M. Yamazato Nagoya Math. J. Vol. 127 (1992), 175–200

ON SUBCLASSES OF INFINITELY DIVISIBLE DISTRIBUTIONS ON *R* RELATED TO HITTING TIME DISTRIBUTIONS OF 1-DIMENSIONAL GENERALIZED DIFFUSION PROCESSES

MAKOTO YAMAZATO

1. Introduction

A distribution μ on $\mathbf{R}_{+} = [0, \infty)$ is said to be a CME_{+}^{ℓ} distribution if there are an increasing (in the strict sense) sequence of positive real numbers $\{a_k\}_{k=1}^{\ell}$ and $0 = b_0 < b_1 < \cdots < b_m < b_{m+1} = \infty$ ($0 \le m < \ell < \infty$) such that, for each $j = 0, \ldots, m$, there is at least one a_k satisfying $b_j < a_k < b_{j+1}$ and the Laplace transform $\mathcal{L}\mu(s) = \int_{\mathbf{R}_{+}} e^{-sx}\mu(dx)$ of μ is represented as

$$\begin{aligned} \mathscr{L}\mu(s) &= \prod_{i=1}^{\ell} a_i (s+a_i)^{-1} & \text{if } m = 0, \\ &= \prod_{i=1}^{\ell} a_i (s+a_i)^{-1} / \prod_{j=1}^{\ell} b_j (s+b_j)^{-1} & \text{if } m \ge 1. \end{aligned}$$

The author [8] shows that the upward first passage time distributions of birth and death processes belong to the class CME_{\pm}^{f} . He [9] also shows that the class of distributions of hitting times of single points of generalized diffusion processes is a proper subclass of the closure CME_{\pm} , in the weak convergence sense, of CME_{\pm}^{f} . Let CME_{\pm}^{f} be the class of distributions on $\mathbf{R}_{-} = (-\infty, 0]$ whose mirror images belong to CME_{\pm}^{f} . That is, $\mu \in CME_{\pm}^{f}$ if and only if $\bar{\mu}(du) = \mu(-du)$ belongs to CME_{\pm}^{f} . Let CME_{\pm}^{f} be the class of $\mu = \mu_{1} * \mu_{2}$ with $\mu_{1} \in CME_{\pm}^{f}$ and $\mu_{2} \in CME_{\pm}^{f}$. Sato [4] shows that the distributions of sojourn times of birth and death processes with weight not necessarily positive belong to CME_{\pm}^{f} .

We denote the class of infinitely divisible distributions on \mathbf{R} (or \mathbf{R}_{\pm}) by $\mathscr{I}(\mathbf{R})$ (or $\mathscr{I}(\mathbf{R}_{\pm})$). The classes CME_{\pm}^{f} and CME_{\pm} are contained in $\mathscr{I}(\mathbf{R}_{\pm})$. The class CME^{f} is contained in $\mathscr{I}(\mathbf{R})$. Some interesting classes of infinitely divisible distributions on \mathbf{R}_{\pm} (for example, BO, CE_{\pm} , ME_{\pm} , CME_{\pm} , ...) are introduced in [1] and [8] and representations of their Laplace transforms, compactness

Received April 12, 1991.

conditions and convergence conditions are investigated. Sato's result [4] suggests that it is natural to extend those classes to classes on **R**. We denote by B_+ the class BO in this paper.

The main purpose of this paper is to define classes B, CE, ME, CME on \mathbf{R} , obtain representations of their characteristic functions or Laplace transforms, and express convergence conditions by their characteristics. This will be done in Sections $2 \sim 5$. Thorin [6] extended the notion of generalized Γ -convolutions on the half real line, which is a natural subclass of B_+ and class L containing the class of stable distributions and the class CE_+ , to those on the whole real line and gets a convergence condition (parallel to our Theorem 2.1). In Section 6, we define and study a subclass ME_+^d of ME_+ and a subclass CME_+^d of CME_+ . It is shown in [9] that hitting time distributions of one dimensional generalized diffusion processes with non-natural boundaries belong to the class CME_+^d .

In the naming of the classes, C, M, and E suggest convolution, mixture, and exponential distributions, respectively. The superscripts f and d suggest finite and discrete, respectively.

