H. Kazama and S. Takayama Nagoya Math. J. Vol. 155 (1999), 81–94

∂∂-PROBLEM ON WEAKLY 1-COMPLETE KÄHLER MANIFOLDS

HIDEAKI KAZAMA AND SHIGEHARU TAKAYAMA

To the memory of Prof. Makoto Suzuki

Abstract. We consider a problem whether Kodaira's $\partial \overline{\partial}$ -Lemma holds on weakly 1-complete Kähler manifolds or not. This problem was proposed by S. Nakano. We prove that the Lemma holds for some class of complex quasitori \mathbb{C}^n/Γ , and it does not hold for the other class of them. Every complex quasi-tori is weakly 1-complete and complete Kähler. Then we get a negative answer for the above problem.

§1. Introduction

The following lemma proved by Kodaira is well-known and usually called " $\partial \overline{\partial}$ -Lemma" ([9, Proposition 7.1]).

 $\partial \overline{\partial}$ -LEMMA. Let X be a compact Kähler manifold and φ a d-exact (1,1)-form on X. Then there exists a C^{∞} -function Ψ on X such that

$$\varphi = \partial \overline{\partial} \Psi$$

 $on \ X.$

In [14] many problems concerning function theory of several complex variables are posed. There S. Nakano gives a problem concerning the above $\partial \overline{\partial}$ -Lemma as follows.

A complex manifold X is called *weakly* 1-*complete* if there exists a C^{∞} -plurisubharmonic exhaustive function on X. Easily we can see that a compact complex manifold is weakly 1-complete, a strongly 1-convex manifold is weakly 1-complete and then every Stein manifold is weakly 1-complete.

PROBLEM 1.1. Can one show $\partial \overline{\partial}$ -Lemma on weakly 1-complete Kähler manifolds?

Received October 23, 1996.

We can give a very easy counterexample to this problem (Example 4.1); nevertheless, it is very interesting to consider this from the other aspects. We give reformed problems of it in $\S4$.

A connected complex Lie group without global non-constant holomorphic function is called a *toroidal* group. Every complex *n*-dimensional toroidal group is isomorphic to \mathbb{C}^n/Γ for some discrete subgroup Γ ([8]). A complex torus is an example of a toroidal group.

It is shown that every toroidal group is always weakly 1-complete ([4], [11]). From the natural covering structure

$$\mathbb{C}^n \longrightarrow \mathbb{C}^n / \Gamma$$

it follows that every toroidal group \mathbb{C}^n/Γ is a complete Kähler manifold.

In this paper we will consider whether $\partial \overline{\partial}$ -Lemma holds on toroidal groups or not.

Every toroidal group \mathbb{C}^n/Γ satisfies either of the following statements (1) and (2) ([5], [12]):

- (1) $H^p(\mathbb{C}^n/\Gamma, \mathcal{O})$ is finite-dimensional for any p;
- (2) $H^p(\mathbb{C}^n/\Gamma, \mathcal{O})$ is a non-Hausdorff and then infinite-dimensional locally convex space for any p with $1 \le p \le q$,

where \mathcal{O} denotes the structure sheaf of \mathbb{C}^n/Γ and $q := \operatorname{rank} \Gamma - n$. From this result we can classify all toroidal groups. We say that a toroidal group is of cohomologically finite type if it satisfies the above property (1) and of non-Hausdorff type if it satisfies the above property (2), respectively.

We will show that $\partial\partial$ -Lemma holds for toroidal groups of cohomologically finite type and that it does not hold for toroidal groups of non-Hausdorff type.

This gives the negative answer for the above problem even if we consider it only for toroidal groups.

We wish to thank Prof. Koji Cho who gave a suggestion for us to generalize our former statements of Theorem 3.3.

\S **2.** Toroidal groups

Throughout this section we consider a toroidal group \mathbb{C}^n/Γ , where Γ is a discrete subgroup of \mathbb{C}^n and of rank n+q generated by \mathbb{R} -linearly independent vectors $\{e_1, e_2, \ldots, e_n, v_1 = (v_{11}, \ldots, v_{1n}), v_2 = (v_{21}, \ldots, v_{2n}), \ldots, v_q = (v_{q1}, \ldots, v_{qn})\}$ over \mathbb{Z} and e_i denotes the *i*-th unit vector of \mathbb{C}^n . We take

Re v_i , Im $v_i \in \mathbb{R}^n$ with $v_i = \text{Re } v_i + \sqrt{-1} \text{Im } v_i$. Since $e_1, e_2, \ldots, e_n, v_1, v_2, \ldots, v_q$ are \mathbb{R} -linearly independent, Im v_1 , Im $v_2, \ldots, \text{Im } v_q$ are \mathbb{R} -linearly independent. Then without loss of generality we may assume det [Im v_{ij} ; $1 \leq i, j \leq q$] $\neq 0$ from now on. We set

(2.1)
$$K_{m,i} := \sum_{j=1}^{n} v_{ij} m_j - m_{n+i}$$
 and $K_m := \max\{|K_{m,i}| ; 1 \le i \le q\}$

for $m = (m_1, m_2, \ldots, m_{n+q}) \in \mathbb{Z}^{n+q}$. From the result of [8] it follows that \mathbb{C}^n/Γ is toroidal if and only if

