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ON SUBCLASSES OF INFINITELY DIVISIBLE

DISTRIBUTIONS ON R RELATED TO HITTING

TIME DISTRIBUTIONS OF 1-DIMENSIONAL

GENERALIZED DIFFUSION PROCESSES

MAKOTO YAMAZATO

1. Introduction

A distribution μ on R+ = [0, °°) is said to be a CMEί distribution if there

are an increasing (in the strict sense) sequence of positive real numbers

W ί = i and 0 = b0 < h < < bm < bm+ι = o o ( 0 ^ m < / < ° ° ) such that,

for each j = 0, . . . , m, there is at least one ak satisfying bj < ak < bj+ι and the

Laplace transform ί£μ(s) = J e~sxμ(dx) of μ is represented as

2μ(s) = Πί=i at(s + at)~ι if m - 0,

= Πί-i cn(s + ad-'/HU his + b,)'1 if m ̂  1.

The author [8] shows that the upward first passage time distributions of birth

and death processes belong to the class CME{. He [9] also shows that the class of

distributions of hitting times of single points of generalized diffusion processes is

a proper subclass of the closure CME+, in the weak convergence sense, of CMEl.

Let CMEL be the class of distributions on R_ = (— °°, 0] whose mirror images

belong to CME{. That is, μ e CMEL if and only if μ(du) = μ(— du) belongs to

CMEί. Let CMEf be the class of μ = μi * μ2 with μι e CME{ and μ2 e CMEL.

Sato [4] shows that the distributions of sojourn times of birth and death processes

with weight not necessarily positive belong to CMEf.

We denote the class of infinitely divisible distributions on R (or R±) by i (R)

(or i(R±)). The classes CMEί and CME+ are contained in i(R+). The class

CMEf is contained in J(R). Some interesting classes of infinitely divisible

distributions on R+ (for example, BO, CE+, ME+, CME+1 . . .) are introduced

in [1] and [8] and representations of their Laplace transforms, compactness
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conditions and convergence conditions are investigated. Sato's result [4] suggests

that it is natural to extend those classes to classes on R. We denote by B+ the

class BO in this paper.

The main purpose of this paper is to define classes B, CE, ME, CME on R,

obtain representations of their characteristic functions or Laplace transforms, and

express convergence conditions by their characteristics. This will be done in Sec-

tions 2 ~ 5. Thorin [6] extended the notion of generalized /^-convolutions on the

half real line, which is a natural subclass of B+ and class L containing the class of

stable distributions and the class CE+, to those on the whole real line and gets a

convergence condition (parallel to our Theorem 2.1). In Section 6, we define and

study a subclass ME+ of ME+ and a subclass CME+ of CME+. It is shown in [9]

that hitting time distributions of one dimensional generalized diffusion processes

with non-natural boundaries belong to the class CME+.

In the naming of the classes, C, M, and E suggest convolution, mixture, and

exponential distributions, respectively. The superscripts / and d suggest finite and

discrete, respectively.

Necessary and sufficient condition for strong unimodality for a subclass of

CME+ is given in [7]. An extension of the result to CME will be given in [10].

Acknowledgement. The author would like to express his hearty thanks to the

referee for his valuable comments. He also thanks Ken-iti Sato for his useful

advices.

2. Class B

For a topological space A, we denote by 9"(A) the totality of Borel probability

measures on A. For μu μ2 ^ ^ ( R ) , we denote by μ i # μ 2 the convolution of μ\ and

μ2. For A, B cg>(R)t we denote by A * B the totality of μ = μλ * μ2 with μλ e

A and μ2 ^ B. The characteristic function of μ e ^ ( R ) is denoted by 2?μ(s).

We define the bilateral Laplace transform £μ(s) = I e~sx(dx) if the.integral is

finite. A representation of the characteristic functions of infinitely divisible

distributions is well known. Namely, a distribution μ ^ ^ ( R ) is infinitely divisi-

ble if and only if there are γ ^ R, σ > 0 and a measure v on Ro = R\{0} satis-

fying

(2.1) Γ (x2 A l)v(dx) < oo
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such that

(2.2) 9μ(z)

= exp Uγz - σV/2 + Γ (eizx - 1 - Λ

 lZX Jv(dx)}.

Here, a Λ b — min{a, b). This representation is unique. We call (2.2) the canoni-

cal representation [7, σ2, v] of μ ^ ^ ( R ) . The measure y is called Levy measure

of μ. The following theorem is well known.

THEOREM A. Let μn

 e ^ ( R ) with canonical representation [γn, σn, vn] and let

μ ^ ^ ( R ) . Then the following (i) and (ii) are equivalent:

(i) μn converges weakly to μ as n —» 00.

(ii) μ is infinitely divisible. Let [γ, cr, v] be its canonical representation.