Necessary and sufficient condition for strong unimodality for a subclass of CME_{+} is given in [7]. An extension of the result to CME will be given in [10].

Acknowledgement. The author would like to express his hearty thanks to the referee for his valuable comments. He also thanks Ken-iti Sato for his useful advices.

2. Class B

For a topological space A, we denote by $\mathscr{P}(A)$ the totality of Borel probability measures on A. For $\mu_1, \mu_2 \in \mathscr{P}(\mathbf{R})$, we denote by $\mu_1 * \mu_2$ the convolution of μ_1 and μ_2 . For $A, B \subset \mathscr{P}(\mathbf{R})$, we denote by A * B the totality of $\mu = \mu_1 * \mu_2$ with $\mu_1 \in$ A and $\mu_2 \in B$. The characteristic function of $\mu \in \mathscr{P}(\mathbf{R})$ is denoted by $\mathscr{F}\mu(s)$. We define the bilateral Laplace transform $\mathscr{L}\mu(s) = \int_{\mathbf{R}} e^{-sx}(dx)$ if the integral is finite. A representation of the characteristic functions of infinitely divisible distributions is well known. Namely, a distribution $\mu \in \mathscr{P}(\mathbf{R})$ is infinitely divisible if and only if there are $\gamma \in \mathbf{R}, \sigma > 0$ and a measure ν on $\mathbf{R}_0 = \mathbf{R} \setminus \{0\}$ satisfying

(2.1)
$$\int_{\mathbf{R}_0} (x^2 \wedge 1) \nu(dx) < \infty$$

such that

$$= \exp \{ i\gamma z - \sigma^2 z^2/2 + \int_{\mathbf{R}_0} (e^{izx} - 1 - \frac{izx}{1+x^2}) \nu(dx) \}.$$

Here, $a \wedge b = \min\{a, b\}$. This representation is unique. We call (2.2) the canonical representation $[\gamma, \sigma^2, \nu]$ of $\mu \in \mathscr{I}(\mathbf{R})$. The measure ν is called Lévy measure of μ . The following theorem is well known.

THEOREM A. Let $\mu_n \in \mathscr{I}(\mathbf{R})$ with canonical representation $[\gamma_n, \sigma_n, \nu_n]$ and let $\mu \in \mathscr{P}(\mathbf{R})$. Then the following (i) and (ii) are equivalent:

(i) μ_n converges weakly to μ as $n \to \infty$.

 $\mathcal{F}\mu(z)$

(ii) μ is infinitely divisible. Let $[\gamma, \sigma, \nu]$ be its canonical representation.

(a) For every bounded continuous function f which vanishes near the origin,

$$\int f(u)\nu_n(du) \to \int f(u)\nu(du) \quad as \quad n \to \infty.$$

(b) For $\varepsilon > 0$ set

$$A_{n,\varepsilon} = \sigma_n^2 + \int_{|y|<\varepsilon} y^2 \nu_n(du).$$

Then

(c)
$$\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} A_{n,\varepsilon} = \lim_{\varepsilon \downarrow 0} \liminf_{n \to \infty} A_{n,\varepsilon} = \sigma^2.$$
$$\lim_{n \to \infty} \gamma_n = \gamma.$$

We say that a distribution μ on **R** is a *B* distribution if $\mu \in \mathscr{I}(\mathbf{R})$ and its Lévy measure ν is absolutely continuous with density ℓ represented as

$$\ell(y) = \int_{(0,\infty)} e^{-yu} Q(du) \quad \text{for} \quad y > 0,$$
$$= \int_{(-\infty,0)} e^{-yu} Q(du) \quad \text{for} \quad y < 0,$$

where, Q is a measure on \mathbf{R}_0 satisfying

(2.3)
$$\int_{\mathbf{R}_0} |u|^{-1} \wedge |u|^{-3}Q(du) < \infty.$$

We denote by B_+ the class of B distributions on R_+ . The class B_+ here was denoted by BO in [8] and called g.c.m.e.d. (generalized convolutions of mixtures

of exponential distributions) in [1]. The above integrability condition (2.3) for Q is equivalent to the condition (2.1) for ν . We call Q the Q-measure of $\mu \in B$. A B distribution μ is uniquely represented by the triplet (γ , o^2 , Q). We describe a necessary and sufficient condition for weak convergence in B in terms of this triplet.