(2.2)
$$K_m > 0 \quad \text{for any } m \in \mathbb{Z}^{n+q} \setminus \{0\}.$$

We denote by π_q the projection $\mathbb{C}^n \ni (z_1, \ldots, z_n) \mapsto (z_1, \ldots, z_q) \in \mathbb{C}^q$. Since $\pi_q(e_i), \pi_q(v_i)$ $(1 \le i \le q)$ are \mathbb{R} -linearly independent, π_q induces the \mathbb{C}^{*n-q} -principal bundle

(2.3)
$$\pi_q: \mathbb{C}^n/\Gamma \ni z + \Gamma \longmapsto \pi_q(z) + \Gamma^* \in \mathbb{T}_C^q := \mathbb{C}^q/\Gamma^*$$

over the complex q-dimensional torus \mathbb{T}_C^q , where $\Gamma^* := \pi_q(\Gamma)$ ([5]). We put

$$\begin{aligned} \alpha_{ij} &:= \begin{cases} \operatorname{Re} v_{ij} & (1 \le i \le q, \ 1 \le j \le n) \\ 0 & (q+1 \le i \le n, \ 1 \le j \le n), \end{cases} \\ \beta_{ij} &:= \begin{cases} \operatorname{Im} v_{ij} & (1 \le i \le q, \ 1 \le j \le n) \\ \delta_{ij} & (q+1 \le i \le n, \ 1 \le j \le n), \end{cases} \end{aligned}$$

 $[\gamma_{ij} ; 1 \leq i, j \leq n] := [\beta_{ij} ; 1 \leq i, j \leq n]^{-1}$ and $v_i := \sqrt{-1}e_i$ for $q+1 \leq i \leq n$. Since $\{e_1, \ldots, e_n, v_1, \ldots, v_n\}$ are \mathbb{R} -linearly independent, we have an isomorphism

$$\phi : \mathbb{C}^n \ni (z_1, \dots, z_n) \longmapsto (t_1, \dots, t_{2n}) \in \mathbb{R}^{2n}$$

as a real Lie group, where $(z_1, \ldots, z_n) = \sum_{i=1}^n (t_i e_i + t_{n+i} v_i)$. Then we obtain the relations

(2.4)
$$t_j = x_j - \sum_{i,k=1}^n y_k \gamma_{ki} \alpha_{ij} \text{ and } t_{n+j} = \sum_{i=1}^n y_i \gamma_{ij}$$

for $1 \leq j \leq n$, where $z_i = x_i + \sqrt{-1} y_i$. We put t = (t', t''), $t' = (t_1, \ldots, t_{n+q}) \in \mathbb{R}^{n+q}$ and $t'' = (t_{n+q+1}, \ldots, t_{2n}) \in \mathbb{R}^{n-q}$. ϕ induces the isomorphism:

 $\phi : \mathbb{C}^n / \Gamma \cong \mathbb{T}^{n+q} \times \mathbb{R}^{n-q}$ as a real Lie group, where \mathbb{T}^{n+q} is an (n+q)dimensional real torus. Sometimes we identify \mathbb{C}^n / Γ with the real Lie group $\mathbb{T}^{n+q} \times \mathbb{R}^{n-q}$ and use the real coordinate system (t_1, \ldots, t_{2n}) instead of holomorphic coordinates.

We make the following change of holomorphic coordinates of \mathbb{C}^n :

$$\zeta_i = \sum_{j=1}^n z_j \gamma_{ji}$$

Then we can regard $(\zeta_1, \ldots, \zeta_n)$ as a local holomorphic coordinate system of \mathbb{C}^n/Γ and we have global vector fields and global 1-forms:

$$\frac{\partial}{\partial \overline{\zeta}_i} = \sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial \overline{z}_j}, \quad \frac{\partial}{\partial \zeta_i} = \sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial z_j},$$
$$d\overline{\zeta}_i = \sum_{j=1}^n \gamma_{ij} \, d\overline{z}_j, \text{ and } d\zeta_i = \sum_{j=1}^n \gamma_{ij} \, dz_j$$

 $(1\leq i\leq n)$ on $\mathbb{C}^n/\Gamma.$ It follows from (2.4) that

(2.5)
$$\frac{\partial}{\partial \overline{\zeta}_i} = \frac{1}{2} \left(\sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial t_j} - \sqrt{-1} \sum_{j=1}^n \alpha_{ij} \frac{\partial}{\partial t_j} + \sqrt{-1} \frac{\partial}{\partial t_{n+i}} \right),$$
$$\frac{\partial}{\partial \zeta_i} = \frac{1}{2} \left(\sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial t_j} + \sqrt{-1} \sum_{j=1}^n \alpha_{ij} \frac{\partial}{\partial t_j} - \sqrt{-1} \frac{\partial}{\partial t_{n+i}} \right).$$

Then particularly for $q + 1 \leq i \leq n$ we have

(2.6)
$$\frac{\partial}{\partial \overline{\zeta}_i} = \frac{1}{2} \left(\frac{\partial}{\partial t_i} + \sqrt{-1} \frac{\partial}{\partial t_{n+i}} \right).$$

