$\partial \bar{\partial}$-PROBLEM ON WEAKLY 1-COMPLETE KÄHLER MANIFOLDS

HIDEAKI KAZAMA and SHIGEHARU TAKAYAMA

To the memory of Prof. Makoto Suzuki

Abstract

We consider a problem whether Kodaira's $\partial \bar{\partial}$-Lemma holds on weakly 1 -complete Kähler manifolds or not. This problem was proposed by S. Nakano. We prove that the Lemma holds for some class of complex quasitori \mathbb{C}^{n} / Γ, and it does not hold for the other class of them. Every complex quasi-tori is weakly 1 -complete and complete Kähler. Then we get a negative answer for the above problem.

§1. Introduction

The following lemma proved by Kodaira is well-known and usually called " $\partial \bar{\partial}$-Lemma" ([9, Proposition 7.1]).
$\partial \bar{\partial}$-Lemma. Let X be a compact Kähler manifold and φ a d-exact $(1,1)$-form on X. Then there exists a C^{∞}-function Ψ on X such that

$$
\varphi=\partial \bar{\partial} \Psi
$$

on X.
In [14] many problems concerning function theory of several complex variables are posed. There S. Nakano gives a problem concerning the above $\partial \bar{\partial}$-Lemma as follows.

A complex manifold X is called weakly 1-complete if there exists a $C^{\infty}{ }_{-}$ plurisubharmonic exhaustive function on X. Easily we can see that a compact complex manifold is weakly 1 -complete, a strongly 1-convex manifold is weakly 1-complete and then every Stein manifold is weakly 1-complete.

Problem 1.1. Can one show $\partial \bar{\partial}$-Lemma on weakly 1-complete Kähler manifolds?

We can give a very easy counterexample to this problem (Example 4.1); nevertheless, it is very interesting to consider this from the other aspects. We give reformed problems of it in $\S 4$.

A connected complex Lie group without global non-constant holomorphic function is called a toroidal group. Every complex n-dimensional toroidal group is isomorphic to \mathbb{C}^{n} / Γ for some discrete subgroup Γ ([8]). A complex torus is an example of a toroidal group.

It is shown that every toroidal group is always weakly 1-complete ([4], [11]). From the natural covering structure

$$
\mathbb{C}^{n} \longrightarrow \mathbb{C}^{n} / \Gamma
$$

it follows that every toroidal group \mathbb{C}^{n} / Γ is a complete Kähler manifold.
In this paper we will consider whether $\partial \bar{\partial}$-Lemma holds on toroidal groups or not.

Every toroidal group \mathbb{C}^{n} / Γ satisfies either of the following statements (1) and (2) ([5], [12]):
(1) $H^{p}\left(\mathbb{C}^{n} / \Gamma, \mathcal{O}\right)$ is finite-dimensional for any p;
(2) $H^{p}\left(\mathbb{C}^{n} / \Gamma, \mathcal{O}\right)$ is a non-Hausdorff and then infinite-dimensional locally convex space for any p with $1 \leq p \leq q$,
where \mathcal{O} denotes the structure sheaf of \mathbb{C}^{n} / Γ and $q:=\operatorname{rank} \Gamma-n$. From this result we can classify all toroidal groups. We say that a toroidal group is of cohomologically finite type if it satisfies the above property (1) and of non-Hausdorff type if it satisfies the above property (2), respectively.

We will show that $\partial \bar{\partial}$-Lemma holds for toroidal groups of cohomologically finite type and that it does not hold for toroidal groups of nonHausdorff type.

This gives the negative answer for the above problem even if we consider it only for toroidal groups.

We wish to thank Prof. Koji Cho who gave a suggestion for us to generalize our former statements of Theorem 3.3.

§2. Toroidal groups

Throughout this section we consider a toroidal group \mathbb{C}^{n} / Γ, where Γ is a discrete subgroup of \mathbb{C}^{n} and of rank $n+q$ generated by \mathbb{R}-linearly independent vectors $\left\{e_{1}, e_{2}, \ldots, e_{n}, v_{1}=\left(v_{11}, \ldots, v_{1 n}\right), v_{2}=\left(v_{21}, \ldots, v_{2 n}\right), \ldots, v_{q}=\right.$ $\left.\left(v_{q 1}, \ldots, v_{q n}\right)\right\}$ over \mathbb{Z} and e_{i} denotes the i-th unit vector of \mathbb{C}^{n}. We take
$\operatorname{Re} v_{i}, \operatorname{Im} v_{i} \in \mathbb{R}^{n}$ with $v_{i}=\operatorname{Re} v_{i}+\sqrt{-1} \operatorname{Im} v_{i}$. Since $e_{1}, e_{2}, \ldots, e_{n}, v_{1}, v_{2}, \ldots$, v_{q} are \mathbb{R}-linearly independent, $\operatorname{Im} v_{1}, \operatorname{Im} v_{2}, \ldots, \operatorname{Im} v_{q}$ are \mathbb{R}-linearly independent. Then without loss of generality we may assume $\operatorname{det}\left[\operatorname{Im} v_{i j} ; 1 \leq\right.$ $i, j \leq q] \neq 0$ from now on. We set
(2.1) $\quad K_{m, i}:=\sum_{j=1}^{n} v_{i j} m_{j}-m_{n+i}$ and $K_{m}:=\max \left\{\left|K_{m, i}\right| ; 1 \leq i \leq q\right\}$
for $m=\left(m_{1}, m_{2}, \ldots, m_{n+q}\right) \in \mathbb{Z}^{n+q}$. From the result of [8] it follows that \mathbb{C}^{n} / Γ is toroidal if and only if

$$
\begin{equation*}
K_{m}>0 \quad \text { for any } m \in \mathbb{Z}^{n+q} \backslash\{0\} \tag{2.2}
\end{equation*}
$$