THEOREM 2.1. Let $\mu_n \in B$ and let $(\gamma_n, \sigma_n^2, Q_n)$ be its triplet. In order that μ_n converges to $\mu \in \mathcal{P}(\mathbf{R})$ as $n \to \infty$, it is necessary and sufficient that $\mu \in B$ with triplet (γ, σ^2, Q) and the following conditions are satisfied.

(i) For any function f with compact support in **R** such that |u| f(u) is continuous,

(ii) Let
$$A_{n,M} = \sigma_n^2 + 2 \int_{|u|>M} |u|^{-3}Q_n(du)$$
. Then

 $\lim_{M\to\infty}\limsup_{n\to\infty}A_{n,M}=\lim_{M\to\infty}\liminf_{n\to\infty}A_{n,M}=\sigma^2.$

(iii)
$$\lim_{n\to\infty}\gamma_n=\gamma.$$

Proof. We prove the theorem checking the conditions of Theorem A.

Sufficiency. Assume that $\mu \in B$ and (i) ~ (iii) hold. Let ν_n and ν be the Lévy measures of μ_n and μ , respectively. By (i) and (ii), we have

$$\int f(u) (|u|^{-1} \wedge |u|^{-3}) Q_n(du) \to \int f(u) (|u|^{-1} \wedge |u|^{-3}) Q(du)$$

as $n \to \infty$ for every continuous function f on ${f R}$ vanishing at infinity. Hence for 0 < a < b

$$\int_{a}^{b} \nu_{n}(dy) = \int_{0}^{\infty} u^{-1}(e^{-au} - e^{-bu})Q_{n}(du)$$
$$\rightarrow \int_{0}^{\infty} u^{-1}(e^{-au} - e^{-bu})Q(du)$$
$$= \int_{a}^{b} \nu(dy) \quad \text{as} \quad n \to \infty.$$

In the same manner,

$$\int_1^\infty \nu_n(dy) = \int_0^\infty u^{-1} e^{-u} Q_n(du) \to \int_1^\infty \nu(dy),$$

$$\int_{-b}^{-a} \nu_n(dy) \to \int_{-b}^{-a} \nu(dy),$$
$$\int_{-\infty}^{-1} \nu_n(dy) \to \int_{-\infty}^{-1} \nu(dy) \quad \text{as} \quad n \to \infty.$$

Hence we get the condition (a) in Theorem A. Note that

(2.4)
$$\int_{|y|<\varepsilon} y^2 \nu_n(dy) = \int_{\mathbf{R}_0} \left(\int_0^\varepsilon y^2 e^{-|u|y} dy \right) Q_n(du)$$
$$= \int_{\mathbf{R}_0} \left(\int_0^{|u|\varepsilon} y^2 e^{-y} dy \right) |u|^{-3} Q_n(du)$$
$$= \sum_{i=1}^4 F_n^i(\varepsilon)$$

where, for $\varepsilon > 0$,

$$F_n^1(\varepsilon) = \int_{|u| \ge \varepsilon^{-2}} 2 |u|^{-3} Q_n(du),$$

$$F_n^2(\varepsilon) = -\int_{|u| \ge \varepsilon^{-2}} \left(\int_{|u|\varepsilon}^{\infty} y^2 e^{-y} dy\right) |u|^{-3} Q_n(du),$$

$$F_n^3(\varepsilon) = \int_{|u| \le \varepsilon^{-2}} \left(\int_0^{\varepsilon} y^2 e^{-|u|y} dy\right) Q_n(du).$$

By (ii), we have that $\{F_n^1(\varepsilon)\}$ is bounded in n and

$$|F_n^2(\varepsilon)| \leq \frac{1}{2} F_n^1(\varepsilon) \int_{\varepsilon^{-1}}^\infty y^2 e^{-y} dy \to 0 \text{ as } n \to 0 \text{ and } \varepsilon \to 0.$$