§3. $\partial \overline{\partial}$ -Lemma

Let \mathcal{A} be the sheaf of germs of real analytic functions on \mathbb{C}^n/Γ and \mathcal{H} its subsheaf of germs of real analytic functions on \mathbb{C}^n/Γ that are holomorphic along each fiber of π_q of (2.3). We may consider $(\zeta_{q+1}, \ldots, \zeta_n)$ is a holomorphic coordinate of each fiber of π_q . For $0 \leq p \leq q$ we denote by $\mathcal{H}^{r,p}$ the sheaf of germs of (r, p)-forms as follows

$$\varphi = \frac{1}{r!p!} \sum_{1 \le j_1, \dots, j_r \le n, \ 1 \le i_1, \dots, i_p \le q} \varphi_{j_1 \cdots j_r, i_1 \cdots i_p} d\zeta_{j_1} \wedge \dots \wedge d\zeta_{j_r} \\ \wedge d\overline{\zeta}_{i_1} \wedge \dots \wedge d\overline{\zeta}_{i_p},$$

where $\varphi_{j_1\cdots j_r,i_1\cdots i_p} \in \mathcal{H}$ is skew-symmetric in all indices. Henceforth all differential forms are denoted skew-symmetrically and we use the notations

$$J_r = (j_1, \dots, j_r), \quad d\zeta_{J_r} = d\zeta_{j_1} \wedge \dots \wedge d\zeta_{j_r}, I_p = (i_1, \dots, i_p), \quad d\overline{\zeta}_{I_p} = d\overline{\zeta}_{i_1} \wedge \dots \wedge d\overline{\zeta}_{i_p}.$$

Then we write $\varphi = 1/(r!p!) \sum_{J_r, I_p} \varphi_{J_r, I_p} d\zeta_{J_r} \wedge d\overline{\zeta}_{I_p}$. Let Ω^r be the sheaf of germs of holomorphic (r, 0)-forms on \mathbb{C}^n/Γ . We have the following lemma.

Lemma 3.1. The sequence

$$0 \longrightarrow \Omega^{r} \longrightarrow \mathcal{H}^{r,0} \xrightarrow{\overline{\partial}} \mathcal{H}^{r,1} \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \mathcal{H}^{r,q} \longrightarrow 0$$

is exact on \mathbb{C}^n/Γ and one obtain a kind of Dolbeault isomorphism

$$H^{p}(\mathbb{C}^{n}/\Gamma,\Omega^{r}) = \frac{\{\varphi \in H^{0}(\mathbb{C}^{n}/\Gamma,\mathcal{H}^{r,p}) \mid \overline{\partial}\varphi = 0\}}{\overline{\partial}H^{0}(\mathbb{C}^{n}/\Gamma,\mathcal{H}^{r,p-1})}$$

for $p \geq 1$.

Proof. If r = 0, then $\Omega^r = \mathcal{O}$. We obtain the exact sequence:

$$(3.1) \qquad 0 \longrightarrow \Omega^0 \longrightarrow \mathcal{H}^{0,0} \longrightarrow \mathcal{H}^{0,1} \longrightarrow \cdots \longrightarrow \mathcal{H}^{0,q} \longrightarrow 0$$

by [5, Proposition 3.4]. We can take a basis

$$\{d\zeta_{J_r} \mid 1 \le j_1 < \dots < j_r \le n\}$$

of $H^0(\mathbb{C}^n/\Gamma,\Omega^r)$. For every points $[z] \in \mathbb{C}^n/\Gamma$ we have the isomorphisms

$$\Omega_{[z]}^{r} \cong \bigoplus_{J_{r}} \Omega_{[z]}^{0} (d\zeta_{J_{r}})_{[z]},$$
$$\mathcal{H}_{[z]}^{r,p} \cong \bigoplus_{J_{r}} \mathcal{H}_{[z]}^{0,p} (d\zeta_{J_{r}})_{[z]}$$

of each stalk of sheaves. Observing coefficients of each $(d\zeta_{J_r})_{[z]}$, we can divide the sheaf complex of the statement of the lemma to $\binom{n}{r}$ complexes so that each complex can be identified with (3.1). This argument shows also the latter half of the lemma. Π Now we recall the argument of §4 of [5]. For $\varphi \in H^0(\mathbb{C}^n/\Gamma, \mathcal{H}^{r,p})$. We can write

$$\varphi = \frac{1}{r!p!} \sum_{J_r, I_p} \varphi_{J_r, I_p} \, d\zeta_{J_r} \wedge d\overline{\zeta}_{I_p},$$

where $\varphi_{J_r,I_p} \in H^0(\mathbb{C}^n/\Gamma, \mathcal{H}^{0,0})$. The function φ_{J_r,I_p} has the Fourier expansion on \mathbb{C}^n/Γ :

$$\varphi_{J_r,I_p} = \sum_{m \in \mathbb{Z}^{n+q}} C^m_{J_r,I_p}(t'') \exp(2\pi \sqrt{-1} \langle m, t' \rangle),$$

where $C_{J_r,I_p}^m(t'')$'s are C^{∞} functions on t'' and $\langle m,t' \rangle := \sum_{i=1}^{n+q} m_i t_i$. Since the function φ_{J_r,I_p} is holomorphic along the fibers of the map of (2.3), then for $q+1 \leq i \leq n$

$$\frac{\partial C^m_{J_r, I_p}(t'')}{\partial \overline{\zeta}_i} = 0.$$

From (2.6) we have the following Fourier series:

$$\varphi_{J_r,I_p} = \sum_{m \in \mathbb{Z}^{n+q}} c_{J_r,I_p}^m \exp\left(-2\pi \sum_{i=q+1}^n m_i t_{n+i}\right) \exp(2\pi \sqrt{-1} \langle m, t' \rangle),$$

where c_{J_r,I_p}^m 's are constants.