We denote by π_{q} the projection $\mathbb{C}^{n} \ni\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(z_{1}, \ldots, z_{q}\right) \in \mathbb{C}^{q}$. Since $\pi_{q}\left(e_{i}\right), \pi_{q}\left(v_{i}\right)(1 \leq i \leq q)$ are \mathbb{R}-linearly independent, π_{q} induces the $\mathbb{C}^{* n-q}$-principal bundle

$$
\begin{equation*}
\pi_{q}: \mathbb{C}^{n} / \Gamma \ni z+\Gamma \longmapsto \pi_{q}(z)+\Gamma^{*} \in \mathbb{T}_{C}^{q}:=\mathbb{C}^{q} / \Gamma^{*} \tag{2.3}
\end{equation*}
$$

over the complex q-dimensional torus \mathbb{T}_{C}^{q}, where $\Gamma^{*}:=\pi_{q}(\Gamma)([5])$. We put

$$
\begin{aligned}
\alpha_{i j} & := \begin{cases}\operatorname{Re} v_{i j} & (1 \leq i \leq q, 1 \leq j \leq n) \\
0 & (q+1 \leq i \leq n, 1 \leq j \leq n)\end{cases} \\
\beta_{i j} & := \begin{cases}\operatorname{Im} v_{i j} & (1 \leq i \leq q, 1 \leq j \leq n) \\
\delta_{i j} & (q+1 \leq i \leq n, 1 \leq j \leq n)\end{cases}
\end{aligned}
$$

$\left[\gamma_{i j} ; 1 \leq i, j \leq n\right]:=\left[\beta_{i j} ; 1 \leq i, j \leq n\right]^{-1}$ and $v_{i}:=\sqrt{-1} e_{i}$ for $q+1 \leq i \leq n$. Since $\left\{e_{1}, \ldots, e_{n}, v_{1}, \ldots, v_{n}\right\}$ are \mathbb{R}-linearly independent, we have an isomorphism

$$
\phi: \mathbb{C}^{n} \ni\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(t_{1}, \ldots, t_{2 n}\right) \in \mathbb{R}^{2 n}
$$

as a real Lie group, where $\left(z_{1}, \ldots, z_{n}\right)=\sum_{i=1}^{n}\left(t_{i} e_{i}+t_{n+i} v_{i}\right)$. Then we obtain the relations

$$
\begin{equation*}
t_{j}=x_{j}-\sum_{i, k=1}^{n} y_{k} \gamma_{k i} \alpha_{i j} \text { and } t_{n+j}=\sum_{i=1}^{n} y_{i} \gamma_{i j} \tag{2.4}
\end{equation*}
$$

for $1 \leq j \leq n$, where $z_{i}=x_{i}+\sqrt{-1} y_{i}$. We put $t=\left(t^{\prime}, t^{\prime \prime}\right), t^{\prime}=\left(t_{1}, \ldots, t_{n+q}\right)$ $\in \mathbb{R}^{n+q}$ and $t^{\prime \prime}=\left(t_{n+q+1}, \ldots, t_{2 n}\right) \in \mathbb{R}^{n-q} . \phi$ induces the isomorphism:
$\phi: \mathbb{C}^{n} / \Gamma \cong \mathbb{T}^{n+q} \times \mathbb{R}^{n-q}$ as a real Lie group, where \mathbb{T}^{n+q} is an $(n+q)$ dimensional real torus. Sometimes we identify \mathbb{C}^{n} / Γ with the real Lie group $\mathbb{T}^{n+q} \times \mathbb{R}^{n-q}$ and use the real coordinate system $\left(t_{1}, \ldots, t_{2 n}\right)$ instead of holomorphic coordinates.

We make the following change of holomorphic coordinates of \mathbb{C}^{n} :

$$
\zeta_{i}=\sum_{j=1}^{n} z_{j} \gamma_{j i}
$$

Then we can regard $\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ as a local holomorphic coordinate system of \mathbb{C}^{n} / Γ and we have global vector fields and global 1-forms:

$$
\begin{aligned}
\frac{\partial}{\partial \bar{\zeta}_{i}} & =\sum_{j=1}^{n} \beta_{i j} \frac{\partial}{\partial \bar{z}_{j}}, \quad \frac{\partial}{\partial \zeta_{i}}=\sum_{j=1}^{n} \beta_{i j} \frac{\partial}{\partial z_{j}} \\
d \bar{\zeta}_{i} & =\sum_{j=1}^{n} \gamma_{i j} d \bar{z}_{j}, \quad \text { and } d \zeta_{i}=\sum_{j=1}^{n} \gamma_{i j} d z_{j}
\end{aligned}
$$

$(1 \leq i \leq n)$ on \mathbb{C}^{n} / Γ. It follows from (2.4) that

$$
\begin{align*}
& \frac{\partial}{\partial \bar{\zeta}_{i}}=\frac{1}{2}\left(\sum_{j=1}^{n} \beta_{i j} \frac{\partial}{\partial t_{j}}-\sqrt{-1} \sum_{j=1}^{n} \alpha_{i j} \frac{\partial}{\partial t_{j}}+\sqrt{-1} \frac{\partial}{\partial t_{n+i}}\right) \\
& \frac{\partial}{\partial \zeta_{i}}=\frac{1}{2}\left(\sum_{j=1}^{n} \beta_{i j} \frac{\partial}{\partial t_{j}}+\sqrt{-1} \sum_{j=1}^{n} \alpha_{i j} \frac{\partial}{\partial t_{j}}-\sqrt{-1} \frac{\partial}{\partial t_{n+i}}\right) \tag{2.5}
\end{align*}
$$

Then particularly for $q+1 \leq i \leq n$ we have

$$
\begin{equation*}
\frac{\partial}{\partial \bar{\zeta}_{i}}=\frac{1}{2}\left(\frac{\partial}{\partial t_{i}}+\sqrt{-1} \frac{\partial}{\partial t_{n+i}}\right) \tag{2.6}
\end{equation*}
$$

