;, M;) e fl"m X ί P \ Let s0 be a positive constant such that

(3.17) \\u\U < so\\u\\N for ueHN

the existence of such s0 is assured by Lemma 2.2 (i). Then, as to the

nonlinear operator B(U), we have from (3.6)

\\BiU1) - B(U2)\\m ^ IIJ^A-W) - B(A-W)\\m + \λ - c\\\vι - v2\\m

^ C(my n){Mm{s,W\\N){l

(3.18) + Mm+1(s0(\\wί\\N + ||u;2|

X ||II^IU||ii;1 - ^2IU_J + |A - cHlu1 - u2||m ,

for t7έ = '(ϋ*, u;') , i = 1, 2 ,

where we have used PlanchereΓs theorem. Hence, (3.10) can be regarded

as an abstract semilinear evolution equation of parabolic type. It is well

known that, if U is a solution of (3.10), (3.11), then it satisfies the next

integral equation

(3.19) Uit) = T(t)U0 + Γ T(t - s){B(U(s)) + F(s)}ds , 0 ^ t£ T.
Jo

(see e.g. Krein [9]). Furthermore, we have

PROPOSITION 3.2. Let uoeHm+\ voeHm and feC1([0,T];Hm). If U

e C([0, T]; Hm X Hm) satisfies (3.19) with J70 = 'fa, Au0), then U is a solu-

tion of (3.10), (3.11) within class (3.12).

Proof Let U e C([0, T] Hm X Hm) satisfy integral equation (3.19).

Then the function t -> B(U(t)) is strongly continuous in H m X i ϊ m by (3.18),

so that it is bounded in Hm X Hm. Hence it follows by virtue of Pazy's

result [17, Lemma 5.1] that the function

• Γ Tit - s){B(U(s)) + F(s)}ds
Jo
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is strongly Holder continuous on [0, T] with exponent 0 < θ < 1 in Hm X
Hm. Since T(t) is the analytic semi-group, U is also strongly Holder con-
tinuous on (0, T] with exponent 0 < θ < 1. Therefore, the local Lipschitz
continuity of U->B(U) (see (3.18)) implies that the function t->B(U(t))
is, indeed, strongly Holder continuous on (0, Γ]. Hence it follows from
the well known result in the theory of evolution equations of parabolic
type (see e.g. Krein [9, Chap. 1 § 6]) that U is strongly continuously dif-
ferentiable on (0, Γ], i.e., Ue C'tfO, T]; Hm X Hm)9 and that U satisfies
equation (3.10) on (0, T]. Since U clearly satisfies £7(0) = Uo, the proof
is complete. [q e.d.]

Remark 3.1. Suppose v0 e Hm+2 in Proposition 3.2. Since Uo =
 ι{υOi Au0)

eHm+2 X Hm = D{A\ it is possible to show Ue C\[0, T];Hm X Hm). In
this case, u defined by (3.13) belongs to the class Cι([0,17]; Hm+2) Π

C\[0,T];H™).

Remark 3.2. The abstract formulation developed in this section has
been employed by the author [21] to treat the mixed problem for the special
case n = 1 with zero Dirichlet condition. (The existence result in [21] is
slightly better than that of Greenberg, MacCamy and Mizel [7]).

By Propositions 3.1 and 3.2, it suffices to find a strongly continuous
solution U of (3.19) in order to solve (3.3)-(3.5) in the class (3.7). In the
next section, we shall show the existence of a solution of (3.19).

§ 4 Proofs of existence theorems

4.1. Proof of Theorem I
We first assume uoeHm+\ voeHm and fe C f̂O, oo); Hm). From the

results in the preceding section, we have only to consider integral equation
(3.19) in order to treat initial value problem (3.3M3.5).

Define a set

(41) K={U= <(v, w) e C([0, r] Hm X Hm); 17(0) = Uo = tyo, Au0),
and \\U(t)\\m^L on [0,τ]},

where positive constants L and τ will be determined later. Clearly, the
set K is closed in a Banach space C([0, τ];Hn X Hm) equipped with the
norm
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For each UeK, define a mapping 17= SU by

( 4 . 2 ) C7(0 = T(f)U0 + f T(t - s){B(U(s)) + F(s)}ds , O^t^τ.
Jo

(By (3.18), S maps K into C([0,r];£P" X #"•)). We shall take suitable L

and τ so that S becomes a strictly contraction mapping from K into itself.

By virtue of (3.16), (3.17) and (3.18) (with IP = 0), it follows from (4.2)

that

II U(t)\\m ^

(4.3) ^ ( l + A)[ | | [7o|U + {C(/n, n)Mm(s0L)(l + Lm)L + \λ - c\L}t

+ J j | / ( s ) | | T O t f e ] , O ^ ί ^ r .

We take a sufficiently large L such that

(4.4) L>(l + ψ)\\U0\\m,

and choose r so small that

( l + 4)fll Bill. + {C(m, n)Mm(s0L)(l + L»)L + | i - c\L}τ
(4.5) V / ί / L

+ jV(s)||mds] £ L

may be true. Then it is easily seen from (4.3) and (4.5) that

which implies that <S maps K into itself (recall definition (4.1)).

For each & e K (i = 1, 2), set £7* = SU* (i = 1, 2). Since

= Γ T(t - s^BiU'is)) - B(U\s))}ds, O^
Jo

by (4.2), it follows with the use of (3.16) and (3.18) that

|| U\t) - U\t)\\m ^ ( l + y ) £ \\B(U\s)) - B(U\s))\\mds

(4.6) ^ ( l + y ) [C(m, n){Mm(s0L)(l + L»)

https://doi.org/10.1017/S0027763000019553 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019553


WAVE EQUATIONS 49

+ Λfm+1(2s0L)(l + 2L»)L} + \λ -

Jo

Therefore, making τ sufficiently small (if necessary) so that

(m, n){Mm(s0L)(l + Lm) + Mm + 1(2s0L)(l + 2Lm)L}
(4.7)

\λ - c|]

is satisfied, we see from (4.6) and (4.7) that S: K —> K is a strictly contrac-

tion mapping. Consequently, S has a unique fixed element UeK. In

other words, there exists a unique solution £7 = l(v, w) e C([0, τ] i ϊ w X £Γm)

of (3.19). Therefore, Propositions 3.1 and 3.2 assure that the function u

defined by (3.13) is a unique solution of (3.3)-(3.5) in the class (3.7). Thus

the first part of Theorem I is established.

Next assume v0eHm+2. By Remark 3.1, the solution u constructed

above belongs to C'tfO, τ]; Hm+2) Π C2([0, r] Hm).

Finally, it remains to prove ue C'φ, τ]; Hm+ί) if voeHm+ί. To see

this, take a sequence {vfi}^ c Hm+2 such that vξ -> v0 in Hm+1 as p -> oo.

We consider initial value problem (3.3)-(3.5) with initial value ι;0
replaced by ϋg. Let up be the corresponding solution. Since the existence

interval is determined by (4.4), (4.5) and (4.7), we may conclude that uv

exists on [0, τ] (independent of p) and that it belongs to CJ([0, τ]; Hm+2) Π

C2([0, τ] Hm). Moreover, it follows from the preceding proof that there

exists a positive constant L, independent of p, such that

(4.8) \\Aup(t)\\m^L and \\uf(t)\\m ^ L on[0,τ]

(see (4.1) and (4.4)).

Set Up(t) = ^ufit), Aup(t)). Since Up satisfies the integral equation

(3.19) with Uo = Uo

p = *(ι^, Aup\ we have

U*(t) - U«(t) = T(t)(Uo

p - Uo«) + £ T(t - s){B(C7p(s)) - B(U*(s))}d8

for 0 ^ t <: τ. Hence making use of (3.16), (3.18) and (4.8) we get

II up(t) - TOIL ^ (l + 4)fil W ~ WWIU
(4.9)
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with some M > 0. Application of GronwalΓs inequality to (4.9) yields

|| U'(t) - U"(t)L £ (l + j) exp {(l + j)

which implies that both {uf\ and {Aup} are Cauchy sequences in C([0, τ]; Hm).

Consequently, by the uniqueness of solutions, u" converges to u in C([0, τ];

Hm+2) Π C'([0, r] ; Hm) as p -> oo.