In the following, we may assume that ε^{-2} is a continuity point of Q. By (i), we have, for fixed $\varepsilon > 0$,

$$\lim_{n\to\infty}F_n^3(\varepsilon)=\int_{|u|\leq\varepsilon^{-2}}\left(\int_0^\varepsilon y^2e^{-|u|y}dy\right)Q(du).$$

By (2.3) and by bounded convergence theorem,

$$\int_{|u|\leq\varepsilon^{-2}} \left(\int_0^\varepsilon y^2 e^{-|u|y} dy \right) Q(du)$$

=
$$\int_{|u|\leq1} \left(\int_0^\varepsilon y^2 e^{-|u|y} dy \right) Q(du) + \int_{1\leq|u|\leq\varepsilon^{-2}} \left(\int_0^{|u|\varepsilon} y^2 e^{-y} dy \right) \left| u \right|^{-3} Q(du) \to 0 \text{ as } \varepsilon \to 0.$$

Thus, we have

$$\lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} F_n^3(\varepsilon) = 0.$$

Hence, we have

(2.5)
$$\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} \left[\sigma_n^2 + \int_{|u| < \varepsilon} y^2 \nu_n(dy) \right] \\= \lim_{M \uparrow \infty} \limsup_{n \to \infty} \left[\sigma_n^2 + \int_{|u| > M} 2 |u|^{-3} Q(du) \right]$$

and

(2.6)
$$\lim_{\varepsilon \downarrow 0} \liminf_{n \to \infty} \left[\sigma_n^2 + \int_{|y| < \varepsilon} y^2 \nu_n(dy) \right] \\ = \lim_{M \uparrow \infty} \liminf_{n \to \infty} \left[\sigma_n^2 + \int_{|u| > M} 2 |u|^{-3} Q(du) \right].$$

Thus the condition (b) of Theorem A holds. The condition (c) is trivial.

Necessity. Let $\mu_n \to \mu$. Then $\mu \in \mathscr{I}(\mathbf{R})$ by Theorem A. By Theorem A(a), we have, for any continuity point a > 0 of ν .

$$\int_a^\infty \nu_n(du) \to \int_a^\infty \nu(du) \text{ as } n \to \infty.$$

Hence we have, for a.e. a > 0,

(2.7)
$$\int_0^\infty u^{-1} e^{-au} Q_n(du) \to \int_a^\infty \nu(du) \text{ as } n \to \infty$$

Similarly we have, for a.e. a < 0,

(2.8)
$$\int_{-\infty}^{0} |u|^{-1} e^{-au} Q_n(du) \to \int_{-\infty}^{a} \nu(du) \text{ as } n \to \infty.$$

By (2.4) we have,

$$\int_{|y|<\varepsilon} y^2 \nu_n(dy) \geq F_n^1(\varepsilon) \left(1 - 2^{-1} \int_{\varepsilon^{-1}}^\infty y^2 e^{-y} dy\right).$$

Thus $\{F_n^1(\varepsilon)\}$ is bounded in *n*. Then we see, by (2.7) and (2.8), that there is a finite measure \widetilde{Q} on **R** such that for a > 0

$$\int_0^\infty u^{-1} e^{-au} Q_n(du) \to \int_0^1 e^{-au} \widetilde{Q}(du) + \int_1^\infty u^2 e^{-au} \widetilde{Q}(du),$$
$$\int_{-\infty}^0 |u|^{-1} e^{-a|u|} Q_n(du) \to \int_{-1}^0 e^{-a|u|} \widetilde{Q}(du) + \int_{-\infty}^{-1} u^2 e^{-a|u|} \widetilde{Q}(du)$$

as $n \to \infty$. Note that \widetilde{Q} does not have a point mass at $\{0\}$ since $\lim_{a \to \infty} \int_{|y| > a} \nu(dy) = 0$. Set $Q(du) = (|u| \vee |u|^3) \widetilde{Q}(du)$. Then, Q is a measure on \mathbf{R}_0 satisfying

(2.3). We have

(2.9)
$$\int_{I} |u|^{-1}Q_{n}(du) \rightarrow \int_{I} |u|^{-1}Q(du) \text{ as } n \rightarrow \infty,$$

for every finite interval I in \mathbf{R} both end points of which are continuity points of Q. Thus, (i) holds. We have, by (i),

$$\lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} F_n^3(\varepsilon) = 0.$$

Since $\{F_n^1(\varepsilon)\}$ is bounded in n,

$$\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} |F_n^2(\varepsilon)| = 0.$$

We have (2.5) and (2.6). Hence (ii) holds. The proof is complete.