§3. $\partial \bar{\partial}$-Lemma

Let \mathcal{A} be the sheaf of germs of real analytic functions on \mathbb{C}^{n} / Γ and \mathcal{H} its subsheaf of germs of real analytic functions on \mathbb{C}^{n} / Γ that are holomorphic along each fiber of π_{q} of (2.3). We may consider $\left(\zeta_{q+1}, \ldots, \zeta_{n}\right)$ is a holomorphic coordinate of each fiber of π_{q}. For $0 \leq p \leq q$ we denote by $\mathcal{H}^{r, p}$ the sheaf of germs of (r, p)-forms as follows

$$
\begin{aligned}
\varphi=\frac{1}{r!p!} \sum_{1 \leq j_{1}, \ldots, j_{r} \leq n, 1 \leq i_{1}, \ldots, i_{p} \leq q} \varphi_{j_{1} \cdots j_{r}, i_{1} \cdots i_{p}} d \zeta_{j_{1}} \wedge & \cdots \wedge d \zeta_{j_{r}} \\
& \wedge d \bar{\zeta}_{i_{1}} \wedge \cdots \wedge d \bar{\zeta}_{i_{p}}
\end{aligned}
$$

where $\varphi_{j_{1} \cdots j_{r}, i_{1} \cdots i_{p}} \in \mathcal{H}$ is skew-symmetric in all indices. Henceforth all differential forms are denoted skew-symmetrically and we use the notations

$$
\begin{array}{ll}
J_{r}=\left(j_{1}, \ldots, j_{r}\right), & d \zeta_{J_{r}}=d \zeta_{j_{1}} \wedge \cdots \wedge d \zeta_{j_{r}} \\
I_{p}=\left(i_{1}, \ldots, i_{p}\right), & d \bar{\zeta}_{I_{p}}=d \bar{\zeta}_{i_{1}} \wedge \cdots \wedge d \bar{\zeta}_{i_{p}}
\end{array}
$$

Then we write $\varphi=1 /(r!p!) \sum_{J_{r}, I_{p}} \varphi_{J_{r}, I_{p}} d \zeta_{J_{r}} \wedge d \bar{\zeta}_{I_{p}}$.
Let Ω^{r} be the sheaf of germs of holomorphic $(r, 0)$-forms on \mathbb{C}^{n} / Γ. We have the following lemma.

Lemma 3.1. The sequence

$$
0 \longrightarrow \Omega^{r} \longrightarrow \mathcal{H}^{r, 0} \xrightarrow{\bar{\partial}} \mathcal{H}^{r, 1} \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} \mathcal{H}^{r, q} \longrightarrow 0
$$

is exact on \mathbb{C}^{n} / Γ and one obtain a kind of Dolbeault isomorphism

$$
H^{p}\left(\mathbb{C}^{n} / \Gamma, \Omega^{r}\right)=\frac{\left\{\varphi \in H^{0}\left(\mathbb{C}^{n} / \Gamma, \mathcal{H}^{r, p}\right) \mid \bar{\partial} \varphi=0\right\}}{\bar{\partial} H^{0}\left(\mathbb{C}^{n} / \Gamma, \mathcal{H}^{r, p-1}\right)}
$$

for $p \geq 1$.
Proof. If $r=0$, then $\Omega^{r}=\mathcal{O}$. We obtain the exact sequence:

$$
\begin{equation*}
0 \longrightarrow \Omega^{0} \longrightarrow \mathcal{H}^{0,0} \longrightarrow \mathcal{H}^{0,1} \longrightarrow \cdots \longrightarrow \mathcal{H}^{0, q} \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

by [5, Proposition 3.4]. We can take a basis

$$
\left\{d \zeta_{J_{r}} \mid 1 \leq j_{1}<\cdots<j_{r} \leq n\right\}
$$

of $H^{0}\left(\mathbb{C}^{n} / \Gamma, \Omega^{r}\right)$. For every points $[z] \in \mathbb{C}^{n} / \Gamma$ we have the isomorphisms

$$
\begin{aligned}
& \Omega_{[z]}^{r} \cong \bigoplus_{J_{r}} \Omega_{[z]}^{0}\left(d \zeta_{J_{r}}\right)_{[z]}, \\
& \mathcal{H}_{[z]}^{r, p} \cong \bigoplus_{J_{r}} \mathcal{H}_{[z]}^{0, p}\left(d \zeta_{J_{r}}\right)_{[z]}
\end{aligned}
$$

of each stalk of sheaves. Observing coefficients of each $\left(d \zeta_{J_{r}}\right)_{[z]}$, we can divide the sheaf complex of the statement of the lemma to $\binom{n}{r}$ complexes so that each complex can be identified with (3.1). This argument shows also the latter half of the lemma.

Now we recall the argument of $\S 4$ of [5]. For $\varphi \in H^{0}\left(\mathbb{C}^{n} / \Gamma, \mathcal{H}^{r, p}\right)$. We can write

$$
\varphi=\frac{1}{r!p!} \sum_{J_{r}, I_{p}} \varphi_{J_{r}, I_{p}} d \zeta_{J_{r}} \wedge d \bar{\zeta}_{I_{p}}
$$

where $\varphi_{J_{r}, I_{p}} \in H^{0}\left(\mathbb{C}^{n} / \Gamma, \mathcal{H}^{0,0}\right)$. The function $\varphi_{J_{r}, I_{p}}$ has the Fourier expansion on \mathbb{C}^{n} / Γ :

$$
\varphi_{J_{r}, I_{p}}=\sum_{m \in \mathbb{Z}^{n+q}} C_{J_{r}, I_{p}}^{m}\left(t^{\prime \prime}\right) \exp \left(2 \pi \sqrt{-1}\left\langle m, t^{\prime}\right\rangle\right),
$$

where $C_{J_{r}, I_{p}}^{m}\left(t^{\prime \prime}\right)$'s are C^{∞} functions on $t^{\prime \prime}$ and $\left\langle m, t^{\prime}\right\rangle:=\sum_{i=1}^{n+q} m_{i} t_{i}$. Since the function $\varphi_{J_{r}, I_{p}}$ is holomorphic along the fibers of the map of (2.3), then for $q+1 \leq i \leq n$

$$
\frac{\partial C_{J_{r}, I_{p}}^{m}\left(t^{\prime \prime}\right)}{\partial \bar{\zeta}_{i}}=0
$$