Moreover, we shall show that u" converges to u in C"([0, r]; i ϊ r o + 1 )

Note the next identity:

(4.10) D*(uft "" "">
= 0 ,

where a is a multi-index such that \a\ £ m. Taking the (L 2 -) inner product

of (4.10) with -D"xΔ(υ?t - uf) gives

(4.11) 2 d

£ ||JD5{Bdί») - £(" 9)}| | \\D"J(uf - a?)|| + |c|||2fc grad(af - w?)||2

Adding (4.11) for \a\ <Ξ m and arranging the resulting expression, we obtain

(4.12) l " ^ l | g r a d (U? ~ "?)l|2m + T I M ( U f ' Uf)l?m

> - it |B,+1 + ||grad (wf - κf)||i) , 0 ^ ί ^ r ,

with some M, > 0, where we have used (3.6) and (4.8). Integration of (4.12)

with respect to t e [0, r] leads to

||grad(w?«) - ui{t))\\l < IIgrad (ϋf - v$)\\l
(4.13) „

+ 2Mt (\\u'(β) - α (β)||L+1 + ||grad(uf(s) - iί
Jo

Since up converges to u in C([0, r]; Hm+2\ application of GronwalΓs ine-

quality to (4.13) assures that uf converges to ut in C([0, τ]; Hm+1). Hence,

u 6 (^([O, r]; ίfm+1)> which completes the proof. [q.e.dL]

Remark 4.1. The existence interval [0, τ] of a local solution u of (3.3)-

(3.5) depends on m, n, λ, \c\, Ώa

ηai5 {\a\^m+ 1), M m + 2 , ftυo\U and Hf(t)\U

See (4.4), (4.5) and (4.7).

Remark 4.2. Clements [1], Ebihara [4], [5] and Tsutsumi [19] has con-
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sidered the mixed problems for equations of type (1.1) with a strong dis-

sipative term in a bounded domain. Their approach is based on the

Galerkin's method, which is not applicable to our initial value problems.

4.2. Proof of Theorem II

Assume that c is positive and that the data (u0, vo,f) belong to Hm+2

X Hm+ί X {CX[0, oo); Hm) Π C([0, oo); Hm+1)}. From Theorem I we already

know the existence of a positive constant τ such that the initial value

problem (1.1)-(1.3) has a unique solution u on [0, τ] satisfying

u e C([0, r] Hm+2) f] (^([O, τ], Hm+ί)Π C'tfO, r] Hm+2) Π C2((0, r] Hm) .

We shall extend the existence interval [0, τ] to [0, oo). To see this, it is

necessary and sufficient to show the existence of a solution of integral

equation (3.19) on [0, oo). (Note Propositions 3.1 and 3.2.)

Let U = '(UH Au) be a solution of (3.19) on [0, τ]. We extend this U

to the interval [0, τ + τ'] (τ' > 0) by defining U(t) = V(t) for τ £ t ^ τ + τr,

where V i s a solution of

(4.14) V(t) = T(t - τ)U(τ) + £ T(t - s){B{V(s)) + F(s)}ds .

The existence of a solution V of (4.14) on an interval [τ, τ + τ'] with τ' >

0 follows from Theorem I. Hence U becomes actually a solution of (3.19)

on [0, r + τ'].

Let [0, τm a x) be the maximum interval to which U can be continued.

Suppose that τ m a x < oo and supo^t<tJnax||17(ί)||m < °° Then we can show

in the standard way that the solution U can be continued to an interval

[0, τ m a x + τ"] with τ" > 0, which contradicts to the maximality of τ m a x (see

e.g. Pazy [17]). Therefore, it suffices to obtain an a priori bound for || U(t)\\m

to show the global existence of a solution of (3.19). To this aim, we shall

deduce some a priori bounds for ||u(ί)llm+2 and ||Kt(ί)||TO+i, u being a solution

of (1.1M1.3). (Recall Propositions 3.1 and 3.2.)

Let T be any fixed positive number and let u be a solution of (1.1)-

(1.3) satisfying

u e C([0, T]; Hm+2)f] σ([0, T]; ff^^C1^, T]; Hm+2)f) C2((0, T]; Hm) .

Taking the m-inner product of (1.1) with — Δut leads to the following

Σ (l%utt, Da

x(-Δ)ut) + λ Σ (DaJut9 D"Jut)
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+ Σ Σ (Mgrad u)Da

xuij9 Da

xΔut)

+ Σ Σ Φ ϊ K / g r a d u)^} - α*/grad u)Da

xuij9 Da

xΔut)

Σ Φlf,Σ
\a\<.m

= 0 , O^t^T.

It is easy to see

(4.15) I, = i . j L | | g r a d M ί ( O I I 2

r o ,

(4.16) J2 = λ\\Jut(t)\\l

(4.17) /^cllgradwXOHL,

(4.18) Iβ = - (grad/(ί), grad ut{t))m ^ - || grad/(ί)||»II grad ut(t)\U

Since

I* = — Σ Σ ( [Di{atj(graά u)utu} — α^/grad u)D5utJ],

we get in view of Lemma 2.4 (ii),

^4 1 9 ^ 74 ^ - C(m, n)Mm+1(||grad w(0l|co)(l + ||grad u(t)\\i)

X| | J^) | | 2

w | | g rad W ί (OIU,

with m^> N = [nj2] + 1. Finally, note the following identity:

J3 = [ Σm t Σ ^ ί ^ fera(i u)Diutj9 Da

xukkt)

= Σ .Σ= i(^fe radw)D^ f c, Z)J f̂cί)

+ Σ Σ (-^-(grad u)(uj£D
a

xuik - uktDiUtj)9 Da

xukt),

which is obtained by integrating by parts. Since aυ — aSi by (A.2), 73 can

be rewritten as

Σ (α./grad w)D«^, 2)«^fc

_ 1 Σ Σ

+ Σ Σ (-^-(grad u)(uJeD"xutk - uuΌ%u^, D"xutt).
l i ^ j k e ι \ 3
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Hence, by Lemma 2.2 (i) and PlanchereΓs theorem,

• Ά^i-jr Σ Σ {ai3{^au(t))D%uik{t\Dlujk{t))
,. 2Q-. 2 at ι«ιsm ij,k=ι

- C(m, n)MM grad u(t) \l){\\ grad ut(t)\\N \\ Δuit) \fm

+ || Ju(t)\\ΛMt)\\m ||grad ut(t)\U

Therefore, adding (4.15)-(4.20) and integrating the resulting expression with

respect to t, we can obtain

JJ.grad ut(t)\\l + Wll grad u(t)U\\M(t)\\l

+ λ\t \\Jut(s)\\lds + c Γ II grad ut(s) \\*mds
JO JO

(4.21) ^ 11|grad υo\\l + $nM0Qgrad u01|.)||4w0||ϊ,

+ C(m, re) Γ Mro+I(||grad w(s)|U)(l + ||grad a(β)|β)
Jo

X||Ju(s)||2

m | |gradM t(s)||mds

||grad/(β)|U||grad ut(s)\\mds ,

where we have used (A.3) and m^> N.

Taking the L2-inner product of (1.1) with ut jdelds

( 4 < 2 2 ) - Σ («i/grad u(t))uυ(t), ut(t)) + oil ut(t)\

Since, in view of (A.2), — Σ?,/-i (βfi(grad u)uίj9 ut) can be written

λ. f} (α,/grad u)uu Uj) - - ί Σ ( ^

+ t (ψ

integration of (4.22) with respect to t gives

+ λ Γ ||grad ut(s)\\2ds + c Γ \\ut(s)\\2ds
Jo Jo

(4.23) ^ i || u. IΓ + hnM0(\\ grad w01|.) || grad u01|2
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+ C(ή) Γ MM grad u(s) p || grad u(β)|U
Jo

X (|| u,(β) || || Ju(8) || + || grad wt(s)|| || grad w(

+ Γ||/(β)llll«.
Jo

(use Lemma 2.2 (i)).