We put

(3.2)
$$\varphi_{J_r,I_p}^m = c_{J_r,I_p}^m \exp\left(-2\pi \sum_{i=q+1}^n m_i t_{n+i}\right) \exp(2\pi \sqrt{-1} \langle m, t' \rangle)$$

and

$$\varphi^m = \frac{1}{r!p!} \sum_{J_r, I_p} \varphi^m_{J_r, I_p} \, d\zeta_{J_r} \wedge d\overline{\zeta}_{I_p}.$$

Then $\varphi = \sum_{m \in \mathbb{Z}^{n+q}} \varphi^m$. It follows from (2.1), (2.5) and (3.2) that for $1 \leq \ell \leq q$

(3.3)
$$\frac{\partial \varphi_{J_r,I_p}^m}{\partial \overline{\zeta}_{\ell}} = \pi K_{m,\ell} \, \varphi_{J_r,I_p}^m, \quad \frac{\partial \varphi_{J_r,I_p}^m}{\partial \zeta_{\ell}} = \pi \overline{K}_{m,\ell} \, \varphi_{J_r,I_p}^m.$$

Now we suppose φ is $\overline{\partial}$ -closed, that is, $\overline{\partial}\varphi^m = 0$ for any $m \in \mathbb{Z}^{n+q}$. The compatibility condition for φ to be $\overline{\partial}$ -closed is expressed by the Fourier coefficients such that

(3.4)
$$\sum_{\ell=1}^{p+1} (-1)^{\ell} K_{m,i_{\ell}} c^{m}_{J_{r},i_{1}} \dots \hat{i_{\ell}} \dots \hat{i_{\ell}} \dots \hat{i_{\ell}} = 0$$

for any $J_r, I_{p+1} = (i_1, \ldots, i_{p+1})$, and $m \in \mathbb{Z}^{n+q}$. For $m \in \mathbb{Z}^{n+q} \setminus \{0\}$ we put $i(m) := \min\{i \mid |K_{m,i}| = K_m, 1 \le i \le q\}$. Replacing $I_{p+1} = (i_1, \ldots, i_{p+1})$ of (3.4) by $(i(m), i_1, \ldots, i_p)$, then we have

(3.5)
$$K_{m,i(m)}c^{m}_{J_{r},i_{1}\cdots i_{p}} = \sum_{\ell=1}^{p} (-1)^{\ell+1} K_{m,i_{\ell}}c^{m}_{J_{r},i(m)i_{1}\cdots \hat{i_{\ell}}\cdots i_{p}} = 0.$$

For $m \neq 0$ we have, by (2.2), $K_{m,i(m)} \neq 0$ and then we can put

$$\psi^{m} := \frac{(-1)^{r}}{\pi r! (p-1)!} \sum_{J_{r}, I_{p-1}} \frac{c_{J_{r}, i(m)i_{1}\cdots i_{p-1}}^{m}}{K_{m, i(m)}} \exp\left(-2\pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \times \exp(2\pi \sqrt{-1} \langle m, t' \rangle) \, d\zeta_{J_{r}} \wedge d\overline{\zeta}_{I_{p-1}},$$

where $I_{p-1} := (i_1, ..., i_{p-1})$. Then by (3.3) and (3.5) we obtain

$$\overline{\partial}\psi^m = \varphi^m$$

for $m \neq 0$. This means that any $\overline{\partial}$ -closed form $\varphi = \sum_{m \in \mathbb{Z}^{n+q}} \varphi^m$ has a formal solution $\sum_{m \neq 0} \psi^m$ of the $\overline{\partial}$ -equation:

$$\overline{\partial} \sum_{m \neq 0} \psi^m = \sum_{m \neq 0} \varphi^m.$$

Hence it is determined by the behavior of the lower limit of the sequence of positive numbers:

$$\{K_m \mid m \in \mathbb{Z}^{n+q}\}\$$

whether the formal solution is a real solution or not.

The following theorem characterizes toroidal groups of cohomologically finite type.

THEOREM 3.2. ([5], [13]) Let \mathbb{C}^n/Γ be a toroidal group. Then the following statements (1), (2), (3) and (4) are equivalent.

- (1) \mathbb{C}^n/Γ is of cohomologically finite type.
- (2) There exists a > 0 such that

$$\sup_{m\neq 0} \exp(-a\|m^*\|)/K_m < \infty,$$

where $||m^*|| = \max\{|m_i|; 1 \le i \le n\}.$

(3)

$$\dim H^p(\mathbb{C}^n/\Gamma,\Omega^r) = \begin{cases} \binom{n}{r} \binom{q}{p} & \text{if } 1 \le p \le q \text{ and } 0 \le r \le n \\ 0 & \text{if } p > q \text{ or } r > n. \end{cases}$$

(4) Every $C^{\infty}\overline{\partial}$ -closed (r,p)-form on \mathbb{C}^n/Γ is $\overline{\partial}$ -cohomologous to a constant form

$$\frac{1}{r!p!}\sum_{J_r,I_p}c_{J_r,I_p}\,d\zeta_{J_r}\wedge d\overline{\zeta}_{I_p},$$

where c_{J_r,I_p} 's are constants, $r \ge 0$ and $p \ge 0$.