COROLLARY. The class B is closed under convolution and weak convergence.

THEOREM 2.2. The class B coincides with the closure of $B_+ * B_-$.

Proof. Since the class B is closed, it is enough to show that the normal distributions and B distributions without Gaussian components are approximated by $B_+ * B_-$ distributions. For $\sigma^2 > 0$, set $\alpha_n = (2n/\sigma^2)^{1/2}$ and let

$$q_n(x) = 0 \quad \text{for } |x| < \alpha_n,$$
$$= n \quad \text{for } a_n \leq |x|.$$

Then $\mu_n = (0, 0, q_n(x)dx) \in B_+ * B_-$. We have, for $M < \alpha_n$

$$2\int_{|u|>M} |u|^{-3}q_n(u)\,du = \sigma^2$$

and for every finite interval I in \mathbf{R} ,

$$\int_{I} |u|^{-1} q_n(u) \, du \to 0$$

as $n \to \infty$. Hence $\mu_n \to (0, \sigma^2, 0)$ as $n \to \infty$ by Theorem 2.1. Now, let $(0,0,Q) \in B$. Define Q_n by $Q_n = Q|_{[-n,n]}$. Then $(0, 0, Q_n) \in B_+ * B_-$. Since

$$\int_{|u|>M} |u|^{-3}Q_n(du) \longrightarrow \int_{|u|>M} |u|^{-3}Q(du)$$

as $n \to \infty$ and

$$\int_{|u|>M} |u|^{-3}Q(du) \to 0$$

as $M \to \infty$, $(0, 0, Q_n) \to (0, 0, Q)$. The proof is complete.

3. Class ME

We say that a probability distribution μ on \mathbf{R}_+ is an ME_+ distribution if there is a probability measure G on $(0, \infty]$ such that

$$\mu[0, x] = G(\{\infty\}) \quad \text{if } x = 0,$$

= $\int_{(0,\infty)} (1 - e^{-xu}) G(du) \quad \text{if } x > 0,$

where the value of the integrand $1 - e^{-xu}$ at infinity for x > 0 is defined by its limit 1 as $u \to \infty$. We call G the mixing distribution of μ . We denote by ME_+ the class of ME_+ distributions. It is easy to see that the Laplace transform of $\mu \in ME_+$ is represented by its mixing distribution G as:

(3.1)
$$\mathcal{L}\mu(s) = G(\{\infty\}) + \int_{(0,\infty)} e^{-sx} dx \int_{(0,\infty)} u e^{-xu} G(du)$$
$$= \int_{(0,\infty)} \frac{u}{s+u} G(du).$$

Define ME_{-} by the mirror image of ME_{+} . That is, ME_{-} if and only if $\mu \in \mathscr{P}(\mathbf{R}_{-})$ and

$$\mu[x, 0] = G(\{-\infty\}) \quad \text{if } x = 0$$

= $\int_{(-\infty, 0)} (1 - e^{-xu}) G(du) \quad \text{if } x < 0$

with $G \in \mathscr{P}([-\infty, 0))$. Let $ME = ME_+ * ME_-$. A representation of the Laplace transform of $\mu \in ME_+$ is obtained by Steutel [5]. We state here his representation.

THEOREM B. A probability measure μ on \mathbf{R}_+ is an ME_+ distribution if and only if there is a nonnegative and absolutely continuous measure Q on R_+ with density bounded by 1 a.e. satisfying $\int_0^1 u^{-1}Q(du) < \infty$ such that, for $z \in \mathbf{R}$,

$$\mathcal{F}\mu(z) = \exp\left[\int_{\mathbf{R}_+} (e^{izx} - 1) \left(\int_{\mathbf{R}_+} e^{-xu}Q(du)\right) dx\right].$$

By this theorem, we easily get the representation of the characteristic function of $\mu \in ME$:

(3.2)
$$\mathscr{F}\mu(z) = \exp\left[\int_{\mathbf{R}_0} (e^{izx} - 1)\ell(x)dx\right]$$

where

$$\ell(x) = \int_{\mathbf{R}_{+}} e^{-xu} Q(du) \quad \text{for } x > 0,$$
$$= \int_{\mathbf{R}_{-}} e^{-xu} Q(du) \quad \text{for } x < 0$$

and Q is an absolutely continuous measure on ${f R}$ with density bounded by 1 a.e. satisfying

$$\int_{|u|<1} |u|^{-1}Q(du) < \infty.$$

Hence $ME \subseteq B$ and the above Q is the Q-measure of μ .