We now introduce

and

(it is easy to see that | | | |||m+i is an equivalent norm to || | | m + 1 ). Com-

bining (4.21) and (4.23) we get

IIIK.WIIIU + αo(| |grad^)IU)| | |grad u(t)\\\l+1

+ 2λ Γ IHgrad ut(β)\\\~+id8 + 2c Γ |||^(s)|||^+1rfs
Jo Jo

(4.24) ^ 111 vo\ I \l+1 + nM0(\\ grad a, | | .) 111 grad «, 11 |2m+1

+ C(m, n) Γ Mm + ι(||grad u(s)|U)(l + ||grad u(s)\\Z)
Jo

X|| |gradu(s)| | | | 2

m + 1 | | |W ί(s) | | |m + 1dS.

We next take the m-inner product of (1.1) with — Δu\ then

- λ Σ (DaχΔut, Da

xΔu)

+ Σ Σ K(grad u)D%ui}, D'Ju)

(4.25) + Σ Σ (Dα

x{αυ(grsid u)utJ} - α./grad u)D«uij9 D%Δu)

+ c Σ Φ .ut, D"x(-Δu)) + Σ (Dif, D'Ju)
\α\<.m l α l ^ m

ΞΞ J, + J 2 + J 3 + J4 + Jf, + Jβ

= 0 .

It is easy to see the following:

(4.26) Ji = 4 r ( g r a d U f ( < ) ' g r a d u(ί))™ ~ I' βrad ut(t) \\l ,
t
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(4.27) J l j LJ2

(4.28) J 5 = J - - A ||grad w(ί) ||2m,

(4.29) Jβ = - (grad/(ί), grad u(t))m ^ - ||grad/«)LIIgrad u(t)\\m

By Lemma 2.4 (ii), Jt can be estimated below as I4;

(4.30) Ji ^ ~

Finally, since

^3= Σ Σ (αf,(grad B)Z5M«, #«, . )
l«l=gm i,y,fc=l

+ Σ Σ ( -^(grad uXuvDiu* - ukeD°xut,), D"xuk),

it follows with the aid of Lemma 2.2 (i) and (A.3) that

(4.31) Ji

^Δu(t)\\N\\du(t)U\gtsάw

Add (4.26)-(4.31) and integrate the resulting expression; then

— | |grad ut(t)\\m | |grad u{t)\\m + — \\Δu(t)\fm

c C*
+ — 1 | grad u(t) \\2

m + \ aM\ grad u(s) {{„) || Δu(s) \\2

mds
2 Jo

(4.32) ^ Hgrad ι;0 |U || grad Mo ||m + -^ | | Jw o | | 2

m + ~-1| grad w0 III

+ Γ llgrad ^ ( s ) ! ! 2 ^ + Γ | |grad/(β) | | m | |grad u(s)\\mds
Jo Jo

i t
Mm+1(\\gr3Ld ^ s IUXl + | |grad w(,

0

for 0 ^ ί ^ T.
By taking the L2-inner product of (1.1) with u and integrating with

respect to t, it is possible to derive

(ί)ll +
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+ Γ oofll grad u(s) | p || grad u(s) tfds
Jo

(4.33) £ ||ϋollH «0|| + A IIgrad «0|f + -11| uo | |2

z z

+ Γ \\ut(s)\\*ds + Γ||/(β)||||u
Jo Jo

+ C(n) Γ M/ll grad u(s) \l) ||Δu(s) || ||grad w(s) || || u(s) \\Nds
Jo

for 0 ^ ί ^ T. Hence, (4.32), together with (4.33), gives

+ 2 Γ αo(||grad w(s)L)|||grad «(β)|||»,+1cJo

(4.34) £ 2|j|υ0|||ro+I|||u0||U+1 + λ||]graduo||fm+1 +

+ 2 Γ H l u ^ l l ^ Λ + 2 f |||/(β)||U+,|||«(β)|||.+1Λ
jo Jo

+ C(m, ή) f Mm+1(||grad u(s)\l)(l + ||grad w(s)K)
Jo

l+1

for 0 £ t< T.
Now addition of (4.24) and (4.34) X 2c/5 yields

γ l l W * ) l l β t + i + («o(l|grad u(t)\U

2c2

25
Λί fic ft

+ 2λ HI grad ut(s)\\\2

m+1ds + | | |w ί(β)|| |ί l +icfe
Jo 5 Jo

+ < — cαo(||grad w(s)||oo) — C(m, n)Mm + 1(||grad ^(s)!^)
Jo I 5

^4 35^ χ ( l + ||gradMi

X|||grad«(β)|||ί,+1dβ

£ HNIIL i + nMo(||grad«o|U)|||gradzίo|||L+i

^ + 1 + Λ|||grad«0|||
2

m+ι
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for 0 ^ t ^ T.

Let us define

D(uo,vΰ,f)

(4.36) ( 2 | | | ι ; | | | | | | « | | | + A|||grad w|||2 + c | | | w | | | L ) |

We choose a sufficiently large number p satisfying

(4.37) 5VΎs0D(u0,v09f)l2c<p,

(where s0 is a positive number in (3.17)) and fix it. We next restrict

KIL+2, ||ι>ollm+i and I ||/(s)||m+1ds so that
Jo

(4.38) 1 cao(p) > C(m, ή)Mm+ί(p){l + (5SJD(u0, v09 /)/2c)-}D(ι/0, υOf f)
5

holds.

Since

and

^ ^ 0 , υ09f)

by (4.36), it follows from (4.37) and (4.38) that both

(4.39) ||gradM(ί)|U</ι

and

(4.40) > Cim, n)Jlf»tI(||grad a(ί)IUXl + ||grad u(t)\\Z)

are true near t = 0.

Suppose that [0, To), with 0 < TO <Ξ T, is the maximum interval on
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which both (4.39) and (4.40) are true. Then, either

(4.41)

or

o

(4.42) - C(m, rc)Mm+1(||grad u(T0)U(l

If (4.41) is true, then Lemma 2.1 is applicable to (4.35) (0 ^ t £ To)

with

1/2

G(t) =

and

H= | | M | | 2

m + 1 + nM0(||gradu0 |U)|||gradu0 | | |2

m + 1

+ y 1 + c| | |W o | | | 2

m + 1)

so that

(4.43) t

^ H><* + λ £ G(s)ds ^ D(u0, v0, f)

on [0, !Γ0]. In particular, (4.43) gives, with the use of (3.17) and (4.37),

llgrad u(Γ0)|U ^ s01|grad u(T0)\\N £ so|||w(To)||U+1

which contradicts (4.41).

On the other hand, let (4.42) hold. The same procedure as above

leads us to (4.43) for 0 <: t ^ To, so that

llgrad «(Γ0)||m

and
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5

Hence, in view of (4.38) and ||grad w(T0)IU < ft it follows that

! cαo(||grad u(T0)\l) - C(m, τι)Mm+1(||grad u(T^\\JKl + llgrad u(T,)\\Z)
5

x

45

which contradicts (4.42). Therefore, both (4.39) and (4.40) are true on [0, T].

Again applying Lemma 2.1 to (4.35) (0<Lt<^T) with

Fit) = {-|-||| (

i + 2λ f| | |gradit t(β)|| |L+ 1dβ
Jo

6c

and G(t), H(t) as before, we get

(4.44) F(t) ^ D(u0, υ 0 9 f ) , 0£t^T.

Since T is an arbitrary number and D(u0, vθ9 f) is independent of T

(see definition (4.36)), estimate (4.44) assures the existence of a unique

global solution u of (1.1M1.3) satisfying (1.4)-(1.7). Recalling (4.36), (4.37)

and (4.38), we obtain the conclusions of Theorem II. [q.e.d.]

Remark 4.3. Let us consider more general equations than (1.1);

(4 45) Utt " λΔUt " JZ.!0^*9 ty u> Ut> &***- u^Uίj + b(<X> ύ> u> Ut>
= / , x 6 R n , t^O .

By making some appropriate conditions on atj and 6, our method developed

in §§ 3 and 4 will apply to initial value problems for (4.45).

§5. Asymptotic behavior

This section is devoted to the proof of Theorem ΠL Let δ be the
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positive constant in Theorem II. Suppose that / = 0 and the data u0 and

v0 satisfy

2^δ and

By Theorem Π, there exists a unique solution u of (1.1)-(1.3) satisfying

(5.1) \\gmάu(t)\U£p, t^O,

a n d

( 6 β 2 )
^ CΊ , ί ^ 0 ,

with some p, Cx > 0 (see (4.39) and (4.44)).