(a) For every bounded continuous function f which vanishes near the origin,

0 0 .J f (u) vn (du) -> J f(u)v (du) as n •

(b) For ε > 0 set

An* = σl + ί y2vn(du).
*̂  |y|<ε

Then

lim lim sup An,ε — lim lim inf An>£ — o1.
ε i 0 n-+°° ε 10 «-°°

(c) lim rn = r

We say that a distribution μ on R is a B distribution if μ ^ ^ ( R ) and its

Levy measure v is absolutely continuous with density £ represented as

£(y) = f e~vuQ(du) for y > 0,
•^ (0,oo)

= f e-yuQ{du) for y < 0,
J (-oo,0)

where, Q is a measure on Ro satisfying

(2.3) Γ I u | - 1 Λ \u\~3Q(du) < oo.
•̂  Ro

We denote by B+ the class of B distributions on R+. The class B+ here was

denoted by BO in [8] and called g.c.m.e.d. (generalized convolutions of mixtures
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of exponential distributions) in [1]. The above integrability condition (2.3) for Q is

equivalent to the condition (2.1) for IΛ We call Q the Q-measure of

μ e B. A B distribution μ is uniquely represented by the triplet (7, o2, Q). We

describe a necessary and sufficient condition for weak convergence in B in terms

of this triplet.

THEOREM 2.1. Let μn

 e B and let (γn, σ%, Qn) be its triplet. In order that μn

converges to μ €= ^ ( R ) as n—* 00, it is necessary and sufficient that μ €= B with

triplet (7, σ2, Q) and the following conditions are satisfied.

(i) For any function f with compact support in R such that \ u \f(u) is continuous,

ff(u)Qn(du)->ff(u)Q(du) as n-+oo.

(ii) Let An M = σ% + 2 f \u\-3Qn(du). Then
J \u\>M

lim lim sup AH,M = lim lim inf An,M = σ2.

(in) lim γn = γ.
n~*oo

Proof. We prove the theorem checking the conditions of Theorem A.

Sufficiency. Assume that μ ^ B and (i) ~ (iii) hold. Let vn and v be the

Levy measures of μn and μ, respectively. By (i) and (ii), we have

//(«) (I u h Λ I u \-3)Qn(du)^Jf(u) (I u |-ιΛ I u \-3)Q(du)

as n —* 00 for every continuous function / on R vanishing at infinity. Hence for

0 <a< b

Γ vnidy) = Γ u-\e~au - e-
bu)Qn(du)

J a Jo

-> Γ u~ι(e-au- e~bu)Q(du)
Jo

Γb

= I v(dy) as n-^>cn.
J a

In the same manner,

Γ Vn(dy) = Γ u-ιe-uQn{du)-+ Γ v(dy),
j 1 J 0 •/1
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['" vnidy)^ Γ"v(dy),
<J —b J —b

I Vn(dy)-* I v(dy) as n-+oo.
•s —oo %J —oo

Hence we get the condition (a) in Theorem A. Note that

(2.4) f y2vΛdy)=[ ( Γ y2e-M«dy)Qn(du)
J \y\<ε JR0 JO

= ί (fMSy2e-"dy)\u\-3Qn(du)
J Ro *s 0

= ΣUiFi(ε)

where, for ε > 0,

/^(6)= ί 2\u\~3Qn(du),
J lκliε-2

F2(ε) = - f (Γ yze-«dy) | u \~3Qn(du),

Fi(ε) = f (Γ y2e-M"dy) Q«(du).
J |w|£ε-2 J 0

By (ii), we have that {Fn(ε)} is bounded in n and

\FUe) I ̂ -KFHS) Γ y2e~ydy-^ 0 as n-+0 and ε->0.
Δ J ε~i

In the following, we may assume that ε~2 is a continuity point of Q. By (i), we

have, for fixed ε > 0,

lim F3(έ) = Γ ( Γ y'e-M'dy)Q(du).
n-*oo J \u\ίε-2 Jo

By (2.3) and by bounded convergence theorem,

Γ (Γy2e-^dy)Q(du)
J \u\έε-2 Jθ

= ί ( Γy2e-Mvdy)Q(du\ + f ( Γ^Cdy) I u\-3Q(du)-+0<isε-*0.
J \u\Zl J 0 J l£\u\Zε-2 Jθ

Thus, we have

limlimFw

3(ε) = .0.
ε 1 0 «-°°
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Hence, we have

(2.5) lim lim sup [σ | + / y2vn(dy)]
e j 0 n-oo •> \v\<ε

= lim lim s u p \al + f 2\u \~3Q(du)]
Mϊoo »-«, J \u\>M

and

(2.6) limliminf[σM

2 + f y2un(dy)]

= lim lim inf [σ| + f 2 | u \'3Q(du)].
jlf I oo n-oo J | κ | > M

Thus the condition (b) of Theorem A holds. The condition (c) is trivial.

Necessity. Let μn->μ. Then / / G i ( R ) by Theorem A. By Theorem A(a),

we have, for any continuity point a > 0 of v.

oo.J"*oo /*oo

Vn(du) --> I v(du) as n
a J a

Hence we have, for a.e. a > 0,

(2.7) Γ°° u^e^auQn(du) -> Γ°° v(dw) as n-> oo.
Jθ Jfl

Similarly we have, for a.e. a < 0,

J o z β

\u\ ιe auQn(du) —* j v(du) as n—*oo.
— oo J —oo

By (2.4) we have,

/
2 1 - l f ° °

Thus {Fi(ε)} is bounded in n. Then we see, by (2.7) and (2.8), that there is a fi-

nite measure 0 on R such that for a > 0

Γ u-le~auQn{du) — Γ e-auQ(du) + Γ u2e~auQ(du),
Jo Jo Ji

Γ U|-1<rβl" lQB(<iw)-^ Γ° β- ' 'δW*) + Γ1 u2e-aWQ(du)
J —00 »/ — 1 »/ —OO

as w—» oo. Note that Q does not have a point mass at {0} since lim / v(dy)
α-oo J |»|>β

= 0. Set Q(du) = (I w| V | u\3)Q(du). Then, Q is a measure on Ro satisfying
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(2.3). We have

(2.9) { \u\-ιQn(du)-> (\u\-ιQ(du) as w->oo,
J I J I

for every finite interval / in R both end points of which are continuity points

of Q. Thus, (i) holds. We have, by (i),

limlimFw

3(ε) = 0 .