Remark 3.1. Let $\mu \in ME_+$ and let G be its mixing distribution. Let ℓ be the density of the Lévy measure of μ and let Q be the Q-measure of μ . Then

$$G(\{\infty\}) = \exp\left\{-\int_0^\infty \ell(x)dx\right\}$$
$$= \exp\left\{-\int_0^\infty \frac{1}{u}Q(du)\right\}.$$

Proof. It is easy to see that

$$G(\{\infty\}) = \lim_{s\to\infty} \mathscr{L}\mu(s) = \exp\left\{-\int_0^\infty \ell(x)\,dx\right\}.$$

Since

$$\int_0^\infty \ell(x) dx = \int_0^\infty \left(\int_0^\infty e^{-ux} dx \right) Q(du)$$
$$= \int_0^\infty \frac{1}{u} Q(dx),$$

we get the conclusion.

THEOREM 3.1. Let $\mu_n \in ME_+$ and $\mu \in \mathcal{P}(\mathbf{R}_+)$. Let G_n be the mixing distribution of μ_n . Then μ_n converges weakly to μ if and only if $\mu \in ME_+$ and G_n converges weakly to G, the mixing distribution of μ , as a sequence of distributions on $(0, \infty]$ as $n \to \infty$. *Proof.* Let F_n and F be the distribution functions of μ_n and μ , respectively. Assume that $\mu \in ME_+$ and $G_n \to G$ weakly on $(0, \infty]$ as $n \to \infty$. Then, obviously we have, for x > 0,

$$F_n(x) = \int_{(0,\infty)} (1 - e^{-xu}) G_n(du)$$
$$\to F(x) = \int_{(0,\infty)} (1 - e^{-xu}) G(du) \quad \text{as } n \to \infty$$

This shows that $\mu_n \to \mu$. Conversely, we assume that $\mu_n \to \mu$ weakly as $n \to \infty$. Then we have $F_n(x) \to F(x)$ as $n \to \infty$ for all continuity point x > 0. For $\varepsilon > 0$, we can choose x > 0 sufficiently large so that $1 - F_n(x) < \varepsilon$ for all *n*. Hence,

$$e^{-x\delta}G_n(0, \delta) \leq \int_{(0,\delta)} e^{-xu}G_n(du) < \varepsilon,$$

i.e.

 $G_n(0, \delta) < \varepsilon e^{x\delta}.$

This means that $\{G_n\}$ is a conditionally compact sequence as measures on $(0, \infty]$. Choosing subsequence $\{n'\}$ of $\{n\}$ so that G_n , converges to a distribution G on $(0, \infty]$, we have

$$F_{n'}(x) = \int_{(0,\infty)} (1 - e^{-xu}) G_{n'}(du)$$
$$\rightarrow \int_{(0,\infty)} (1 - e^{-xu}) G(du) \quad \text{as } n' \to \infty$$

for x > 0. Hence

$$F(x) = \int_{(0,\infty]} (1 - e^{-xu}) G(du)$$

for continuity point x of F. Since the right hand side is continuous for x > 0 and since F is right continuous, the equality holds for all x > 0. Letting $x \rightarrow 0$, we get $F(0) = G(\{\infty\})$. Hence

$$F(x) = 1 - \int_{(0,\infty)} e^{-xu} G(du).$$

By the uniqueness for Laplace transforms, G_n converges weakly to G on $(0, \infty]$ as $n \to \infty$. The proof is complete.

THEOREM 3.2. Let $\mu_+ \in ME_+$, $\mu_- \in ME_-$ and let $\mu = \mu_+ * \mu_- \in ME$. Then μ is absolutely continuous on \mathbf{R}_0 and has a point mass $\mu_+(\{0\})\mu_-(\{0\})$ at the origin.