However, it is expected that u will decay to zero as t -> oo by virtue

of dissipative terms —λΔut (λ > 0) and cut (c > 0). To investigate the

decay properties of u, we employ the weighted energy method and seek

a weight function φ(t) -> oo as t -> oo satisfying

ΛOfll̂ ίOIGL+i + llgrad u(ί)||i+i} < °° ,

for large t See also Yamada [21], [22].

Let φ(t) e C3[0, oo) be a monotone increasing and non-negative function.

Taking the m-inner product of (1. 1) (with / — 0) with —φ(t)dut, we obtain,

as in the derivation of (4.21),

o

+

+ 2λ \l φ(s)\\Aut(s)\\lds + 2c Γ #s)||grad ut(s)\\lds
Jo Jo

(5.3) ^ φ(0){\\grad v0\\l + nM0(p)\\Δu0|β,}

Γf(β) || grad itXβ) Hide + nM,^) Γ^'(β)||JB(β)||idβ
Jo

C(m, n, p, δ) Γ i5(s)|| Jw(s)||2m||grad «,(β)|Udβ , ί ^ 0 ,
Jo

where we have used (5.1) and (5.2). As in § 4.2, set

| |MH 2

m + 1 = ll"il2 + Hgrad u\\l for ueHm^ ,

and

| | |gradw|| | i+ 1 = ||grad uf + \\Δu\\2

m for ueHm+2 ,
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IIHIIm+i being an equivalent norm to || | |m+i. It is also possible to derive

the following inequality:

+ 2λ Γ ί4(s)|||grad «((β)|||L+1dβ + 2c Γ #«)|||»((β)|||ϊ,+1cfe
Jo Jo

(5.4) £ φ(O){\\\Vo\\\Uι + nM0(p)\\\greid M,|||L+1}

+ Γ ̂ (β)||| uXsMl^ds + nM,{p) fV(«)|||gradu(β)|||ϊ,+1cfe
Jo Jo

+ C(m, n, p, δ) Γ $ί(s)|||grad «(β)|||L+1 | | |u((β)||L+1& , t ^ 0 ,
JO

(cf. (4.24)).

Now we set φ(t) = t in (5.4) and make use of (5.2). Then

ί{|||»t(ί)IIIL+i + αoθ>)|||gradu(ί)|||2ro+1}

+ 2λ Γ sIHgrad ut(s)\\\l+1ds + 2c Γ β|||ut(β)||B,+1cfe
Jo , Jo

(5.5) -
^C2+CA s| | |gradu(s)|| |2

m + 1 | | |U ί(s)|| |m + 1ds
Jo

^ C2 + c Γ s\\\ut(s)\\\l+ids + ξί Γ s|| |grad «(s)|||ί.+1dβ ,
Jo 4c Jo

for some constants C2, C3 > 0. After some rearrangements of (5.5), we get

for some C4 > 0

(5.6) + 2λ Γ S | | |grad ut(s)\\\l+1ds + c Γ S | | | ^ ) | | | 2

m + 1

Jo Jo

Consequently, by GronwalΓs inequality, the right-hand side of (5.6) is bounded

by C2 exp (C4 Γ || |grad u(s)\\\l+1ds). Since Γ |||grad ^)|| |2

T O + 1ds < oo by (5.2),
Jo Jo

it is easily seen that

(5.7) sup {t\\ut(t)\t+i + ίligrad u(ί)||2w+1 + Γ s 11^(8)11^,*} < oo ,
ί^o I Jo

which asserts (1.8) and (1.9).

In order to show (1.10) and (1.11), we take the m-inner product of

(1.1) (/ = 0) with — φf(t)Δu and integrate the resulting expression with

respect to t; then we can derive
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- 20'(ί)||gradu t(ί)||m | |grad w

+ Γ (φ'"(β) - cφ"
Jo

(5.8) + Γ (2ao(p)φ'(s) - λφ"(s)) || Δu(s) \\lds
Jo

^ 2ί4'(0)||gradu0||m||gradM0||

+ icφ'φ) - f'(0))||grad uJJ, + 2 Γ 55'(s)||grad κt(β)|&<fe
Jo

+ C(m, it, (O, ί) Γ f (β)|| Ju(β)||ϊ,||grad a(β)||mdβ .
Jo

Let k be a positive parameter. Addition of (5.3) and (5.8) X k yields

φ{t)\\gra.άut(t)tί + (ao(p)φ(t) + λkφ'(t))\\Mt)\\l

- 2kφ'(t)\\graά 11,(011.||grad u(t)\\m

+ k(cφ'(t) - 0"(O)llgrad u(t)\\l + 2λ Γ φ(s)\\Aut(s)\\ids
JO

+ Γ (2cφ(s) - φ'(s) - 2kφ'(s))\\gr&d uAsnids
Jo

(5.9) + Γ {(&φ) - nMα(p))φ'(s) - kφ"(s)} || Δu{s) \\lds
Jo

+ k f (φ'"(s) - C95"(s))||grad φ)\\lds
JO

^ φ(0)\\graά vo\\l + (nM0(P)φ(0) + ^(0)) | |4 i i , | | i

+ 2^'(0)||grad ϋ.||m | |grad «,||m + k(cφ'(O) - φ"(0))||grad uo|fra

+ C(m, n, p, δ) Γ ||Δu(s)\UΦ(s)\\grad u,(
Jo

Since (5.2) and (5.7) are true, it follows by putting φ(t) = f in (5.9) that

ψ || grad u((0IB. + αo(p)?|| Δu{t) \fm

+ 2λ Γ s2 | |ΔuAsmds + 2c Γ s21| grad «t(β)||idβ
Jo Jo

(5.10) „
+ 2 (2kαo(p) - nM0(p))s\\ Ju(s)||Lds

Jo

^ C5 + C, Γ II J«(e)||ye*||grad u,(β)L + 2fcs||grad w(s)||m}cfe ,
Jo

for some C5 and C6 > 0. (Note that C6 can be taken independent of k.)
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On the other hand, from (5.2) and (5.7), we have

cA' s2\\Ju(s)\\2

m\\gτ8iάut(s)\\mds
Jo

(5.11) ^ c Γ s2||grad ut(s)\\lds + -ψ- Γ s2||Δu(s)\\lds
Jo 4c Jo

£ c Γ s2||grad ut(s)\\lds + C7 Γ s\\Jφ)Lds ,
Jo Jo

with some C7 > 0 (independent of k) and

^ - i s||Jφ)||2

mds + - ^ L
2 Jo 2 Jo

1 ff b2C2 Cι

^ ± s\\Ju(s)\\lds + A^sup{s| |Jφ)| |y
2 Jo 2 s^o Jo

2 Jo

with some C8 > 0.
Therefore, it becomes from (5.10), (5.11) and (5.12) that

1 f || grad ut(t) \\l + ao(p)f || Δu(t) \\l

( 5 1 3 ) +

+ £ (2(2fcα00>) - nM0(p)) - C7 - l

^ c5 + c 8 ,
which enables us to get (1.10) and (1.11) by taking a sufficiently large

k such that

2(2&a00>) - nM0(p)) - C7 - i > 0 . [q.e.d.]

Remark 5.1. In this section we have assumed that / = 0. However,

if f(f) tends to zero (in an appropriate sense) as t —> oo, we can apply the

same method to obtain decay estimates of solutions to (1.1).

Remark 5.2. The weighted energy method developed in this section

is found in the work of Uesaka [23], where the total energy decay of

solutions to linear wave equations with first-order dissipative terms is

treated.
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Chapter II. QuasilinearWave Equations: An Approach

by the Viscosity Method

§ 1. Problems and results

In this chapter we discuss the relations between initial value problems

(1.1), u\t - Uu\ - f] α./grad ux)ux

tj + cu\ = / , x e Rn , t^ 0 ,

(1.2), u\x, 0) = uo(x), * e B » ,

(1.3), K{(X, 0) = uo(«) xeRn ,

with 1 ^ ^ ^ 0 (we use the superscript λ of w* to specify the dependence

on X) and initial value problems to quasilinear wave equations

(l.l)0 u\t - Σ α*/grad wo)< + cu°t = f, x e Rn , ί ^ 0 ,

u°t(x, 0) = i;0(«) , x e l ? w .