From (2.6) we have the following Fourier series:

$$
\varphi_{J_{r}, I_{p}}=\sum_{m \in \mathbb{Z}^{n+q}} c_{J_{r}, I_{p}}^{m} \exp \left(-2 \pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \exp \left(2 \pi \sqrt{-1}\left\langle m, t^{\prime}\right\rangle\right)
$$

where $c_{J_{r}, I_{p}}^{m}$'s are constants.
We put

$$
\begin{equation*}
\varphi_{J_{r}, I_{p}}^{m}=c_{J_{r}, I_{p}}^{m} \exp \left(-2 \pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \exp \left(2 \pi \sqrt{-1}\left\langle m, t^{\prime}\right\rangle\right) \tag{3.2}
\end{equation*}
$$

and

$$
\varphi^{m}=\frac{1}{r!p!} \sum_{J_{r}, I_{p}} \varphi_{J_{r}, I_{p}}^{m} d \zeta_{J_{r}} \wedge d \bar{\zeta}_{I_{p}}
$$

Then $\varphi=\sum_{m \in \mathbb{Z}^{n+q}} \varphi^{m}$. It follows from (2.1), (2.5) and (3.2) that for $1 \leq$ $\ell \leq q$

$$
\begin{equation*}
\frac{\partial \varphi_{J_{r}, I_{p}}^{m}}{\partial \bar{\zeta}_{\ell}}=\pi K_{m, \ell} \varphi_{J_{r}, I_{p}}^{m}, \quad \frac{\partial \varphi_{J_{r}, I_{p}}^{m}}{\partial \zeta_{\ell}}=\pi \bar{K}_{m, \ell} \varphi_{J_{r}, I_{p}}^{m} \tag{3.3}
\end{equation*}
$$

Now we suppose φ is $\bar{\partial}$-closed, that is, $\bar{\partial} \varphi^{m}=0$ for any $m \in \mathbb{Z}^{n+q}$. The compatiblity condition for φ to be $\bar{\partial}$-closed is expressed by the Fourier coefficients such that

$$
\begin{equation*}
\sum_{\ell=1}^{p+1}(-1)^{\ell} K_{m, i_{\ell}} c_{J_{r}, i_{1} \cdots \hat{i}_{\ell} \cdots i_{p+1}}^{m}=0 \tag{3.4}
\end{equation*}
$$

for any $J_{r}, I_{p+1}=\left(i_{1}, \ldots, i_{p+1}\right)$, and $m \in \mathbb{Z}^{n+q}$. For $m \in \mathbb{Z}^{n+q} \backslash\{0\}$ we put $i(m):=\min \left\{i| | K_{m, i} \mid=K_{m}, 1 \leq i \leq q\right\}$. Replacing $I_{p+1}=\left(i_{1}, \ldots, i_{p+1}\right)$ of (3.4) by $\left(i(m), i_{1}, \ldots, i_{p}\right)$, then we have

$$
\begin{equation*}
K_{m, i(m)} c_{J_{r}, i_{1} \cdots i_{p}}^{m}=\sum_{\ell=1}^{p}(-1)^{\ell+1} K_{m, i_{\ell}} c_{J_{r}, i(m) i_{1} \cdots \hat{i}_{\ell} \cdots i_{p}}^{m}=0 . \tag{3.5}
\end{equation*}
$$

For $m \neq 0$ we have, by $(2.2), K_{m, i(m)} \neq 0$ and then we can put

$$
\begin{aligned}
\psi^{m}:=\frac{(-1)^{r}}{\pi r!(p-1)!} \sum_{J_{r}, I_{p-1}} \frac{c_{J_{r}, i(m) i_{1} \cdots i_{p-1}}^{m}}{K_{m, i(m)}} & \exp \left(-2 \pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \\
& \times \exp \left(2 \pi \sqrt{-1}\left\langle m, t^{\prime}\right\rangle\right) d \zeta_{J_{r}} \wedge d \bar{\zeta}_{I_{p-1}}
\end{aligned}
$$

where $I_{p-1}:=\left(i_{1}, \ldots, i_{p-1}\right)$. Then by (3.3) and (3.5) we obtain

$$
\bar{\partial} \psi^{m}=\varphi^{m}
$$

for $m \neq 0$. This means that any $\bar{\partial}$-closed form $\varphi=\sum_{m \in \mathbb{Z}^{n+q}} \varphi^{m}$ has a formal solution $\sum_{m \neq 0} \psi^{m}$ of the $\bar{\partial}$-equation:

$$
\bar{\partial} \sum_{m \neq 0} \psi^{m}=\sum_{m \neq 0} \varphi^{m}
$$

Hence it is determined by the behavior of the lower limit of the sequence of positive numbers:

$$
\left\{K_{m} \mid m \in \mathbb{Z}^{n+q}\right\}
$$

whether the formal solution is a real solution or not.
The following theorem characterizes toroidal groups of cohomologically finite type.