ε I 0 w-oo

Since {F£{ε)} is bounded in n,

lim lim sup | F2(ε) | = 0.
ε I 0 n-co

We have (2.5) and (2.6). Hence (ii) holds. The proof is complete.

COROLLARY. The class B is closed under convolution and weak convergence.

THEOREM 2.2. The class B coincides with the closure ofB+*B-.

Proof. Since the class B is closed, it is enough to show that the normal

distributions and B distributions without Gaussian components are approximated

by B+*B- distributions. For σ2 > 0, set an = (2n/σ2)ί/2 and let

qn{x) = 0 for | x | < αw,

= n for an ̂  I x I.

Then μn = (0, 0, qn(x)dx) e B+*B-. We have, for M < an

1 \u\>M

and for every finite interval / in R,

2 Γ \u\~3qn(u)du= σ2

J \u\>M

as w—• 00. Hence μn~» (0, σ2, 0) as w-^00 by Theorem 2.1. Now, let (0,0,0)

e B. Define Qn by Qn = Q\[-n,m.Then (0, 0, Qn) ^ B+*B-.

Since

Γ \u\-3Qn(du)^ f \u\~3Q(du)
J \u\>M J\u\>M
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as n —• oo and

f \u\-3Q(du)-+0
J \u\>M

as M-> oo, (0, 0, Qn) -* (0, 0, Q). The proof is complete.

3. Class ME

We say that a probability distribution μ on R+ is an ME+ distribution if

there is a probability measure G on (0, °°] such that

μ[0,x] = G({oo}) if χ=o,

= f (1 -
~* (0,oo]

( ^ i ) if
(0,oo]

where the value of the integrand 1 — e~xu at infinity for x > 0 is defined by its

limit 1 as u—* oo. We call G the mixing distribution of β. We denote by ME+ the

class of ME+ distributions. It is easy to see that the Laplace transform of

μ e ME+ is represented by its mixing distribution G as:

(3.1) 2μ(s) = G({oo}) + f e~sxdx f ue~xuG(du)
• J (0,oo) ^ (0,oo)

Define ME- by the mirror image of ME+. That is, M^B- if and only if μ

_) and

, 0] = G({-oo}) if , r = 0

= f ( 1 - e - m ) G ( d u ) if x < 0
*/ t-oo,0)

with G e ^ ( [ - o o , 0)). Let M £ = ME+*ME-. A representation of the Laplace

transform of μ ^ ME+ is obtained by Steutel [5]. We state here his representa-

tion.

THEOREM B. A probability measure μ on R+ is an ME+ distribution if and only

if there is a nonnegative and absolutely continuous measure Q on R+ with density

bounded by 1 a.e. satisfying I u~ιQ(du) < °° such that, for z e R,
J o

2Fμ(z) = exp [ Γ (eizx - 1) ( Γ «"
J R+ ^ R+
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By this theorem, we easily get the representation of the characteristic func-

tion of μ e ME:

(3.2) &μ{z) = exp [ f (etzx - l)£(x)dx]
J Ro

where

£{x) = f e~xuQ(du) forxX),
J R+

= f e~xuQ(du) forx < 0

and Q is an absolutely continuous measure on R with density bounded by 1 a.e.

satisfying

f \u\~ιQ{du) < oo.
•/|«Ki

Hence ME c β and the above Q is the O-measure of μ.

Remark 3.1. Let μ ̂  ME+ and let G be its mixing distribution. Let £ be the

density of the Levy measure of μ and let Q be the Q-measure of μ. Then

}) = e x p { - Γ£{x)dx)
Jo

= exp{- Γ~Q(du)}.

Proof. It is easy to see that

G({oo}) - l i m ^ ( s ) = exp {- Γ£(x)dx).
C-.OO «^ 0

Since

Γ£(x)dx= Γ (Γ e~uxdx)Q(du)
Jo Jo Jo

we get the conclusion.

THEOREM 3.1. Let μn

 e ME+ and μ G ^ ( R + ) . L#ί Gw 6̂  ί/w mixing distribu-

tion of μn. Then μn converges weakly to μ if and only if μ ^ ME+ and Gn converges

weakly to G, the mixing distribution of μ, as a sequence of distributions on (0, °°]

as n —* oo.
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Proof. Let Fn and F be the distribution functions of μn and μ, respectively.

Assume that μ ^ ME+ and Gn—*G weakly on (0, oo] as w —• oo. Then, obviously

we have, for x > 0,

F»(x)= f (1 ~ e-^Gnidu)

= f (X-e-*")G(du) asn
J <0,oo]
f

<0,oo]

This shows that μn—*μ. Conversely, we assume that μn—*μ weakly as n-+oo.