Let $r, p \ge 1$ and let φ be a *d*-exact $C^{\infty}(r, p)$ -form on \mathbb{C}^n/Γ . Then there exists (r+p-1)-form $\psi = \psi_{(r-1,p)} + \psi_{(r,p-1)}$ such that

$$\varphi = d\psi = \partial\psi_{(r-1,p)} + \overline{\partial}\psi_{(r-1,p)} + \partial\psi_{(r,p-1)} + \overline{\partial}\psi_{(r,p-1)},$$

where $\psi_{(i,j)}$ denotes the component of type (i, j) of ψ . Since φ is (r, p)-form, then $\partial \psi_{(r,p-1)} = 0$ and $\overline{\partial} \psi_{(r-1,p)} = 0$. Then $\overline{\psi}_{(r,p-1)}$ and $\psi_{(r-1,p)}$ are a $\overline{\partial}$ closed form of type (p-1,r) and a $\overline{\partial}$ -closed form of type (r-1,p) on \mathbb{C}^n/Γ , respectively. Now suppose that \mathbb{C}^n/Γ is of cohomologically finite type. Then by Theorem 3.2, $\overline{\psi}_{(r,p-1)}$ and $\psi_{(r-1,p)}$ are $\overline{\partial}$ -cohomologue to some constant forms, that is, there exist a (r-1, p-1)-form $\Psi^{(1)}$ and a (p-1, r-1)-form $\Psi^{(2)}$ such that

$$\psi_{(r-1,p)} = \frac{1}{(r-1)!p!} \sum_{J_{r-1},I_p} c^{(1)}_{J_{r-1},I_p} \, d\zeta_{J_{r-1}} \wedge d\overline{\zeta}_{I_p} + \overline{\partial} \Psi^{(1)},$$
$$\overline{\psi}_{(r,p-1)} = \frac{1}{r!(p-1)!} \sum_{J_{p-1},I_r} c^{(2)}_{J_{p-1},I_r} \, d\zeta_{J_{p-1}} \wedge d\overline{\zeta}_{I_r} + \overline{\partial} \Psi^{(2)}.$$

Since the constant forms are ∂ -, $\overline{\partial}$ -closed, we have

$$\begin{split} \varphi &= \partial \psi_{(r-1,p)} + \partial \psi_{(r,p-1)} \\ &= \partial \overline{\partial} \Psi^{(1)} + \overline{\partial} \overline{\partial} \overline{\Psi^{(2)}} \\ &= \partial \overline{\partial} (\Psi^{(1)} - \overline{\Psi^{(2)}}). \end{split}$$

This shows $\partial \overline{\partial}$ -Lemma holds on toroidal groups of cohomologically finite type. We have the following theorem.

THEOREM 3.3. Let \mathbb{C}^n/Γ be a toroidal group. Then

- (1) If \mathbb{C}^n/Γ is of cohomologically finite type and $r, p \ge 1$, then for any d-exact (r, p)-form φ there exists (r - 1, p - 1)-form Ψ such that $\varphi = \partial \overline{\partial} \Psi$ on \mathbb{C}^n/Γ . Further if r = p and φ is a real form, one can choose the above Ψ so that $\sqrt{-1} \Psi$ is also real.
- (2) If \mathbb{C}^n/Γ is of non-Hausdorff type and $1 \leq r, p \leq q$, for some dexact (r, p)-form φ there is no solution Ψ satisfying the $\partial\overline{\partial}$ -equation $\varphi = \partial\overline{\partial}\Psi$ on \mathbb{C}^n/Γ .

Proof. It remains only to prove the latter half of (1) and (2). Suppose $\varphi = \partial \overline{\partial} \Psi$ and φ is real. Then $\varphi = \overline{\varphi} = \overline{\partial} \partial \overline{\Psi} = \partial \overline{\partial} (-\overline{\Psi})$. We obtain

$$\varphi = \partial \overline{\partial} \left(\frac{\Psi - \overline{\Psi}}{2} \right).$$

Since $\sqrt{-1}(\Psi - \overline{\Psi})/2$ is real, we obtain the assertion of the latter half of (1).