Here we put the same assumptions (A.1)-(A.3) on atJ. One of the typical

examples of (l.l)0 whose coefficients ai5 satisfy (A.1)-(A.3) is the following:

" £ίdJcΛVl + |grada°|2/ ' '

which describes the nonlinear vibration of a string for n = 1 and that of

a membrane for n = 2.

In Chapter I we have obtained the local and global existence results

of solutions to (1.1),-(1.3),. The strong dissipative term —λJuλ

t(λ > 0) in

(1.1), may be regarded as the Viscosity' term (see e.g. Greenberg, MacCamy

and Mizel [7]), so that we employ the viscosity method to get the local

and global existence of solutions to (l.l)0-(1.3)0. In other words, by letting

λ 4 0 in (1.1),, we shall show that the limiting function of uλ is a solution

of (l.l)o-(1.3)o.

We state our results.

THEOREM I. Let 0 < λ < 1 and let (u0, v0, f) e Hm+2 X Hm+1 X {Cx([0, oo);

Hm)Π C([0, oo); Hm + %

( i ) There exists a positive constant To, independent of λ, such that

the initial value problem (1.1),-(1.3), has a unique solution
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u> e C<[0, TJ iΓ»+2) Π C'([0, Γo] ί P + 1 ) Π C'((0, ΓJ ffTO+2) Π C2((0, ΓJ f ί m ) .

Furthermore, for all 0 < λ ^ 1, {«'} αred {ι$ are bounded in C([0, TJ; Hm + 2)

C([0, Γ J JBT"*1), respectively.

(ϋ)

w°(£) = \\mu\t) , strongly in Hm+ί and weakly in Hm+2 ,
J l l O

uniformly for t e [0, JP0] ,

and

u°t(t) = lim uj(ί) , strongly in Hm and weakly in Hm+ί ,

uniformly for t e [0, To] ,

u° being a unique solution of (l.l)0-(1.3)0 such that

u° e CX[0, To]; H^2-*) , i = 0, 1, 2 .

In particular, if fe C*([0, oo); ff»+i-<) n iίΛ ί = 0, 1, , m, then u° e

C'([0, To]; fΓ*+2-0 a ίΛ i = 0, 1, , m + 2.

Remark 1.1. As to the strong convergence of w* (resp. aj) to u° (resp. w?),

it is possible to show

( L 4 ) \\ul(ί) - u%t)\\l + ||grad{u\t) - u\t))\\l ^ Cλ ,

for 0 £ t ^ TQ ,

where C is a positive constant independent of λ and t.

Remark 1.2. Let (u0, υ09f) belong to Hm+2 X Hm+1 X {C\[0, oo), i ϊ-) n

C([0, oo); iϊm + 1)}. It is interesting to see that u° is better behaved than uλ

at t = 0, for ŵ  need not be strongly continuous in £Γm at t = 0.

Remark 1.3. Since n ^ [n/2] + 1, it follows from Sobolev's lemma

(Lemma 2.2 in Chap. I) that u° constructed in Theorem I is twice continu-

ously differentiable in (x, t)eRn X [0, To] and, therefore, it becomes a classi-

cal solution of (l.l)o-(1.3)o.

THEOREM II. Let c > 0, 1 ^ λ > 0 and (u0, v0, f) e i ϊ m + 2 X Hm+ί X

( i ) There exists a positive constant d0, depending on m, n, c and D$atJ

(\a\ ̂  m + 1), 6wί noί λ, such that, if the data (u0, vo,f) satisfy

max
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then the initial value problem (l.ΐ)ί-{l.S)i has a unique solution

Ux β C([0, oo); Hm+2) Π C\[0, oo); Hm+1) Π C\(0, oo); Hm+2)

Π C2((0,oo);#-)

Furthermore, uλ satisfies

(1.5)

and

(1.6) sup Γ (Hgrad u*(β)\\l+i + W(s)\\l+1)ds < oo .
i^>o Jo

(ii) For any T> 0, there exist

u°(i) = lim u\t) , strongly in Hm+1 and weakly in Hm+2 ,
i lO

uniformly for t e [0, T] ,

and

u°t(t) = lim wj(ί) , strongly in Hm and weakly in Hm+ί ,
no

uniformly for t e [0, T] ,

w° iemg a unique solution of (l.l)0-(1.3)0 such that

u° e C'([0, oo); Hm+2-1) with i = 0, 1, 2 .

In addition, u° satisfies

(1.7)

(1.8) j j (II grad u\s) ||2m+1 + || u%s) ||2

w+1)ds < oo .

In particular, if fe C%[0, oo), ijΓ™+1-*) ^ j ^ i = 0, 1, , m, ίΛen u° e

C'([0, oo); jff**2-*) with i = 0,1, , m + 2.

Remark 1.4. As in Remark 1.1, we can show

for ί ^ 0 ,

where C, C" are positive constants independent of λ and ί.
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Remark 1.5. Greenberg, MacCamy and Mizel [7] has first proposed
the equation

utt — σ{ux)uxx - λuxtx = 0, λ > 0 ,

to study the quasilinear wave equation

utt - σ{ux)uxx = 0 ,

where σ is a positive smooth function. However, they have not obtained
any results about the relations between these two equations. For the
mixed problem, Davis [2] has succeeded in getting the similar results to
Theorem I in the special case n = 1 and σ(r) = ax + a2r

2 with aly α2 > 0.

By Theorem II, if the data (u0, v0, f) are sufficiently small, then the
initial value problem (l.l)0-(1.3)0 has a unique global solution u°. Moreover,
by (1.7) and Sobolev's lemma, not only u° but also its derivatives up to
the second-order are bounded in (x, t)eRn X [0, oo). However, because of
the dissipative term cu°t(c > 0), we may expect that u° actually decays to
zero as t —> oo when f(t) tends to zero as t -> oo . For simplicity, we set
/ = 0 to investigate the asymptotic properties of solutions to (l.l)0-(1.3)0.

THEOREM IΠ. Suppose that / = 0 and c > 0. Let u° be the solution
of (l.l)0-(1.3)0 in Theorem II. Then u° decays like

(1.10) | |grad u°(*)||2w+1 = Ofr1) as t > oo ,

(1.11) \\u°t(t)\\2

m+1 = (Xr 1 ) as t > oo ,

(1.12) || Δu\t) ||2m = O(t-2) as t > oo ,

(1.13) || grad u%t)\\l = O(Γ2) as t > oo .

We can also estimate the rate of the decay of u° with respect to the
supremum norm.

COROLLARY. Under the conditions of Theorem III, u° decays like

(O(t-n/2N) if n > 2 ,
(1.14) || zAOlloo = n( _1/4x y I

(1.15) \\u%t)\U, \\u%t)\\~ =

(1.16) I K WIL, IK(t)IU =

as t -> oo, where N = [n/2] + 1.
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Remark 1.6. Recently, Matsumura [12], [13] has obtained some decay

estimates of solutions to quasilinear evolution equations of type (l.l)0.

Our results (Theorem III and its Corollary) are sharper than the corre-

sponding ones in [12] and [13].

§ 2. Proofs of existence theorems

2.1. Proof of Theorem I

Let u0 e Hm+\ v0 e Hm+ί and fe C'tfO, oo); Hm) ΓT C([0, oo); Hm+1). Theo-

rem I in Chapter I shows the existence of a solution uλ of (LlX-OLβ), on

a certain interval [0, τ]. However, the existence interval [0, τ] depends on

λ and τ = τλ may tend to zero as λ [ 0 (see (4.5) and (4.7) in Chapter I).

Therefore, in order to prove the assertions of Theorem I (i), we have to

choose an appropriate interval [0, TO] (with To > 0 independent of X), on

which both ||w;(ί)llm+2 a n ( l IÎ KOlU+i can be bounded by a positive constant

independent of λ. (Recall the arguments of Chap. I, § 4.)