Then we have Fn(x) —*F(x) asw-^oo for all continuity point x > 0. For ε > 0,

we can choose x > 0 sufficiently large so that 1 — Fn{x) < ε for all n. Hence,

e~xδGn(0, δ) ^ f e-χuGn(du) < ε,
J (0,5)

r (0,5)

i.e.

Gn(09 δ) < εexδ.

This means that {G»} is a conditionally compact sequence as measures on (0, °°],

Choosing subsequence {//} of {n} so that G», converges to a distribution G on

(0, °°], we have

Fn'(x) = f (l-e-*u)Gn'(du)

-^ Γ (1 - e~xu) G (du) as ή -> oo
^ (0,oo]

for .r > 0. Hence

F(.r) = Γ (1 - e~m)G{du)
J ω,oo]

for continuity point x of F. Since the right hand side is continuous for x > 0 and

since F is right continuous, the equality holds for all x > 0. Letting x—> 0, we get

F ( 0 ) = G({oo}). Hence

F(x) = 1~ f
J (0,oo]

By the uniqueness for Laplace transforms, Gn converges weakly to G on (0, °°]

as n—* oo. The proof is complete.

THEOREM 3.2. Letμ+ e ME+, μ. e M£_ and tef μ = )W+*^- e M £ . Then μ

is absolutely continuous on Ro and has a point mass μ+({0})μ_({0}) at the origin.
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Let h be the density of μ on Ro. Let G+ and G- be mixing distributions of μ+ and μ~,

respectively. Denote φ+(s) = £μ+(s) and φ-(s) = £μ-(s). Then the following hold:

(i) h(x) = (h+*h-)(x) +

= f 0_(- u)ue-uxG+(du) for x>0,
J (0,oo)

and

h(x) = (h+*h-)(x) + μ+({0})h-(x)

= ί ΦΛ~ υ)\υ\ e~vxG-{dυ) for x < 0,
%) ( — 00,0)

where h+ and h~ are densities of μ+ and μ~ on (0, oo) and ( — oo, 0), respectively.

(ii) Denote d- = sup{v < 0 G-([υ, 0)) > 0} and d+ = inf {v > 0 G+((0, υ])

> 0}. If d- < d+, then the Laplace transform £μ(s) of μ exists for — d+ < s <

— d- and is represented as

(3.3) £μ(s) = f φ+(- υ) - | — G-(dv) +
J (-00,0) o \ V

+ Γ φΛ-u)—— G+(du)
•J (O.oo) S \ U

Proof (i) Let F , F+ and F- be the distribution functions of μ, μ+ and

respectively. Let x > 0. Then,

= Γ F+(^ - y)F-(dy) + F+(
J (-00,0)

C Γχ~y Γχ

= h.(y)dy h+(z)dz +μ-({0})( h+(z)dz
J (—oo,0) J 0 J 0

By this we get

h(x)=f h+(x~y)h-(y)dy +μ-({ϋ))h+(x) for x > 0.
•/ (-oo,0)

By the definition of the classes ME+ and ME- we have

Γ h+(χ- y)h-(y)dy
J (-oo,0)
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= f ( Γ ue-ulχ-v)G+(du)) (f \υ\ e-vyG-{dv))dy
J (-oo,0) J (0,oo) J (-oo,0)

= f GΛdu) f —
J (o,o°) J (-oo,o) V —

= ί
J (0

U

ί ([ T^
(0,oo) J (-oo,0) V U

Thus,

h(x) = f φ-(- u)ue~uxG+(du)
•^ (0,oo)

In the same way we get the representation for x < 0.

(ii) If — d+ < s < — d-, the right hand side of (3.3) is well defined. Denote

by A(s) the right hand side of (3.3). Set

and

Note that, by (3.1),

ψ.(s) = φ-(s) + G.({- oo})

and

0+(s) - 0+(5) + G + ( ί - oo}).

We have

{~}) + φ+(s)GM-

where

The function A\ (s) is written as

AΛs)
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= φ+(s) ψ-(s).

Hence we have A(s) = ψ+(s)ψ-(s) = 2!μ(s). The proof is complete.

THEOREM 3.3. A sequence in ME is shift compact if and only if it is conditional-

ly compact.

Proof Let {μn)
 ( - ME be a shift compact sequence. That is, there is a se-

quence {γn)
 c : R such that {μn * δ7n} is conditionally compact, where δΎn is the

Dirac measure concentrated at γn. Let £n(y) be that density of the Levy measure

of μn. Note that since

£n(y) ^ Γ e - ] ' ] u d u = \y\~ι for y Φ 0,
J o

the sequence { / —,—o^n(y)dy} is bounded. We haveJ Ro 1 + y2

Γ (^ί22/ - l)Uy)dy]
J Ro

(eιzy - 1 -

Hence {7J must be bounded. It follows that {μn} is conditionally compact. The

converse is obvious.

4. Class CE

Let CE{ be the class of μ e ^ ( R + ) such that ί?//(s) = Ilf^i ak(s + ^A)" 1

with 1 ^ m < °° and 0 < a\ < α2 < * * * < am and let CEL be the mirror image

of CEl Let CEf = C £ ί * C££. We denote by C £ the closure of CEf. Let Z be

the set of integers and set Zo = Z\{0}.