Next to prove (2) we assume that \mathbb{C}^n/Γ is of non-Hausdorff type. By Theorem 3.2 we have

(3.6)
$$\sup_{m \neq 0} \exp(-a \|m^*\|) / K_m = \infty$$

for any a > 0. For $m = (m_1, m_2, \ldots, m_{n+q}) \in \mathbb{Z}^{n+q}$ we put $||m'|| := \max\{|m_i|, |m_{n+i}| \mid 1 \le i \le q\}$ and $||m''|| := \max\{|m_j| \mid q+1 \le j \le n\}$. By (3.6) there exists $\varepsilon > 0$ such that we can choose a sequence $\{m_{\mu} \mid \mu \in \mathbb{N}\} \in \mathbb{Z}^{n+q} \setminus \{0\}$ satisfying $\exp(-\varepsilon ||m'_{\mu}|| - \mu ||m''_{\mu}||)/K_{m_{\mu}} > \mu$ for any $\mu \in \mathbb{N}$ ([5, Lemma 4.2]). Put

$$\delta^m := \begin{cases} \exp(-\varepsilon \|m'_{\mu}\| - \mu \|m''_{\mu}\|)/K_{m_{\mu}} & m = m_{\mu} \text{ for some } \mu \ge 1, \\ 0 & \text{otherwise.} \end{cases}$$

We can find i_0 so that $1 \leq i_0 \leq q$ and $\sup\{\mu \mid K_m = |K_{m_{\mu},i_0}|\} = \infty$. We may assume $i_0 = q$ without loss of generality. We take a (r-1, p-1)-form

$$\psi^{m} := \delta^{m} \exp\left(-2\pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \exp\left(2\pi \sqrt{-1} \langle m, t' \rangle\right) \\ \times d\zeta_{1} \wedge \dots \wedge d\zeta_{r-1} \wedge d\overline{\zeta}_{1} \wedge \dots \wedge d\overline{\zeta}_{p-1}.$$

By the choice of the sequence $\{m_{\mu} \mid \mu \in \mathbb{N}\}$ the formal series $\sum_{m} \psi^{m}$ cannot converge to any form. On the other hand

$$\overline{\partial}\psi^m = \sum_{\ell=1}^q K_{m,\ell}\delta^m \exp\left(-2\pi\sum_{i=q+1}^n m_i t_{n+i}\right) \exp(2\pi\sqrt{-1}\langle m, t'\rangle) \\ \times d\overline{\zeta}_\ell \wedge d\zeta_1 \wedge \dots \wedge d\zeta_{r-1} \wedge d\overline{\zeta}_1 \wedge \dots \wedge d\overline{\zeta}_{p-1}.$$

Since

$$K_{m_{\mu},\ell} \,\delta^{m_{\mu}} = \frac{K_{m_{\mu},\ell}}{K_{m_{\mu}}} \exp(-\varepsilon \|m'_{\mu}\| - \mu \|m''_{\mu}\|)$$

and $|K_{m_{\mu},\ell}/K_{m_{\mu}}| \leq 1$, $\sum_{m} \overline{\partial} \psi^{m}$ converges to a $\overline{\partial}$ -closed (r-1,p)-form η ([5, Lemma 4.1]). We put $\varphi = d\eta = \partial \eta$. We suppose that there exists a $C^{\infty}(r-1,p-1)$ -form λ satisfying

$$\partial \overline{\partial} \lambda = \varphi.$$

We can write

$$\lambda^{m} := \frac{1}{\pi (r-1)! (p-1)!} \sum_{J_{r-1}, I_{p-1}} b^{m}_{J_{r-1}, I_{p-1}}(t'') \\ \times \exp(2\pi \sqrt{-1} \langle m, t' \rangle) \, d\zeta_{J_{r-1}} \wedge d\overline{\zeta}_{I_{p-1}};$$

where $b_{J_{r-1},I_{p-1}}^m(t'')$'s are C^{∞} functions in $t'' \in \mathbb{R}^{n-q}$ and $\lambda = \sum_m \lambda^m$. Then we have $\partial \overline{\partial} \lambda^m = \partial \overline{\partial} \psi^m$. Comparing the term of the left form to the right form of this equation involving only the differential $d\zeta_1 \wedge \cdots \wedge d\zeta_{r-1} \wedge d\zeta_q \wedge d\overline{\zeta}_1 \wedge \cdots \wedge d\overline{\zeta}_{p-1} \wedge d\overline{\zeta}_q$. We can obtain the same formula as (3.3) for C^{∞} forms λ^m . Then we obtain

$$(-1)^{r+p} |K_{m_{\mu},q}|^{2} \delta^{m_{\mu}} \exp\left(-2\pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right)$$

$$= (-1)^{r+p} |K_{m_{\mu},q}|^{2} b_{1\cdots r-1,1\cdots p-1}^{m_{\mu}}(t'')$$

$$+ \sum_{k=1}^{p-1} \sum_{\ell=1}^{r-1} (-1)^{r+k+\ell} K_{m_{\mu},\ell} \overline{K}_{m_{\mu},k} b_{1\cdots \ell\cdots r-1\,q,1\cdots \hat{k}\cdots p-1\,q}^{m_{\mu}}(t'')$$

$$+ \sum_{\ell=1}^{r-1} (-1)^{r+p+\ell} K_{m_{\mu},\ell} \overline{K}_{m_{\mu},k} b_{1\cdots \ell\cdots r-1\,q,1\cdots p-1}^{m_{\mu}}(t'')$$

$$+ \sum_{k=1}^{p-1} (-1)^{k+1} K_{m_{\mu},q} \overline{K}_{m_{\mu},k} b_{1\cdots r-1,1\cdots \hat{k}\cdots p-1\,q}^{m_{\mu}}(t'').$$