Theorem 3.2. ([5], [13]) Let \mathbb{C}^{n} / Γ be a toroidal group. Then the following statements (1), (2), (3) and (4) are equivalent.
(1) \mathbb{C}^{n} / Γ is of cohomologically finite type.
(2) There exists $a>0$ such that

$$
\sup _{m \neq 0} \exp \left(-a\left\|m^{*}\right\|\right) / K_{m}<\infty
$$

where $\left\|m^{*}\right\|=\max \left\{\left|m_{i}\right| ; 1 \leq i \leq n\right\}$.
(3)

$$
\operatorname{dim} H^{p}\left(\mathbb{C}^{n} / \Gamma, \Omega^{r}\right)= \begin{cases}\binom{n}{r}\binom{q}{p} & \text { if } 1 \leq p \leq q \text { and } 0 \leq r \leq n \\ 0 & \text { if } p>q \text { or } r>n\end{cases}
$$

(4) Every $C^{\infty} \bar{\partial}$-closed (r, p)-form on \mathbb{C}^{n} / Γ is $\bar{\partial}$-cohomologous to a constant form

$$
\frac{1}{r!p!} \sum_{J_{r}, I_{p}} c_{J_{r}, I_{p}} d \zeta_{J_{r}} \wedge d \bar{\zeta}_{I_{p}}
$$

where $c_{J_{r}, I_{p}}$'s are constants, $r \geq 0$ and $p \geq 0$.
Let $r, p \geq 1$ and let φ be a d-exact $C^{\infty}(r, p)$-form on \mathbb{C}^{n} / Γ. Then there exists $(r+p-1)$-form $\psi=\psi_{(r-1, p)}+\psi_{(r, p-1)}$ such that

$$
\varphi=d \psi=\partial \psi_{(r-1, p)}+\bar{\partial} \psi_{(r-1, p)}+\partial \psi_{(r, p-1)}+\bar{\partial} \psi_{(r, p-1)}
$$

where $\psi_{(i, j)}$ denotes the component of type (i, j) of ψ. Since φ is (r, p)-form, then $\partial \psi_{(r, p-1)}=0$ and $\bar{\partial} \psi_{(r-1, p)}=0$. Then $\bar{\psi}_{(r, p-1)}$ and $\psi_{(r-1, p)}$ are a $\bar{\partial}$ closed form of type $(p-1, r)$ and a $\bar{\partial}$-closed form of type $(r-1, p)$ on \mathbb{C}^{n} / Γ, respectively. Now suppose that \mathbb{C}^{n} / Γ is of cohomologically finite type. Then by Theorem 3.2, $\bar{\psi}_{(r, p-1)}$ and $\psi_{(r-1, p)}$ are $\bar{\partial}$-cohomologue to some constant forms, that is, there exist a $(r-1, p-1)$-form $\Psi^{(1)}$ and a $(p-1, r-1)$-form $\Psi^{(2)}$ such that

$$
\begin{aligned}
\psi_{(r-1, p)} & =\frac{1}{(r-1)!p!} \sum_{J_{r-1}, I_{p}} c_{J_{r-1}, I_{p}}^{(1)} d \zeta_{J_{r-1}} \wedge d \bar{\zeta}_{I_{p}}+\bar{\partial} \Psi^{(1)} \\
\bar{\psi}_{(r, p-1)} & =\frac{1}{r!(p-1)!} \sum_{J_{p-1}, I_{r}} c_{J_{p-1}, I_{r}}^{(2)} d \zeta_{J_{p-1}} \wedge d \bar{\zeta}_{I_{r}}+\bar{\partial} \Psi^{(2)}
\end{aligned}
$$

Since the constant forms are ∂-, $\bar{\partial}$-closed, we have

$$
\begin{aligned}
\varphi & =\partial \psi_{(r-1, p)}+\bar{\partial} \psi_{(r, p-1)} \\
& =\partial \bar{\partial} \Psi^{(1)}+\bar{\partial} \partial \Psi^{(2)} \\
& =\partial \bar{\partial}\left(\Psi^{(1)}-\overline{\Psi^{(2)}}\right)
\end{aligned}
$$

This shows $\partial \bar{\partial}$-Lemma holds on toroidal groups of cohomologically finite type. We have the following theorem.

Theorem 3.3. Let \mathbb{C}^{n} / Γ be a toroidal group. Then
(1) If \mathbb{C}^{n} / Γ is of cohomologically finite type and $r, p \geq 1$, then for any d-exact (r, p)-form φ there exists $(r-1, p-1)$-form Ψ such that $\varphi=\partial \bar{\partial} \Psi$ on \mathbb{C}^{n} / Γ. Further if $r=p$ and φ is a real form, one can choose the above Ψ so that $\sqrt{-1} \Psi$ is also real.
(2) If \mathbb{C}^{n} / Γ is of non-Hausdorff type and $1 \leq r, p \leq q$, for some d exact (r, p)-form φ there is no solution Ψ satisfying the $\partial \bar{\partial}$-equation $\varphi=\partial \bar{\partial} \Psi$ on \mathbb{C}^{n} / Γ.

Proof. It remains only to prove the latter half of (1) and (2). Suppose $\varphi=\partial \bar{\partial} \Psi$ and φ is real. Then $\varphi=\bar{\varphi}=\bar{\partial} \partial \bar{\Psi}=\partial \bar{\partial}(-\bar{\Psi})$. We obtain

$$
\varphi=\partial \bar{\partial}\left(\frac{\Psi-\bar{\Psi}}{2}\right)
$$

Since $\sqrt{-1}(\Psi-\bar{\Psi}) / 2$ is real, we obtain the assertion of the latter half of (1).