THEOREM 4.1. Lgf ^ ^ ^ ( R ) . T/î n, μ is a CE distribution if and only if

μ €= / ( R ) and ί/ι̂ rβ is an Ro-valued non-decreasing sequence {cik)kezoni for an inter-

val I containing 0 such that

(4.1) ak>0 fork>0,

< 0 fork<0,
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(4.2) Σ ^ " 2 < ° °

and the Levy measure v of μ is represented as

(4.3) v(dx) = (χ-ιΣk>oe-βl*)dx forx > 0,

= (IxhΣjKo e~akX)dx forx < 0.

We call {#J the parameter sequence of μ.

Proof Denote by CEd the subclass of / ( R ) consisting of distributions whose

Levy measure is of the form (4.3) satisfying conditions (4.1) and (4.2). The

assertion of the theorem is that CE = CEd. Let μ e CEd and let W be its

parameter sequence. Set

(4.4) q(x) = Σ l(α*,oo)Cr) + Σ l(-oo,α*)Cz),
k>0 k<0

where 1A(X) is the indicator function of a set A Noting that {<zj is a monotone

sequence, we have by (4.2) that J | u \ ~3q(u)du < °°, It is easy to see that the

Levy measure v of μ is written as

e~xuq{u)du)dx for x > 0,

= (J* for x < 0.

Hence, μ is a B distribution with triplet (7, σ2, q(x)dx) with some γ and σ2. Now

we show that μ is approximated by Ci^-distributions. Let

qι,n(x) - Σ Woo) (x) + Σ l(-βofβ4) (•£)#(#)

and

JR+ 1 + χι JR+

In case σ2 > 0, set α« = (2n/σ2)ι/2 and let

= 0 for I x\ < am

— n for I x I ̂  αw,

and choose βw > 0 so that

(4.5) (r ~ ϊι,n)/βn -> 0 as n -^ 00

and iSw > αw. In case σ2 = 0, let
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qiAx) = 0

and choose βn > 0 so to satisfy (4.5). Let δn be the integral part of {| y — yι,n I /

f Λ

 l , e'βnxdχ} and let

qn(x) = 0 for x < βn,

= δn for x ^ βn.

Define

q*Aχ) = ί»(tf) if r > 7i.»

= ί » ( - x) if r ^ n,w.

Let

(4.6) γn = ri,« + sign(r - 7i.»)

3

Then, Qn(dx) ={Σ qj>n(x)}dx satisfies (2.3). Let μn = (r», 0, Qκ) e β. Since

r»= f T^~2dx{ e-χuQn(du)+ f τ-^dJR+ 1 + J ; 2 MO,OO) JR_ i + ^2

/̂M is approximated by CE^-distributions. It is easy to see that (?«(/)

J q{x)dx for every bounded interval / in R. We have by (4.2) that

lim lim sup 2 / u~3qi,n(u)du
Λf—oo n-*oo J \u\>M

We see by (4.6) that, for every M,

Mm 2 I \u \~3{q2,n(u) + q3,n(u)}du
n_>oo J \U\>M

= lim {σ2 + δjβl) -»σ 2 .

We have by (4.6) that

I r« — r I ̂  / 7 7 - τ ^ ώ ^ o asw-+oo.
^ R+ 1 -r or

Thus by Theorem 2.1, μw—>μ as w—> cχ> . Hence, C£'d-distributions can be

approximated by C£/-distributions. Now we show that the class CEd is closed
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under weak convergence. Let μn

 e CEd and let μn-^μ^ 2P(R). Then, by

Theorem 2.1, μ ^ B. Let qn be the density of Q-measure of μn. Consider the

convergence of the Q-measures on (0, °°). Since qn is a nondecreasing function,

Q-measure of μ is absolutely continuous, its density q is nondecreasing. Moreover,

qn(x) converges to q(x) at every continuity point of q. Noting that qn is a step

function of step size 1, we have that q is also a step function with step size being

positive integers. The same argument yields that the Q-measure of μ has a density

q also on (— °°, 0) and that q is a nonincreasing step function on (— °°, 0) with

step size being negative integers. By (2.3), q(x) — 0 near x — 0. Hence the class

CEd is closed. Hence CEd = CE.

Remark 4.1. The condition (4.2) for the parameter sequence {an) of μ ^ CE

is equivalent to

f x2v(dx)
J \X\<1\x\<\

for the Levy measure v of μ.

Remark 4.2. (i) A measure v of the form (4.3) with subsidiary conditions

(4.1) and (4.2) satisfies / \x\v(dx) < °° . Hence, for a CE distribution,
J \x\>l

instead of (2.2) we can use another representation of its characteristic function.

Let μ ^ CE with canonical representation [ 7, σ2, v] . Then its characteristic

function is represented as

(4.7) 9μ(z)

= explifz - σV/2 + Γ {eixz - 1 - izx)v(dx)}.

Here

(4.8) r' = T+ ί x3{l+x2Yιv{dx).
•s Ro

We call (4.7) the modified representation of μ ^ CE. We denote the modified

representation of μ by iγ\ σ2, u> or {γ\ σ2, {dj}}, where {a3) is the parameter

sequence of μ. Using this representation, as is shown in the next theorem, we can

represent the Laplace transforms of CE distributions as rather simple products.