Since we can choose a subsequence $\{m_{\mu_s}\}$ so that

$$|K_{m\mu_s,q}| = K_m,$$

we have, for t'' = 0,

$$\begin{split} \alpha |\delta^{m_{\mu_s}}| &\leq |b_{1\cdots r-1,1\cdots p-1}^{m_{\mu_s}}(0)| + |b_{1\cdots \hat{\ell}\cdots r-1\,q,1\cdots \hat{k}\cdots p-1\,q}^{m_{\mu_s}}(0)| \\ &+ |b_{1\cdots \hat{\ell}\cdots r-1\,q,1\cdots p-1}^{m_{\mu_s}}(0)| + |b_{1\cdots r-1,1\cdots \hat{k}\cdots p-1\,q}^{m_{\mu_s}}(0)|, \end{split}$$

for some positive constant α . Since the coefficients $b_{I_{r-1},I_{p-1}}^m(t'')$ of Fourier series converge to 0 ([2, Proposition 6]), this contradicts that $\lim_{\mu\to\infty} \delta^{m_{\mu}} = \infty$.

Remark. In the statement (2) of Theorem 3.3 if r = p and $1 \le p \le q$, one can choose φ as a real form. Under the assumption of Theorem 3.3, take any (p, p)-form φ satisfying (2) of Theorem 3.3 and put $\varphi_1 := (\varphi + \overline{\varphi})/2$, $\varphi_2 := (\varphi - \overline{\varphi})/(2\sqrt{-1})$. φ_1 and φ_2 are also *d*-exact and real (p, p)-forms. Suppose $\varphi_i = \partial \overline{\partial} \Psi_i$ for some (p - 1, p - 1)-form Ψ_i (i = 1, 2). Then $\varphi =$ $\partial \overline{\partial} (\Psi_1 + \sqrt{-1} \Psi_2)$. This is a contradiction. Hence at least one of φ_1 and φ_2 satisfies the statement (2) of Theorem 3.3.

$\S4$. Examples and related problems

We can show a very easy counter-example to the problem of the introduction of this paper.

EXAMPLE 4.1. Let $\mathbb{T}_C := \mathbb{C}/\mathbb{Z}\{1, \sqrt{-1}\}$ be a complex torus of complex dimension 1. We put $X := \mathbb{T}_C \times \mathbb{C}$. Trivially X is weakly 1-complete and complete Kähler. Let z be a holomorphic local coordinate induced by the projection: $\mathbb{C} \to \mathbb{T}_C := \mathbb{C}/\mathbb{Z}\{1, \sqrt{-1}\}$ and w be a global coordinate of \mathbb{C} . We consider a (0, 1)-form $\psi := w \, d\overline{z}$ and $\varphi := d\psi$. Suppose there exists a C^{∞} function Ψ on X such that

(4.1)
$$\partial \overline{\partial} \Psi = \varphi.$$

Then $\partial(\overline{\partial}\Psi - \psi) = 0$. This means $\partial\overline{\Psi} - \overline{\psi} = (\partial\overline{\Psi}/\partial z - \overline{w}) dz + (\partial\overline{\Psi}/\partial w) dw$ is $\overline{\partial}$ -closed and then a holomorphic 1-form. Then $\partial\overline{\Psi}/\partial z - \overline{w}$ and $\partial\overline{\Psi}/\partial w$ are holomorphic on X. We have an entire holomorphic function $G(w) := \partial\overline{\Psi}/\partial z - \overline{w}$. We put $x := \operatorname{Re} z, y := \operatorname{Im} z, u := \operatorname{Re} w$ and $v := \operatorname{Im} w$. We can expand $\overline{\Psi}$ to Fourier series:

$$\overline{\Psi} := \sum_{m \in \mathbb{Z}^2} a^m(u, v) \exp(2\pi \sqrt{-1} \left(m_1 x + m_2 y\right)).$$

 $\partial \overline{\Psi}/\partial z = \pi \sum_{m} (m_1 \sqrt{-1} - m_2) a^m(u, v) \exp(2\pi \sqrt{-1} (m_1 x + m_2 y))$. Since $\partial \overline{\Psi}/\partial z = \overline{w} + G(w)$ is constant on variables x and y, $a^m = 0$ if $m \neq 0$. Then $\overline{\Psi} = a^0(u, v)$ and $\partial \overline{\Psi}/\partial z = 0$. This contradicts (4.1). By the same reason of Remark in §3 we can select a real (1,1)-form that has no solution of the $\partial \overline{\partial}$ -equation on X.

Considering the fact that $H^1(X, \mathcal{O})$ is an infinite-dimensional Fréchet space and $\partial \overline{\partial}$ -Lemma holds for toroidal groups of cohomologically finite type, we can give the following

PROBLEM 4.2. Can one show $\partial \overline{\partial}$ -Lemma on a weakly 1-complete Kähler manifold X with dim $H^1(X, \mathcal{O}) < \infty$?

If X is strongly 1-convex in the sense of Andreotti and Grauert [2], then dim $H^1(X, \mathcal{O}) < \infty$. Miyajima [7] considers another type of the $\partial \overline{\partial}$ -equation on strongly pseudoconvex Kähler manifolds. In general case of strongly 1convex Kähler manifolds the above problem still remains unsolved.

Further a weakly reformed problem of Problem 1.1 is posed in [10].