To this aim, we shall make use of inequality (1.4.24) (which means

(4.24) in Chapter I): we have

|
o

^ IIMIG.+1 + nM0(\\graά wo|U)||| grad wo|||
2

m+1

+ 2|c | Γ | | N ( S ) | | | 2

m + 1 d s + 2 Γ | | | /(β) | |U t l | | |Bί(β) | | | w + 1 dβ
Jo Jo

+ C(m, ή) Γ Mm+1(||grad u^l l-Xl + Illgrad u>(s)\\\%+1)
Jo

X Hlgrad Ma(

with a suitable constant C(m, ή) > 0, depending on m, n, but not on λ.

(In what follows, C(a, β, •) denotes various positive constants depending

on a, β, , but not on λ.) In (2.1), recall

and

Hlgrad a|||L+1 = | |gradW | |2 + || Ju\\l .

Take a sufficiently large p > 0 such that p ^ 4 ||grad wo|U and suppose

that

(2.2)
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is true on [0, Γ], where T > 0 is an arbitrary fixed number. Put

(2.3) E\t) = \\\ι4(t)\\\l+i + Φ) Illgrad u*(t) | | | i + 1 .

Then it follows from (2.1) that

TO + 2λ £ Hlgrad «i(e)|||i+1cfe

^ IINIIl+i + FiAfo(p)|||gradiie|||!L+i + Γ
Jo

^ro, n, Γ) + C2(m, n, p) P Eλ(sYm+^2

Jo

where we have used the following inequality:

ab£—ap + —bq, α, 6 ^ 0 ,

with p > 1 and 1/p + 1/g = 1. In other words, we have

(2.4) X(t) ^Dx + D2 Γ X(sy+°ds ,
Jo

with

X(0 = EHfi + 2λ Γ Hlgrad ul(sWm+1ds ,
Jo

A = ||MIKL+i + nMo^IHgrad wo|||
2

m+1 + £|| |/(β)| | | i+ 1Λ + C^m, n, T),

A = Cam, n, p) and θ = / r a + 1 .

Since (2.4) implies

X(t) ^ A ( l - θDΪD2t)-ί/θ

on [0, llθDΪD2), we may conclude that

(2.5) £'(*) + 2λ Γ Hlgrad wί(s)llli+icfe ^ 2ΌX

Jo

holds on a certain interval [0, Γ*] with T* « min {T, 2/(m + l)Z>ίw+1)/2A}),

independent of ^. Let s0 be the positive number in (1.3.17) and take a

positive constant Γo satisfying 4V2As0T0 ^ p and To ^ T*. Since

||grad ^(OIU ^ llgrad Wo |U + Γ ||grad ιιJ
Jo
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^•f + βbΓ||gradttί(s)|μfe
4 Jo

4

it follows from (2.5) that

||grad uHf)\U ^ J + ^ ^ A ^ o ̂  - | on [0, To] ,

which justifies (2.2). Thus, noting the validity of (2.5) on [0, To]9 we com-

plete the proof of (i).

We next prove (ii). Let 1 ̂  μ ̂  λ > 0 and let u\ uμ be solutions of

the corresponding initial value problems. Taking the difference of the

two equations yields

« - uζt) - λΔ{u\ - uζ) + {μ- λ)Δui

(2.6) - Σ {α^grad uλ) - α^ferad W)}uij

- Σ α<j(grad u'Xulj - uQ + c(u\ - uζ) = 0 , 0 ̂  t ^ To .

Set v = uλ — uμ and take the m-inner product of (2.6) with vt; then

D^,) - ^ Σ Φ ^ ί 5 D^,) + (p - X)

- Σ Σ

- Σ ΣΣ
ί l

- Σ Σ (««(grad uf)Diυiif D°xvt) + c Σ Φ ^

= I, + I, + 7, + ϋ + I, + I, + ίτ

= 0 , 0^t^T0.

We shall arrange each It (1 ̂  i ^ 7). It is easy to show

(2.7) 1= λ-^\\υt(i)\\l,

(2.8) J2

(2.9) Is

(2.10) I 7 = c\\vt(t)\\l ̂  - | c | HϋXOllL

By virtue of (1.2.7), It can be estimated as follows;
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(2.11)
X (1 + || grad u\t)\\% + || grad »'(f)|β) || grad y(ί)||m \\vt(t)\\m .

Lemma 2.4 (iii) in Chapter I gives

(l1 g r a d M"(ί) IU)(1 + l! g r a d W
(2 12) I s ^

Finally, since

I . = Σ Σ (o«(grad u")Dsou D°xvjt)

+ Σ Σ (^(gradW)u%D°xv{,D°xvt)
\a\£m i,j,k=l \ dηk /

= \-%rΣ £(alj(Sradur)D"avt,D'.υi)
2 at ι«i5m <,y=i

- 4 " Σ Σ (^i-(gtedW)uitD'aυt,D:υΛ

+ Σ Σ

it follows that

\4τ Σ Σ
(2.13)

C( ^ d l g d "(ί)IU){||grad uf(ί)y|grad ι<ί)||
UIIgrad v{t)\\m\\vt(t)||m} ,

where we have used Sobolev's lemma.
Thus, by combining (2.7)-(2.13), it is possible to derive the following

estimate with the aid of (A.3), (2.2) and (2.5);

\\vt(t)\\l + OoOOHgrad v(t)fm + 2λ Γ ||grad vt(s)\\lds
Jo

( 2 ' 1 4 ) ^ μ* Γ \\M(s)\\lds + C(m, n, p) Γ {||ι;((β)||L
Jo Jo

ΛΓ0

Since « \\AuH(s)\\2

mds is bounded by some positive constant independent of
Jo

μ (see (2.5)), (2.14), together with GronwalΓs inequality, implies that

(2.15) u\t) = lim u\t) exists in Hm+\ uniformly for t e [0, To]
1 I t\
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and that

(2.16) u%t) = lim u\{t) exists in Hm, uniformly for t e [0, To] .

Clearly, u° e C([0, ΓJ; # m + 1 ) Π CJ([0, Γo]; Hm) from (2.15) and (2.16). (Letting

λ I 0 in (2.14) and applying GronwalΓs inequality we get estimate (1.4) in

Remark 1.1.)

Furthermore, since ||WX£)IITO+I + αo(^)||grad (̂£)llm+i is bounded by a

positive constant independent of λ on [0, To] (see (2.3) and (2.5)), it can be

shown that, as λ j 0,

(2.17) u\t) -* u°(t) in Hm+\ uniformly for t e [0, Γo] ,

and

(2.18) ux

t(t) -- u%t) in £Γm+1, uniformly for t e [0, Γo],

where -^ means weak convergence. Hence, u° e Cw([0, To] ;Hm+2)Π Ci,([0, To]

Hm+1) from (2.17) and (2.18).

Now from Lemma 2.4 (i) in Chapter I, {B(uλ)} = {Σ?,y-i βi/grad Ma)M{y}

is bounded in C([0, To]; ί ί m ) for all 0 < λ £ 1. We shall show that

(2.19) B(uλ(t)) -* B(w?(ί)) in H m , uniformly on [0, To] .

Since m ^ [τι/2] + 1, it follows from (2.15) that

(2.20) ulj(t) > u\ά{t) in L2, uniformly for t e [0, TQ]

and

(2.21) grad uλ(x, t) > grad u°(x, t) uniformly for (x, t)eRn X [0, To]

(use Sobolev's lemma). Hence, for any φe Cj°,

converges to

Σ

uniformly for ί e [0, To] as λ j 0. This shows (2.19), because Cj° is dense

in Hm.

We are ready to prove that u° is a solution of (l.l)0-(1.3)0. Note that

the next identity holds for any φ e Cs°
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= (Vo, Φ)m + λ(Δu\t), φ)m - λ(Δu0, φ)n

(2.22) - c(ux(t), φ)m + c(«0, φ)m

+ f (B(wJ(s)) + f(s), φ)mds, O^t^To.
JO

Letting λ \, 0 in (2.22) and making use of convergence properties (2.15),

(2.16), (2.17) and (2.19), we get

(u°t(i), φ)m = (υ0, φ)m - c(u%t), φ)m + c(u0, φ)m

(B(u\s))+f(s),φ)mds.^

This implies that t -> u%t) is weakly continuously differentiable in Hm and

that

(2.23) «(*), φ)m = (B(u\t)) - cu%t) + ffl, φ)m, 0^t^T0,

for any φ e Cj°. Since Cj° is dense in Hm, initial value problem (l.l)0-

(1.3)0 has a unique solution u° (in the sense of (2.23) for any φeHm) such

that

(2.24) u° e C([0, To] Hm+1) n ^([0, Γo] H w ) ΓΊ C*,([0, To] H-+ 2-0

with i = 0, 1, 2.