(ii) Let μn ^ CE and let [γn, &n2, vΛ and {/«, σn

2, vn] be the canonical and

the modified representations of μn, respectively. If [γn, σn

2, vn] satisfies the condi-

tion of Theorem A with μ = [7, σ2, v] = {γ\ σ2, v}, then
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(4.9) limlimsup / \x\3vn(dx) = 0.
ε | 0 n-+oo J \x\<ε

Hence by Theorem A, jή—* γf as n—+oo. The converse is also valid. Hence for

CE distributions, the condition (iii) of Theorem 2.1 can be replaced X\mγn' ~ Y-
n-*oo

THEOREM 4.2. A distribution μ is a CE distribution if and only if there are

j ' e R, (j2 έ 0 and an Jto-valued non-decreasing sequence {an}nezoni for an interval

I containing 0 such that (4.1) and (4.2) are satisfied and the Laplace transform of μ is

represented as

(4.10) £μ(s) = exp(- γ's + cτ2s2/2) Π» an(s + anY
xt^

for —«i < Re s < — α_i.

Proof. Let s = x + iy. Note that

£ I (1 + s/an)e'"""s - 11

^ I e — 1 + s/an + s/an \\e — 1

^ \s/an\
2R-2(l + R)eR for | s/an \ < R.

Hence by (4.2), it is easy to see that the right hand side of (4.10) is convergent for

— d\ < Re s < — a~ι. For 5 = — iz, z Ξ R, it is equal to

exp(ifz - σ V / 2 ) Un an{~ iz + an)~ιe MnZ.

We can rewrite the above formula as

expiiγ'z - σV/2 + Σ Dog{β«(- iz + an)-1) - iaΰ'z]}

= exptifz ~ o2z2/2 + Σn>o Γ (eizx ~ ι " tzx)x'1e'anXdx +
J o

+ Σ»<c Γ° (^ίzx - 1 - izx)\x\-ιe-anxdx)
ΛJ —OO

= expUfz - σV/2 + Γ (e'2X - 1 - izx) [Σ»>o r ' ^ ά +
*/ 0

+ Γ (eizx - 1 - war) [Σ«<o I x \-ιe-anX]dx).
%J —OO
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Here we choose the branch of the logarithm so the argument is between — π and

π. On the other hand, J esxμ(dx) is finite if — d\ < Re s < — a~\. This shows

the validity of Theorem 4.2.

The above representation shows that the class of densities of CE distribu-

tions coincides with the class of PF densities defined in Karlin [2] p. 335.

The quantities yr appearing in (4.10) and (4.8) are identical. Write the

closures of CE+ and CEL as CE+ and CE-, respectively. It is easy to show that

the class CE+ coincides with the class CE+ defined in [8] and the class CE+

(resp. CE-) coincides with the class of CE distributions with supports in R+

(resp. R_).

5. Class CME

In [8), the class CME+ is defined by CME+ = ME+ * CE+ and it is proved

that the class CME+ is the closure of CME{. Let CME- = ME- * CE-. Then,

the class CME- is the closure of CMEί. We denote by CME the closure of

CMEf. This class contains both CME+ and CME-. Define ME{ as follows: μ e

ME{ if and only if μ e ME+ and the mixing distribution G of μ is supported on a

finite number of points in (0, °°]. Let MEL be the mirror image of ME{ and let

MEf = MEl*MEL

THEOREM 5.1. CME = CE*ME.

Proof. By definition CE is the closure of CEf. It is easy to see that ME is

the closure of MEf. Hence we have CMEf c CE * ME c CME. Now we show

that CE * ME is closed, which will prove the theorem. Let {μn} be a sequence

in CE * ME converging to a distribution μ. Let μi ^ CE and /4 e Mi? be such

that μn

 = μlι*μn, for w = 1, 2 , . . . . Since the components {μi) and {μ«} are both

shift compact, {μl) is conditionally compact by Theorem 3.3. Hence {μi) is also

conditionally compact. Now we can choose a subsequence n' so that μb —•* μ1

^ CE and μ^ —• μ2 e M £ as n' —• oo and we have

μ = μ x * μ 2 .

Hence, CE*ME is closed.

Remark 5.1. A distribution μ ^ CMis is determined by the modified repre-

sentation {γ> σ2

y a = {α; }} of its CE component and the Q-measure Q of its ME
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component. Let us call (7, σ2, α, Q) the quadruplet of the CME distribution μ.

Since there are many ways of decomposing μ as μ — β\ * μ2 with μ\ ̂  CE and

μ2 ^ M£, there are many quadruplets that determine μ. But, among them, there is

a unique decomposition which maximizes the density of the (J-measure of μ\.

Choosing μι £ CE and μ2

 e ME in this way, the quadruplet (γ'f σ
2, a, Q) is

uniquely determined by μ. In the following, by qudruplet of μ, we always mean

this quadruplet.

not

The parameter sequence a = iaj) >ezon/ may possibly be empty. In case cij is

defined, we regard aj = °° if j > 0 and fly = — °° if j < 0.

6. Representation of Laplace transforms of distributions of classes MEl and

CMEί

We say that a distribution on (0, 00] is discrete if its support is a finite or

countably infinite set which has no accumulation point in [0, °°). A distribution μ

on R+ is said to belong to class ME+ if μ belongs to ME+ and its mixing distribu-

tion is discrete.

THEOREM 6.1. Let iaj) and {βj} be sequences of positive real numbers such that

0 < αi < βι < a2 <j82 < and ajt βj —• °° as j - * °°. Then the infinite product

(6.1) f(s) = πr-i (i + J-)/α + 77-)
Pi (Xj

absolutely and uniformly converges on each compact set in C\ {— ai, ~(X2,. . .} and

there is μ ^ ME+ such that

ί£μ(s) =/(s) /ors>0.