PROBLEM 4.3. Let L be a holomorphic line bundle on a weakly 1complete manifold X. We assume that the first Chern class $c_1(L)$ has a positive form. Then does L have a Hermitian metric with a positive curvature form?

We remark here that if $\partial \overline{\partial}$ -Lemma holds on X, then Problem 4.3 can be solved affirmatively for X. The following example shows that $\partial \overline{\partial}$ -Lemma does not hold even if \mathbb{C}^n/Γ is a quasi-abelian variety.

EXAMPLE 4.4. We consider a toroidal group of §2 in the case of n = 2 and q = 1.

Let Γ be the discrete subgroup generated by $\{e_1, e_2, v_1 := (\sqrt{-1}, \beta)\}$ over \mathbb{Z} , where β is an irrational real number. From (2.1) we have $K_m = \sqrt{(\beta m_2 - m_3)^2 + m_1^2}$ and $K_m > 0$ for $m \neq 0$. Then \mathbb{C}^2/Γ is toroidal. We put $v_2 := (\beta, \sqrt{-1})$ and consider a complex torus $\mathbb{C}^2/\mathbb{Z}\{e_1, e_2, v_1, v_2\}$. Any such torus is an abelian variety ([3, §2.6 The Riemann Conditions]). We have the covering projection:

$$\mathbb{C}^2/\Gamma \longrightarrow \mathbb{C}^2/\mathbb{Z}\{e_1, e_2, v_1, v_2\}.$$

This means every \mathbb{C}^2/Γ is a quasi-abelian variety for any β ([1, Theorem 4.6]). We obtain the following (1) and (2).

(1) If β is an algebraic number, then by Liouville's criterion there exists a positive number M and a positive integer ℓ such that $|\beta - m_3/m_2| > M/|m_2|^{\ell}$ for any integer m_3 and $m_2 \neq 0$. Since $K_m \geq |\beta m_2 - m_3| > M/|m_2|^{\ell-1}$ $(m_2 \neq 0)$,

$$\sup\left\{\frac{\exp(-\sqrt{m_1^2+m_2^2})}{K_m} \mid m \in \mathbb{Z}^3 \setminus \{0\}\right\} < \infty$$

By Theorem 3.2 \mathbb{C}^2/Γ is of cohomologically finite type and then $\partial\overline{\partial}$ -Lemma holds on it.

(2) If β is approximated by rational numbers very well, namely, satisfying for any a > 0

$$\sup\left\{\frac{\exp(-a|m|)}{|\beta - n/m|} \mid m, n \in \mathbb{Z}, \ m \neq 0\right\} = \infty,$$

(We find examples of such β in [6] and [12]), by Liouville's criterion such β must be a transcendental number and \mathbb{C}^2/Γ is of non-Hausdorff type. Then $\partial\overline{\partial}$ -Lemma does not hold on it.

Added in proof. After this paper was submitted, we obtained an answer to Problem 4.2 in the following form: There eixsts a 1-convex Kähler manifold on which the $\partial \overline{\partial}$ -Lemma does not hold. This result will appear in our forthcoming paper.

References

- [1] Y. Abe, On toroidal groups, J. Math. Soc. Japan, 41 (1989), 699–708.
- [2] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Frances, 90 (1962), 193–259.
- [3] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley and Sons, 1978.
- [4] H. Kazama, On pseudoconvexity of complex abelian Lie groups, J. Math. Soc. Japan, 25 (1973), 329–333.
- [5] , $\overline{\partial}$ -Cohomology of (H, C)-groups, Publ. R.I.M.S., **20** (1984), 297–317.
- [6] H. Kazama and T. Umeno, Complex abelian Lie groups with finite-dimensional cohomology groups, J. Math. Soc. Japan, 36 (1984), 91–106.
- [7] K. Miyajima, A note on the Bogomolov-type smoothness on deformations of the regular parts of isolated singularities, Proc. Amer. Math. Soc., 125 (1997), 485–492.

- [8] A. Morimoto, Non-compact complex Lie groups without non-constant holomorphic functions, Proc. Conf. on Complex Analysis, Minneapolis 1964, Springer (1965), 256-272.
- [9] J. Morrow and K. Kodaira, Complex manifolds, Holt, Rinehart and Winston Inc., 1971.
- [10] S. Takayama, Adjoint linear series on weakly 1-complete manifolds, Lecture Notes at Summer Seminar (in Japanese), 1996.
- S. Takeuchi, On completeness of holomorphic principal bundles, Nagoya Math. J., 57 (1974), 121–138.
- [12] C. Vogt, Line bundles on toroidal groups, J. Reine Angew Math., 335 (1982), 197–215.
- [13] _____, Two remarks concerning toroidal groups, Manuscripta Math., 41 (1983), 217–232.
- [14] I. Wakabayashi (editor), Collected problems arround several complex variables, Sugaku (published by Math. Soc. of Japan, in Japanese), 32 (1980), 161–187.

Hideaki Kazama Graduate School of Mathematics Kyushu University Ropponmatsu Chuo-ku Fukuoka, 810 Japan

Shigeharu Takayama Department of Mathematics Graduate School of Sciences Osaka University Toyonaka Osaka, 560-0043 Japan