Next to prove (2) we assume that \mathbb{C}^{n} / Γ is of non-Hausdorff type. By Theorem 3.2 we have

$$
\begin{equation*}
\sup _{m \neq 0} \exp \left(-a\left\|m^{*}\right\|\right) / K_{m}=\infty \tag{3.6}
\end{equation*}
$$

for any $a>0$. For $m=\left(m_{1}, m_{2}, \ldots, m_{n+q}\right) \in \mathbb{Z}^{n+q}$ we put $\left\|m^{\prime}\right\|:=$ $\max \left\{\left|m_{i}\right|,\left|m_{n+i}\right| \mid 1 \leq i \leq q\right\}$ and $\left\|m^{\prime \prime}\right\|:=\max \left\{\left|m_{j}\right| \mid q+1 \leq j \leq n\right\}$. By (3.6) there exists $\varepsilon>0$ such that we can choose a sequence $\left\{m_{\mu} \mid \mu \in \mathbb{N}\right\} \in$ $\mathbb{Z}^{n+q} \backslash\{0\}$ satisfying $\exp \left(-\varepsilon\left\|m_{\mu}^{\prime}\right\|-\mu\left\|m_{\mu}^{\prime \prime}\right\|\right) / K_{m_{\mu}}>\mu$ for any $\mu \in \mathbb{N}([5$, Lemma 4.2]). Put

$$
\delta^{m}:= \begin{cases}\exp \left(-\varepsilon\left\|m_{\mu}^{\prime}\right\|-\mu\left\|m_{\mu}^{\prime \prime}\right\|\right) / K_{m_{\mu}} & m=m_{\mu} \text { for some } \mu \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We can find i_{0} so that $1 \leq i_{0} \leq q$ and $\sup \left\{\mu\left|K_{m}=\left|K_{m_{\mu}, i_{0}}\right|\right\}=\infty\right.$. We may assume $i_{0}=q$ without loss of generality. We take a $(r-1, p-1)$-form

$$
\begin{aligned}
\psi^{m}:=\delta^{m} \exp \left(-2 \pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) & \exp \left(2 \pi \sqrt{-1}\left\langle m, t^{\prime}\right\rangle\right) \\
& \times d \zeta_{1} \wedge \cdots \wedge d \zeta_{r-1} \wedge d \bar{\zeta}_{1} \wedge \cdots \wedge d \bar{\zeta}_{p-1}
\end{aligned}
$$

By the choice of the sequence $\left\{m_{\mu} \mid \mu \in \mathbb{N}\right\}$ the formal series $\sum_{m} \psi^{m}$ cannot converge to any form. On the other hand

$$
\begin{aligned}
\bar{\partial} \psi^{m}=\sum_{\ell=1}^{q} K_{m, \ell} \delta^{m} \exp (& \left.-2 \pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \exp \left(2 \pi \sqrt{-1}\left\langle m, t^{\prime}\right\rangle\right) \\
& \times d \bar{\zeta}_{\ell} \wedge d \zeta_{1} \wedge \cdots \wedge d \zeta_{r-1} \wedge d \bar{\zeta}_{1} \wedge \cdots \wedge d \bar{\zeta}_{p-1}
\end{aligned}
$$

Since

$$
K_{m_{\mu}, \ell} \delta^{m_{\mu}}=\frac{K_{m_{\mu}, \ell}}{K_{m_{\mu}}} \exp \left(-\varepsilon\left\|m_{\mu}^{\prime}\right\|-\mu\left\|m_{\mu}^{\prime \prime}\right\|\right)
$$

and $\left|K_{m_{\mu}, \ell} / K_{m_{\mu}}\right| \leq 1, \sum_{m} \bar{\partial} \psi^{m}$ converges to a $\bar{\partial}$-closed $(r-1, p)$-form η ([5, Lemma 4.1]). We put $\varphi=d \eta=\partial \eta$. We suppose that there exists a $C^{\infty}(r-1, p-1)$-form λ satisfying

$$
\partial \bar{\partial} \lambda=\varphi
$$

We can write

$$
\begin{aligned}
\lambda^{m}:=\frac{1}{\pi(r-1)!(p-1)!} \sum_{J_{r-1}, I_{p-1}} & b_{J_{r-1}, I_{p-1}}^{m}\left(t^{\prime \prime}\right) \\
& \times \exp \left(2 \pi \sqrt{-1}\left\langle m, t^{\prime}\right\rangle\right) d \zeta_{J_{r-1}} \wedge d \bar{\zeta}_{I_{p-1}}
\end{aligned}
$$

where $b_{J_{r-1}, I_{p-1}}^{m}\left(t^{\prime \prime}\right)$'s are C^{∞} functions in $t^{\prime \prime} \in \mathbb{R}^{n-q}$ and $\lambda=\sum_{m} \lambda^{m}$. Then we have $\partial \bar{\partial} \lambda^{m}=\partial \bar{\partial} \psi^{m}$. Comparing the term of the left form to the right form of this equation involving only the differential $d \zeta_{1} \wedge \cdots \wedge d \zeta_{r-1} \wedge d \zeta_{q} \wedge$ $d \bar{\zeta}_{1} \wedge \cdots \wedge d \bar{\zeta}_{p-1} \wedge d \bar{\zeta}_{q}$. We can obtain the same formula as (3.3) for C^{∞} forms λ^{m}. Then we obtain

$$
\begin{aligned}
& (-1)^{r+p}\left|K_{m_{\mu}, q}\right|^{2} \delta^{m_{\mu}} \exp \left(-2 \pi \sum_{i=q+1}^{n} m_{i} t_{n+i}\right) \\
& \quad=(-1)^{r+p}\left|K_{m_{\mu}, q}\right|^{2} b_{1 \cdots r-1,1 \cdots p-1}^{m_{\mu}}\left(t^{\prime \prime}\right) \\
& \quad+\sum_{k=1}^{p-1} \sum_{\ell=1}^{r-1}(-1)^{r+k+\ell} K_{m_{\mu}, \ell} \bar{K}_{m_{\mu}, k} b_{1 \cdots \hat{\ell} \cdots r-1 q, 1 \cdots \hat{k} \cdots p-1 q}^{m_{\mu}}\left(t^{\prime \prime}\right) \\
& \quad+\sum_{\ell=1}^{r-1}(-1)^{r+p+\ell} K_{m_{\mu}, \ell} \bar{K}_{m_{\mu}, q} b_{1 \cdots \hat{\ell} \cdots r-1 q, 1 \cdots p-1}^{m_{\mu}}\left(t^{\prime \prime}\right) \\
& \quad+\sum_{k=1}^{p-1}(-1)^{k+1} K_{m_{\mu}, q} \bar{K}_{m_{\mu}, k} b_{1 \cdots r-1,1 \cdots \hat{k} \cdots p-1 q}^{m_{\mu}}\left(t^{\prime \prime}\right)
\end{aligned}
$$