Moreover, £μ(s) is written as

(6.2) ίβμ(s) = exp Γ°° (^"5αr - 1
J 0

?(«) = 0 0 < M < αi,

= 1 aj<u<βjf ; = 1 , 2 , . . . .

= 0 βi<u<aJ+uj= 1,2,....

Proo/. First step. We show the absolute and uniform convergence of / on

each compact set in C\{~ aif — a2, * * •}. Set
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aj(s) = (1 + 4-)/(l + -f-)
Pj υίj

and

bj(s) = 1 - tf (s).

Then we have

(6.3) ft,(s) = 5(1 + s/α^-HCα,)"1 - (β )-1}

and the inside of the braces in (6.3) is positive. Let DT — (s | s \ < T). If there

is i such that α, ύ T < αf<+i, then choose M so that 1/M < 1/Γ — l/α<+i. Then

we get that, for s ^ DT and for all έ ί + 1 ,

I 1/5 + l /α y I έ I 1/5 I - I 1/α, I

> 1/Γ - I/a, ^ 1/Γ - l/α f + 1 > l/M.

That is,

(6.4) I 5/(1 + s/a,) \<M.

Moreover, | bj(s) | < 1 for large j , since ctj, j8>—• oo as /—•>• oo. We denote by Uτ,δ

the set DT with the δ-neighborhoods of — αi, . . . , — α< excluded. Since 5/(1 +

5/α; ) is bounded in and 5 e {/r,δ, there is M > 0 such that

ΣΓ-i I fty(s) I ^ Σ Γ - I M (1/αy - l/α+0 ^ M/αi < oo

for 5 ^ i7r,5 By this we have that Σj°=i 6/(s) converges absolutely and uniformly

on any compact set in C\{— αi, — α2, . . . } . Hence the infinite product /(5)

converges absolutely and uniformly on any compact set in C\{— αi, — a2,...}.

Second step. We show that / is the Laplace transform of the ME+ distribu-

tion μ defined by (6.2). Note that

fn(s) = UU (1 + jV(X + ~)

is the Laplace transform of an ME+ distribution μn (Steutel [5]). Moreover, fn is

written as

fH(s) = e x p Γ (e~sx - 1){Γ e-χuqn{u)du)dxt

Jo Jo
where

qn(u) = 0 u <

= 1 aί<u<βJ j=l,2,...,n9

= 0 βj <u< aj+1 j = 1,2,..., n,
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Here we understand an+i — °°. We have

qn(u)du —> q(u)du as n-+ oo

and

Γ~4n(yϊ.du^ 1/M-+0 as M-4 oo.
JM U2

By the continuity theorem for B+ (Bondesson [1]), letting μ be the distribution

with Laplace transform of the form (6.2), we have μn—>μ as n—• oo. Hence fn(s)

—> £μ(s) for s > 0 as n—> oo. On the other hand, fn(s) converges to f(s) as

n—» oo absolutely and uniformly on any compact set in C \ { ~ aίt — a2, . . . ) ,

£μ(s) =f(s) should hold for s > 0. By Theorem 3.1, the mixing distribution

Gn of μn converges weakly to the mixing distribution G of μ as a distribution

on (0, °°]. Since the support of Gn is contained in {α; }y=i U {oo} y the support

of G is contained in {αy}f=i U {oo}. Hence μ ^ ME+. The proof is complete.

THEOREM 6.2. Let {α; } and {βj} be non-decreasing infinite sequences of positive

real numbers satisfying at Φ ft for all i, j . Let μ ^ ME+ such that

(6.5) £μ(s) = }

for s ^ 0. Then

(6.6) 0 < αx < ft < a2 < ft

Moreover, if(Xj, ft—• oo as j — * oo, then μ

\ By the assumption,

= exp [ΣΓ-i

= exp [Σ?~i / , 1 v du], for s ^ 0.

Thus the density q(u) of the (J-measure of μ is written as q(u) = ΣjLil iaj,$A (W).

We show (6.6) by induction. Remind that q(u) is nonnegative and bounded by

1 a.e. Hence α?i < βι. Assume that

0<aί<β1<a2<β2< -" <an<βn

holds for n έ 1. If an ^ α»+i < j8*+i, then since i8n ^ j8«+i, ^(w) = 2 on (an+ι,

βn). This can not occur. Hence an < βn < an+χ. Since q is nonnegative, βn < i8«+i

< αw +i can not occur. Hence an < βn < an+ι < βn+ι. The proof is complete.
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THEOREM 6.3. Let μ. ̂  ME+ and let G be its mixing distribution. Suppose that

{θίj} is/<oo = (supp G) \ {00} , where {α, } is an infinite sequence increasing to 00 .

Then there is a sequence of real numbers {βkϊ™^ such that

0 < αri < βι < a2 < β2 < '''

and

2μ(s) = ΠΓ-i (1 + ί-VO. +-%-), s>0.
Pi aj

Proof Let pj = G({aj}) and A» = 1 - Σj=1pj. We have

(6.7) Sβμ(s) =p~ + Σ r - i 7 + ^ " A for s > 0.