Let h be the density of μ on \mathbf{R}_0 . Let G_+ and G_- be mixing distributions of μ_+ and μ_- , respectively. Denote $\psi_+(s) = \mathcal{L}\mu_+(s)$ and $\psi_-(s) = \mathcal{L}\mu_-(s)$. Then the following hold:

(i)
$$h(x) = (h_+ * h_-)(x) + \mu_-(\{0\})h_+(x)$$
$$= \int_{(0,\infty)} \psi_-(-u)u e^{-ux} G_+(du) \quad for \quad x > 0,$$

and

$$h(x) = (h_{+} * h_{-})(x) + \mu_{+}(\{0\})h_{-}(x)$$

= $\int_{(-\infty,0)} \phi_{+}(-v) |v| e^{-vx}G_{-}(dv) \text{ for } x < 0,$

where h_+ and h_- are densities of μ_+ and μ_- on $(0, \infty)$ and $(-\infty, 0)$, respectively. (ii) Denote $d_- = \sup\{v < 0; G_-([v, 0)) > 0\}$ and $d_+ = \inf\{v > 0; G_+((0, v]) > 0\}$. If $d_- < d_+$, then the Laplace transform $\mathcal{L}\mu(s)$ of μ exists for $-d_+ < s < -d_-$ and is represented as

(3.3)
$$\mathscr{L}\mu(s) = \int_{(-\infty,0)} \phi_{+}(-v) \frac{v}{s+v} G_{-}(dv) + \int_{(0,\infty)} \phi_{-}(-u) \frac{u}{s+u} G_{+}(du) + G_{+}(\{\infty\}) G_{-}(\{-\infty\}).$$

Proof. (i) Let F, F_+ and F_- be the distribution functions of μ , μ_+ and μ_- , respectively. Let x > 0. Then,

$$F(x) = \int_{(-\infty,0)} F_{+}(x-y)F_{-}(dy) + F_{+}(x)\mu_{-}(\{0\})$$
$$= \int_{(-\infty,0)} h_{-}(y)dy \int_{0}^{x-y} h_{+}(z)dz + \mu_{-}(\{0\})(\int_{0}^{x} h_{+}(z)dz + \mu_{+}(\{0\})).$$

By this we get

$$h(x) = \int_{(-\infty,0)} h_+(x-y)h_-(y)dy + \mu_-(\{0\})h_+(x) \quad \text{for} \quad x > 0.$$

By the definition of the classes ME_+ and ME_- we have

$$\int_{(-\infty,0)}h_+(x-y)h_-(y)dy$$

$$= \int_{(-\infty,0)} \left(\int_{(0,\infty)} u e^{-u(x-y)} G_+(du) \right) \left(\int_{(-\infty,0)} |v| e^{-vy} G_-(dv) \right) dy$$

=
$$\int_{(0,\infty)} G_+(du) \int_{(-\infty,0)} \frac{vu}{v-u} e^{-ux} G_-(dv)$$

=
$$\int_{(0,\infty)} \left(\int_{(-\infty,0)} \frac{v}{v-u} G_-(dv) \right) u e^{-ux} G_+(du).$$

Thus,

$$h(x) = \int_{(0,\infty)} \psi_{-}(-u) u e^{-ux} G_{+}(du) < \infty.$$

In the same way we get the representation for x < 0. (ii) If $-d_+ < s < -d_-$, the right hand side of (3.3) is well defined. Denote by A(s) the right hand side of (3.3). Set

$$\widetilde{\psi}_{-}(s) = \int_{(-\infty,0)} \frac{v}{s+v} G_{-}(dv)$$

and

$$\widetilde{\psi}_+(s) = \int_{(0,\infty)} \frac{u}{s+u} G_+(du).$$

Note that, by (3.1),

$$\psi_{-}(s) = \widetilde{\psi}_{-}(s) + G_{-}(\{-\infty\})$$

and

$$\psi_+(s) = \widetilde{\psi}_+(s) + G_+(\{-\infty\}).$$

We have

$$A(s) = A_1(s) + \tilde{\psi}_{-}(s)G_{+}(\{\infty\}) + \tilde{\psi}_{+}(s)G_{-}(\{-\infty\}) + G_{+}(\{\infty\})G_{-}(\{-\infty\}),$$

where

$$A_{1}(s) = \int_{(-\infty,0)} \tilde{\psi}_{+}(-v) \frac{v}{s+v} G_{-}(dv) + \int_{(0,\infty)} \tilde{\psi}_{-}(-u) \frac{u}{s+u} G_{+}(du).$$