Since we can choose a subsequence $\left\{m_{\mu_{s}}\right\}$ so that

$$
\left|K_{m_{\mu_{s}}, q}\right|=K_{m},
$$

we have, for $t^{\prime \prime}=0$,

$$
\begin{aligned}
\alpha\left|\delta^{m_{\mu_{s}}}\right| \leq\left|b_{1 \cdots r-1,1 \cdots p-1}^{m_{\mu_{s}}}(0)\right| & +\left|b_{1 \cdots \mu_{s}}^{m_{\mu_{s}}} \quad(0)\right| \\
& +\left|b_{1 \cdots r-1 q, 1 \cdots \hat{\ell} \cdots p-1 q}^{m_{\mu_{s}}}(0)\right|+\mid b_{1 \cdots r-1,1 \cdots, 1 \cdots p-1}^{m_{\mu_{s}}}(0)
\end{aligned}
$$

for some positive constant α. Since the coefficients $b_{I_{r-1}, I_{p-1}}^{m}\left(t^{\prime \prime}\right)$ of Fourier series converge to $0([2$, Proposition 6$])$, this contradicts that $\lim _{\mu \rightarrow \infty} \delta^{m_{\mu}}$ $=\infty$.

Remark. In the statement (2) of Theorem 3.3 if $r=p$ and $1 \leq p \leq q$, one can choose φ as a real form. Under the assumption of Theorem 3.3, take any (p, p)-form φ satisfying (2) of Theorem 3.3 and put $\varphi_{1}:=(\varphi+\bar{\varphi}) / 2$, $\varphi_{2}:=(\varphi-\bar{\varphi}) /(2 \sqrt{-1}) . \varphi_{1}$ and φ_{2} are also d-exact and real (p, p)-forms. Suppose $\varphi_{i}=\partial \bar{\partial} \Psi_{i}$ for some $(p-1, p-1)$-form $\Psi_{i}(i=1,2)$. Then $\varphi=$ $\partial \bar{\partial}\left(\Psi_{1}+\sqrt{-1} \Psi_{2}\right)$. This is a contradiction. Hence at least one of φ_{1} and φ_{2} satisfies the statement (2) of Theorem 3.3.

§4. Examples and related problems

We can show a very easy counter-example to the problem of the introduction of this paper.

EXAMPLE 4.1. Let $\mathbb{T}_{C}:=\mathbb{C} / \mathbb{Z}\{1, \sqrt{-1}\}$ be a complex torus of complex dimension 1 . We put $X:=\mathbb{T}_{C} \times \mathbb{C}$. Trivially X is weakly 1-complete and complete Kähler. Let z be a holomorphic local coordinate induced by the projection: $\mathbb{C} \rightarrow \mathbb{T}_{C}:=\mathbb{C} / \mathbb{Z}\{1, \sqrt{-1}\}$ and w be a global coordinate of \mathbb{C}. We consider a $(0,1)$-form $\psi:=w d \bar{z}$ and $\varphi:=d \psi$. Suppose there exists a C^{∞} function Ψ on X such that

$$
\begin{equation*}
\partial \bar{\partial} \Psi=\varphi \tag{4.1}
\end{equation*}
$$

Then $\partial(\bar{\partial} \Psi-\psi)=0$. This means $\partial \bar{\Psi}-\bar{\psi}=(\partial \bar{\Psi} / \partial z-\bar{w}) d z+(\partial \bar{\Psi} / \partial w) d w$ is $\bar{\partial}$-closed and then a holomorphic 1-form. Then $\partial \bar{\Psi} / \partial z-\bar{w}$ and $\partial \bar{\Psi} / \partial w$ are holomorphic on X. We have an entire holomorphic function $G(w):=$ $\partial \bar{\Psi} / \partial z-\bar{w}$. We put $x:=\operatorname{Re} z, y:=\operatorname{Im} z, u:=\operatorname{Re} w$ and $v:=\operatorname{Im} w$. We can expand $\bar{\Psi}$ to Fourier series:

$$
\bar{\Psi}:=\sum_{m \in \mathbb{Z}^{2}} a^{m}(u, v) \exp \left(2 \pi \sqrt{-1}\left(m_{1} x+m_{2} y\right)\right)
$$

$\partial \bar{\Psi} / \partial z=\pi \sum_{m}\left(m_{1} \sqrt{-1}-m_{2}\right) a^{m}(u, v) \exp \left(2 \pi \sqrt{-1}\left(m_{1} x+m_{2} y\right)\right)$. Since $\partial \bar{\Psi} / \partial z=\bar{w}+G(w)$ is constant on variables x and $y, a^{m}=0$ if $m \neq 0$. Then $\bar{\Psi}=a^{0}(u, v)$ and $\partial \bar{\Psi} / \partial z=0$. This contradicts (4.1). By the same reason of Remark in $\S 3$ we can select a real $(1,1)$-form that has no solution of the $\partial \bar{\partial}$-equation on X.

Considering the fact that $H^{1}(X, \mathcal{O})$ is an infinite-dimensional Fréchet space and $\partial \bar{\partial}$-Lemma holds for toroidal groups of cohomologically finite type, we can give the following

Problem 4.2. Can one show $\partial \bar{\partial}$-Lemma on a weakly 1-complete Kähler manifold X with $\operatorname{dim} H^{1}(X, \mathcal{O})<\infty$?