Before proving that w° actually belongs to the class C*([0, To]; Hm+2'*)9

i = 0, 1, 2, it is very convenient to show the uniqueness of solutions to

(l.l)o-(1.3)o within the class (2.24). Let u°, υ° be two solutions of (l.l)o-

(1.3)o satisfying (2.24). If we put w° = u° - v\ we have

w% - Σ {«ϋ(grad w°) - σ4i(grad v0)}^
(2.25) * ̂ -1

- έ ^ ϋ ί g r a d y°)< + CM;? = 0 .

Take the m-inner product of (2.25) with w°t. (This is possible because w°t

belongs to C([0, T0];Hm) and each term of the left-hand side of (2.25) be-

longs to Cw([0, To]; Hm).) Then, as in the derivation of (2.14), we can show

C Γ {|| w%s) ||2W + φ) || grad w\s) \Qds,
Jo

with some ρ9 C > 0, which, together with GronwalΓs inequality, implies

II w?(£)IL= IIgrad w°(t)\\m = 0, i.e., w°=0. Thus we have shown the uniqueness

of solutions to (Ll)0-(1.3)0 within the class (2.24).

https://doi.org/10.1017/S0027763000019553 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019553


74 YOSHIO YAMADA

Now we shall prove that the solution u° constructed above actually

belongs to the class C*([0, To]; £rm + 2"0 with i = 0, 1, 2. We make use of

the following inequality whose derivation is essentially the same as that

of (1.4.24):

Σ Σ

+ Σ («i/grad u\t))u\(t), u)(t)) + 2λ Γ || |grad ul(s)\\\2

m+1ds
i,J=l JO

£ \\\vo\\\l+ι + Σ m ( t j a d g r s i ά uo)DxuOιik, D"xuatjk)

n

(2.26) + 2 (α έ j(grad uQ)uOti, u0>j)

Jo

2, ή) I M m + 1 ( | |grad ^(s) |U)(l + | |grad uλ(
Jo

Note that each integral of the right-hand side of (2.26) is bounded by Ct

with some C > 0, independent of λ (recall (2.5)). Letting λ \, 0 in (2.26), we

can conclude by convergence properties (2.15)-(2.21) and (A.3) that

Σ Σ (α<j(grad u\t))D°xuUt\ D«xu)k(t))

Σ (
(2.27)

^ H|iΌlllL+i + Σ Σ (Oi/grad uo)Dxuo,ik> Dxu0Jk)

+ Σ (αf/grad wo)wo,ί, Mofi) + Ct.

We set bijix) = α^(grad WoW) and provide i ϊ m + 2 with a new inner

product defined by

(u, v)btm+2 = Σ Σ (bijD^uik9 Dα

xυjk) + Σ ( 6 ^ ^ , ty) + (^, ^) .

The associated norm is defined by

l N i δ , m + 2 = {(u, u ) b t m + 2 γ / 2 ,

which is equivalent to || ||m+2. Recall that

u° e C([0, ΓJ; ίfM + 1)Π Cw([0, ΓJ; ff ^ Π C m ΓJ; i ϊ w ) n Ci([0, ΓJ; F m + 1 )
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Since

lim grad u°(x, t) = grad uo(x) uniformly in x e Rn ,

by Sobolev's lemma, it follows by letting t \ 0 in (2.27) that

lims
(2.28) ί i 0

On the other hand, by the weak continuity of £-» u°(t) in Hm+2 and t

u°t(t) in Hm+1, we have

(2.29) ' t 1 0

UO

Hence, (2.28) and (2.29) imply

(2.30) | u o

uo

Consequently, (2.30), together with the weak continuity of t -> u°(t) in Hm+2

and that of t -> u%t) in iϊm + 1, yields the strong continuity of t -+u°(t) in

Hm+2 and that of t -> u%t) in # m + 1 at t = 0.

To prove the same result at any t0 e [0, To]> we consider the initial

value problem to (l.l)0 for t >̂ t0 with initial data {u°(t0), u°t(t0)}. Then the

preceding consideration assures that there exists a unique solution v° in

the class (2.24) with [0, To] replaced by [t0, T'o] (T'o > t0). Moreover, at t =

t0, v° is strongly continuous in Hm+2 and v°t is strongly continuous in Hm+1.

Hence, by the uniqueness result proved before, we see that u° (resp. u?)

is strongly right-continuous in Hm+2 (resp. Hm+1) at t = t0.

To prove the left-continuity of w°, we consider the next initial value

problem

- cv» = f(T0 - t), 0^t£T0,

= u°(T0)eHm+2

vo

t(O)=uo

t(To)eHm+1 .

The existence of a solution υ° within the class (2.24) is already known from

the above arguments. Moreover, both t->v°(t) in Hm+2 and t-+v%t) in
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Hm+1 are strongly right-continuous on [0, To). On the other hand, the

uniqueness result implies u°(t) — v°(T0 — t), which shows that (l.l)0 is re-

versible in t. Therefore,

u° e C%[09 To]; H^*-*) 9 i = 0, 1 .

Furthermore, it follows from (l.l)0, with the aid of Lemma 2.4 in Chapter

I, that u°tteC([0, To];Hm).

Finally, it remains to show u° e C<([0, To]; Hm+2-1) (i = 0,1, , m + 2)

if fe C*([0, oo); Hm+1~i) (i = 0,1, , m). However, this is a direct conse-

quence of the following proposition. [q.e.d.]

PROPOSITION 2.1. Let (u0, vo,f) e Hm+2 x Hm+1 X C<([0, oo); Hm+1-*) with

i = 0, 1, , m. Suppose that the initial value problem (l.l)0-(1.3)0 has a

solution u° e C*([0, T]; flrm+2"<), with i = 0, 1, 2. Then

u° e CK[09 T] Hm+2~ι) with i = 0, 1, . •, m + 2 .

The proof of this proposition is given at the end of this section.

Remark 2.1. The viscosity method has produced satisfactory results

in various fields. See e.g. Lions [10], Oleinik [16] and Kozhanov [24],

One of the typical applications is found in the work of T. Kato [8], where

he has treated the initial value problem for the Navier-Stokes equations

by the theory of nonlinear evolution equations to approach the initial

value problem for the Euler equation.

The existence result obtained here for initial value problems (l.l)0-

(1.3)o is not new, but the approach via the viscosity method is new and

seems simpler than the existing one due to Dionne [3]. (In [3], precise

arguments on the smoothness of coefficients of linear hyperbolic equations

are needed.)

Remark 2.2. We can apply the technics developed in this paper to

initial value problems for more general quasilinear wave equations

utt ~ Σι <*υ(χ> *> u> S ^ d u> u^ua + &(*> t9 u, grad u, ut) = / ,

with some appropriate assumptions on atJ and 6. See also Remark 4.3 in

Chapter I.

2.2. Proof of Theorem II

Let c > 0, 1 ^ λ > 0 and (u0, υ0, f) e Hm+2 X Hm+1 X {^([0, oo); Hm) Π
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C([0, oo); Hm+% To prove (i), it suffices to show t h a t \\uλ(t)\\m+2, \\uλ

t(t)\\m+1,

ί \\gχsiάuλ(s)\\2

m+1ds and \\uλ

t(s)\\2

m+1ds are bounded above by some positive
o Jo

constants (independent of λ) for all 11> 0.

Recall the arguments in Chapter I, § 4. We first note that (1.4.35) is

true with u replaced by uλ. Set

δ = m a x { l I N I U i , IHgrad uo\\\m+ί, \\\uo\\\m+ί, J~ | | |/(β)| | |m + 1cfe}

and

D(δ) = δ[{l + nMo(soδ) + | c ( 3 + c)}1'2 + 2] .