Denote by f(s) the right hand side of (6.7). Set P = {— aj}J=ί. Then the analytic

continuation of / to C\P is unique and / is a meromorphic function. Every pole of

/ has degree 1 and the set of poles coincides with P. The function / is term-wise

differentiable in C\P and

This shows that / is decreasing in every interval in R \ P and the set of zeros

Z= {- βj}j*i of/ in R\P satisfies

• < - β2 < - a2 < - βi < - αi < 0.

Set s = a + bi. Since

r ( v _ . j _ V 1 0 0 OLjifl ^~ CXj) j . 1 V 1 0 0 <Xjb .

f(s) - poo + Σy=i 7—J: N2 ' u2Pj + I Σy=i — — ' 2 Λ ,
(Λ + α ; )

2 + δ2 (α + α>)2 + b2

the imaginary part of f(s) vanishes if and only if b = 0. Hence /does not have

zero points outside R. Set

E(u, n) = 1 — u for n = 0,

Define a function <p by

?=i^-} forw = 1, 2 , . . . .

4
Then, since Σ£=i (—) ; ^ °° for arbitrary T > 0, φ is an entire function and the

set of zero points of φ coincides with P ([3] p. 233). Let

φo(s) = φ(s)f(s).
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Then (po is an entire function with the set of zero points coinciding with Z . By

Weierstrass's Factorization Theorem ([3] p. 234), there is an entire function go

such that (po can be written as

φo(s) = e*(s)H7-iE(-j;,j).

Hence,

/(s) = e*°ω U7.1E(k-4-,j)/U7.ιE(-^-,j).
Pi α ;

This yields

f(s) = e8M ΠΓ-i (1 + p/a + j$

We have, for any positive integer M,

^ ^)> exp[Σf=1

If I 5 I < (XN and M > N, then

Ha,)-" -

It follows that

gΛs) = ΣΓ-i Σi-x-

is an entire function. By Theorem 6.2,

is a meromorphic function. Hence/(s) is written as

f(s) = e°is) ΠΓ-1 (1 + Jr)/(1 + ̂ ) ,

where g(s) = ^o(s) + ^i(s) is an entire function. For s > 0 let A(s) = log/(s)

and B(s) = log ΠΓ-i d + J:)/(l + 4")- Since/(s) = SEμ(s) for s > 0, we have

A(s) = Γ (e-sx - 1) { f ' e-mq(u)du}dx,
Jo Jo
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for s > 0 where 0 ̂  q(u) ^ 1 a.e. and I u~ιq{u)du < °°. Let
J o

Qι(u) = 0 for 0 < au

= 1 for aj<u<βj ; = 1,2,...,

= 0 for βj < u< (Xj+i y = 1,2,

Since, by Theorem 6.1,

B(s) = f °° (e~s* - 1) { f" e-^qiWduydx,
Jo Jo

for 5 > 0 we have

g(s)=A(s)-B(s) + C

and

A(s) -B(s)= fϊjpf^iiΛu) - q(u))du,

where C is a constant satisfying ec = 1. Since (A(s) — B(s))/s is the Stieltjes

transform of (qi(x) "" q(x))x~ιdx, (qi(x) "*• ^ ( J : ) ) ^ " 1 is obtained by the inver-

sion formula for Stieltjes transform. Since £(s) is an entire function, (qι(x) —

q(x))x~xdx can not have a mass in (0, °°). Hence

qx(x) — q(x) = 0 a.e.

and #(s) is a constant C. Hence, we have

The proof is complete.

Remark 6.1. Let μ ̂  ME+ and let G be its mixing distribution. Let Xμ{s)

= ΠΓ=i (1 + Jτ)/(1 + -J). Then

G({oo}) = ΠΓ=i«y/A

Proof. Let Q be the Q-measure of μ. Since, by Remark 3.1,

G({oo}) =

J oo -I

— Q(du) = Σf=iΛog((Xj/βj), we get the conclusion,
o u
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Denote CME% = CE+*MEi

THEOREM 6.4. Let μ ^ CME+. Suppose that its Laplace transform is represented

as

2μ(s) = ΠΓ-i (1 + j)/(X + jj

where iaj), (βj) are disjoint divergent non-decreasing sequences of positive reals satis-

fying ctj Φ βj for all i, j . Then,

(i) there is a subsequence {anj} of {aj) such that

0 < anι < ft < an2 < β2 < '' *

and

(ii) Σ r ι < °° for Γ = {α; }r=i \ ianj)U

Hence μ e CMEl

Proof. If μ e CME+, then there is μγ e Ci?+, μ2 e Af^ such that μ =

and there is a finite or infinite sequence 0 < jι ^ γ2 ^ *' * s

(6.8)

See [8]. Hence,

2βi(β) = ΠΓ-i (1 + χ

where

{δj} = {ft} U

0 < r i ^ r 2 ^ •••,

0 < δi < δ2 ^ - .

We may assume that {r; } is an infinite sequence. Then <5; , r ; —• oo as /—• oo. By

Theorems 6.1 and 2, we have

0 < n < <5i < r2 < δ2 < *

and μ2

 e ME+. Hence £μ(s) can be analytically continued to C \ {— αi,
— α 2 , . . . } and zero points of analytic continuation of £μ(s) are contained in {/3;}.

We have {7,} c {α^}, {δ; } = {βj} and we have (i) and (ii).
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