If X is strongly 1-convex in the sense of Andreotti and Grauert [2], then $\operatorname{dim} H^{1}(X, \mathcal{O})<\infty$. Miyajima [7] considers another type of the $\partial \bar{\partial}$-equation on strongly pseudoconvex Kähler manifolds. In general case of strongly 1convex Kähler manifolds the above problem still remains unsolved.

Further a weakly reformed problem of Problem 1.1 is posed in [10].
Problem 4.3. Let L be a holomorphic line bundle on a weakly 1complete manifold X. We assume that the first Chern class $c_{1}(L)$ has a positive form. Then does L have a Hermitian metric with a positive curvature form?

We remark here that if $\partial \bar{\partial}$-Lemma holds on X, then Problem 4.3 can be solved affirmatively for X. The following example shows that $\partial \bar{\partial}$-Lemma does not hold even if \mathbb{C}^{n} / Γ is a quasi-abelian variety.

EXAMPLE 4.4. We consider a toroidal group of $\S 2$ in the case of $n=2$ and $q=1$.

Let Γ be the discrete subgroup generated by $\left\{e_{1}, e_{2}, v_{1}:=(\sqrt{-1}, \beta)\right\}$ over \mathbb{Z}, where β is an irrational real number. From (2.1) we have $K_{m}=$ $\sqrt{\left(\beta m_{2}-m_{3}\right)^{2}+m_{1}^{2}}$ and $K_{m}>0$ for $m \neq 0$. Then \mathbb{C}^{2} / Γ is toroidal. We put $v_{2}:=(\beta, \sqrt{-1})$ and consider a complex torus $\mathbb{C}^{2} / \mathbb{Z}\left\{e_{1}, e_{2}, v_{1}, v_{2}\right\}$. Any such torus is an abelian variety ([3, §2.6 The Riemann Conditions $]$). We have the covering projection:

$$
\mathbb{C}^{2} / \Gamma \longrightarrow \mathbb{C}^{2} / \mathbb{Z}\left\{e_{1}, e_{2}, v_{1}, v_{2}\right\}
$$

This means every \mathbb{C}^{2} / Γ is a quasi-abelian variety for any β ($[1$, Theorem 4.6]). We obtain the following (1) and (2).
(1) If β is an algebraic number, then by Liouville's criterion there exists a positive number M and a positive integer ℓ such that $\left|\beta-m_{3} / m_{2}\right|>$ $M /\left|m_{2}\right|^{\ell}$ for any integer m_{3} and $m_{2} \neq 0$. Since $K_{m} \geq\left|\beta m_{2}-m_{3}\right|>$ $M /\left|m_{2}\right|^{\ell-1}\left(m_{2} \neq 0\right)$,

$$
\sup \left\{\left.\frac{\exp \left(-\sqrt{m_{1}^{2}+m_{2}^{2}}\right)}{K_{m}} \right\rvert\, m \in \mathbb{Z}^{3} \backslash\{0\}\right\}<\infty
$$

By Theorem $3.2 \mathbb{C}^{2} / \Gamma$ is of cohomologically finite type and then $\partial \bar{\partial}$ Lemma holds on it.
(2) If β is approximated by rational numbers very well, namely, satisfying for any $a>0$

$$
\sup \left\{\left.\frac{\exp (-a|m|)}{|\beta-n / m|} \right\rvert\, m, n \in \mathbb{Z}, m \neq 0\right\}=\infty
$$

(We find examples of such β in [6] and [12]), by Liouville's criterion such β must be a transcendental number and \mathbb{C}^{2} / Γ is of nonHausdorff type. Then $\partial \bar{\partial}$-Lemma does not hold on it.

Added in proof. After this paper was submitted, we obtained an answer to Problem 4.2 in the following form: There eixsts a 1-convex Kähler manifold on which the $\partial \bar{\partial}$-Lemma does not hold. This result will appear in our forthcoming paper.

References

[1] Y. Abe, On toroidal groups, J. Math. Soc. Japan, 41 (1989), 699-708.
[2] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Frances, 90 (1962), 193-259.
[3] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley and Sons, 1978.
[4] H. Kazama, On pseudoconvexity of complex abelian Lie groups, J. Math. Soc. Japan, 25 (1973), 329-333.
[5] —— $\bar{\partial}$-Cohomology of (H, C)-groups, Publ. R.I.M.S., 20 (1984), 297-317.
[6] H. Kazama and T. Umeno, Complex abelian Lie groups with finite-dimensional cohomology groups, J. Math. Soc. Japan, 36 (1984), 91-106.
[7] K. Miyajima, A note on the Bogomolov-type smoothness on deformations of the regular parts of isolated singularities, Proc. Amer. Math. Soc., 125 (1997), 485-492.
[8] A. Morimoto, Non-compact complex Lie groups without non-constant holomorphic functions, Proc. Conf. on Complex Analysis, Minneapolis 1964, Springer (1965), 256-272.
[9] J. Morrow and K. Kodaira, Complex manifolds, Holt, Rinehart and Winston Inc., 1971.
[10] S. Takayama, Adjoint linear series on weakly 1-complete manifolds, Lecture Notes at Summer Seminar (in Japanese), 1996.
[11] S. Takeuchi, On completeness of holomorphic principal bundles, Nagoya Math. J., 57 (1974), 121-138.
[12] C. Vogt, Line bundles on toroidal groups, J. Reine Angew Math., 335 (1982), 197-215.
[13] _, Two remarks concerning toroidal groups, Manuscripta Math., 41 (1983), 217-232.
[14] I. Wakabayashi (editor), Collected problems arround several complex variables, Sugaku (published by Math. Soc. of Japan, in Japanese), 32 (1980), 161-187.

Hideaki Kazama

Graduate School of Mathematics
Kyushu University
Ropponmatsu Chuo-ku
Fukuoka, 810
Japan
Shigeharu Takayama
Department of Mathematics
Graduate School of Sciences
Osaka University
Toyonaka
Osaka, 560-0043
Japan