We fix an arbitrary p > 0 satisfying p > 5 VΎs0D(ΐ)l2c and choose a

sufficiently small 0 < d0 < 1 such that

icao(p) > C(m, ή)Mm+1(p){l

(cf. (1.4.36) and (1.4.38)). Note that £0 can be taken depending on m9 n,

c, p and Ώa

nai5 (\a\ <̂  m + 1), but not on λ.

By repeating the procedure in Chapter I, § 4.2, it is found that, if δ

<: δ09 then

\I

^ \

^ ΰf t ) 2 , for all t ^ 0 ,

(cf. (1.4.44)), which assures (1.5) and (1.6). Thus the proof of (i) is complete.

The proof of (ii) is essentially the same as that of Theorem I (ii), so

we shall only sketch it here.

Since (2.14) is true on [0, oo) for all 1 ^ μ > λ > 0 and t ^ 0, it follows

with the use of (2. 31) that there exist

(2.32) u\t) = lim uλ(t) strongly in Hm+\ uniformly in t e [0, T]
,110

and

(2.33) u\(t) = lim u\{t) strongly in Hm, uniformly in t e [0, T]
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for any T > 0. Hence, inequality (1.9) in Remark 1.4 is easily derived from

(2.14), (2.31), (2.32) and (2.33).

Furthermore, by (2.31), (2.32) and (2.33),

(2.34) u°(t) = lim u\t) weakly in Hm+\ uniformly in t e [0, T]

and

(2.35) u°t(t) = lim u\{t) weakly in Hm+\ uniformly in t e [0, T]
110

for any T > 0.

Making use of these convergence properties (2.32)-(2.35), we repeat the

arguments in § 2.2 to show that u° is a global solution of (l.l)0-(1.3)0 satis-

fying (1.7), (1.8) and

uQ e C([0, oo); Hm+1) ΓΊ C'dO, oo); Hm) Π Cί,([0, oo); Hm+2-') ,

with i = 0, 1, 2. On the other hand, Theorem I and the uniqueness result

within the class (2.24) enable us to conclude u° e C*([0, oo); H™*2'*) with

i = 0, 1, 2.

In case of fe CΌO, oo); #™+i-*) (£ = 0,1, , m), we have only to note

Proposition 2.1. [q.e.d.]

Remark 2.3. Recently, A. Matsumura [12] has obtained remarkable

results on the existence of global solutions to (l.l)0-(1.3)0, while his proof

(based on Dionne's result) is very technical. Our proof seems simpler to

follow than that of Matsumura, although our existence result (Theorem Π

(ii)) is almost the same as his.

2.3. Proof of Proposition 2.1

Here it is convenient to use the following notation

where

a = (al9 a2, , an9 at) and |α | = ax + a2 + + ocn + at .

We shall prove u° e C'([0, T]; Hm+2~l) with i = 0, 1, 2, - , m + 2 by

induction. Suppose that

u° e C*([0, T]; Hm+2-*), ί == 0, 1, 2, . . . , s ,

is true with s ^ 2. Note the next identity
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(2.36) D*9tϊ4t = Σ D

where multi-index a satisfies \a\ <L m and at = s — 1. Since both D^tu°t

and D ^ / belong to C([0, T]; H1) c C([0, Γ]; U) by assumptions, it is suf-

ficient to show

C([0, T]; L2)

for every i, j = 1, 2, , n.

By Leibnitz' formula,

so that Dχ,t{θij(g^sΛ u°)u\j) is written as a linear combination of functions

of the form

(2.37) (A«^)(grad u") f[ Dit^fiξ,,^ ,

where \β\ ̂  |α|, | r | ^ |α - fl, g ^ |α - j8| and Σ ? β l | ^ | = |α - ^|.

First we shall show that (2.37) belongs to U for each t e [0, T]. By

assumptions,

(2.38) D£,ti4j

and

(2.39) ^ 1 4 , € C([0, Γ]; Hm+ί~^[) .

Recalling Sobolev's lemma, we may assume q >̂ 1, m — |/3| ^ [n/2] and

/n + 1 — \δ£\ ^ [n/2] to estimate the L2-norm of (2.37). By virtue of Lemma

2.2 (ii) in Chapter I, it follows from (2.38) and (2.39) that

(2.40) D^Mj e C([0, T];D>) with - e [ 1 - ΞLzlE, 1 1 - {0} ,

and

(2.41) ΰ^<eC([0,T];Z/<) with 1 e [ 1 - y y ι + 1 " " ^ l

> 1 ] - {0} ,
p^ L 2 M 2 J

Denote by 1/P and \\Pt the infimum of 1/p and l/p£ satisfjdng (2.40)

and (2.41), respectively. Then
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n /

nq — 2m —

q(n — 2m -
2n

•2q(jn\

In

- 2 )

_ m+l-\δt\
n

l) + 2|α|

Since m ̂  [n/2] + 1,

Hence there exist some positive numbers/?, pl9 ,p e such that

p 4-1 p6 2

so that application of Holder's inequality to (2.37) gives

f Iφ^Xgrad uF) f[ D^ulMMjfdx
J £-1

^ Mlr,(||grad u»|U)2 ft (j {Di^uir^dxj (j {DiX^

^ CMlrl(||gradw»|U)2 Π ^ J M l ^

Therefore, we have shown that D .tία^ίgrad u°(t))uij(t)} with \a\ <̂  m and

at — s — 1 belong to U for any 0 ̂  t <I Γ.

It is essentially in the same way as above to prove that

> 0 ,

as t > t0,

with \a\ <^ m and αf = s — 1. Consequently we get

u°eCs+1([0, T];Hm+ί"),

which completes the proof. [q.e.d.]

§3. Asymptotic behavior

Theorem Π asserts the existence of a positive constant <50 such that,

if

max
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then the initial value problem (l.l)0-(1.3)0 has a unique solution u° e

C'([0, oo); Hm"2-ί) (ί = 0,1, 2) satisfying (1.7) and (1.8). Thus, the dissipative

term cu°t (c > 0) in (l.l)0 plays a role to stabilize solutions. Moreover, we

shall show that this dissipative term has a damping effect on solutions

to (l.l)o.

3.1. Proof of Theorem III

Let c > 0 and / = 0. Let uλ be a solution of (l.ΐ)λ-(l.S)λ satisfying (2.31).

Then repeating the arguments in Chapter I, § 5, we can show

*{ll ul(t)\\l+1 + || grad u\t) ||i+1} + J% || ul(s) \\l+1ds £ C ,

for all t^ 0 and 1 ̂  λ > 0 ,

(cf. (1.5.6)) and

(3.2) + Γ s\\Ju"(s)\\lds + Γ s2||grad ^ ) | | ^ s ^ C ,
Jo Jo

for all t ^ 0 and 1 ̂  ^ > 0 ,

(cf. (1.5.13)) with some C > 0.

On the other hand, convergence properties (2.32)-(2.35) are already

known. Thus letting λ | 0 in (3.1) and (3.2), we obtain decay estimates

(1.10)-(1.13). [q.e.d.]

3.2. Proof of Corollary

We use the following well-known inequality due to Nirenberg-Gagliardo

(see e.g. [15]):

(3.3) || u\U ^ C\ u\i || u\\ι-θ for u e W ,

for some C > 0, where t > n/2, θ = n\*Li and

\u\* = Σ \\D«u\\2

|«|=ί

It follows from (3.3) that

(3.4) ιi

with N = [ra/2] + 1 and ̂  = n/2iV. Hence, if N ^ 2 (i.e., ra ̂  2), we have

from (1.7), (1.12) and (3.4)

||af(ί)|U ^ C| J i ^ ^ l ^
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which shows (1.14) for n ^ 2. If N == 1 (i.e., n = 1), we see from (1.7),

(1.10) and (3.4)

\uXt)\U ^

= Cr1 / 4

Other decay estimates (1.15) and (1.16) are derived from (1.10)-(1.13)

and (3.4) in the same way as above. [q.e.d.]

Added in proof. After this paper was submitted for publication, the

author was informed of the paper of H. Pecher, ' O n global regular solu-

tions of third order partial differential equations, J. Math. Anal. Appl.,

73 (1980), 278-299". He treats with the global existence of solutions for

third-order differential equations which are similar to ours.
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