The function $A_1(s)$ is written as

$$A_{1}(s) = \int_{(0,\infty)} \int_{(-\infty,0)} \frac{uv}{u-v} \left(\frac{1}{s+v} - \frac{1}{s+u}\right) G_{-}(dv) G_{+}(du)$$

$$= \int_{(0,\infty)} \int_{(-\infty,0)} \frac{uv}{(s+u)(s+v)} G_{-}(dv) G_{+}(du)$$
$$= \widetilde{\psi}_{+}(s) \ \widetilde{\psi}_{-}(s).$$

Hence we have $A(s) = \psi_+(s)\psi_-(s) = \mathcal{L}\mu(s)$. The proof is complete.

THEOREM 3.3. A sequence in ME is shift compact if and only if it is conditionally compact.

Proof. Let $\{\mu_n\} \subset ME$ be a shift compact sequence. That is, there is a sequence $\{\gamma_n\} \subset \mathbf{R}$ such that $\{\mu_n * \delta_{\gamma_n}\}$ is conditionally compact, where δ_{γ_n} is the Dirac measure concentrated at γ_n . Let $\ell_n(y)$ be that density of the Lévy measure of μ_n . Note that since

$$\ell_n(y) \leq \int_0^\infty e^{-|y|u} du = |y|^{-1} \text{ for } y \neq 0,$$

the sequence
$$\{\int_{\mathbf{R}_0} \frac{y}{1+y^2} \ell_n(y) dy\}$$
 is bounded. We have
 $\mathscr{L}(\mu_n * \delta_{\gamma_n})(z) = \exp[i\gamma_n z + \int_{\mathbf{R}_0} (e^{izy} - 1)\ell_n(y) dy]$
 $= \exp[iz\{\gamma_n + \int_{\mathbf{R}_0} \frac{y}{1+y^2} \ell_n(y) dy\} + \int_{\mathbf{R}_0} (e^{izy} - 1 - \frac{izy}{1+y^2} \ell_n(y) dy]$

Hence $\{\gamma_n\}$ must be bounded. It follows that $\{\mu_n\}$ is conditionally compact. The converse is obvious.

4. Class CE

Let CE_{+}^{f} be the class of $\mu \in \mathscr{P}(\mathbf{R}_{+})$ such that $\mathscr{L}\mu(s) = \prod_{k=1}^{m} a_{k}(s+a_{k})^{-1}$ with $1 \leq m < \infty$ and $0 < a_{1} < a_{2} < \cdots < a_{m}$ and let CE_{-}^{f} be the mirror image of CE_{+}^{f} . Let $CE^{f} = CE_{+}^{f} * CE_{-}^{f}$. We denote by CE the closure of CE^{f} . Let Z be the set of integers and set $Z_{0} = Z \setminus \{0\}$.

THEOREM 4.1. Let $\mu \in \mathcal{P}(\mathbf{R})$. Then, μ is a CE distribution if and only if $\mu \in \mathcal{J}(\mathbf{R})$ and there is an \mathbf{R}_0 -valued non-decreasing sequence $\{a_k\}_{k \in \mathbb{Z}_0 \cap I}$ for an interval I containing 0 such that

(4.1)
$$a_k > 0 \text{ for } k > 0,$$

 $< 0 \text{ for } k < 0,$

ΜΑΚΟΤΟ ΥΑΜΑΖΑΤΟ

$$(4.2) \qquad \qquad \sum a_k^{-2} < \infty$$

and the Lévy measure ν of μ is represented as

(4.3)
$$\nu(dx) = (x^{-1} \sum_{k>0} e^{-a_k x}) dx \quad \text{for } x > 0,$$
$$= (|x|^{-1} \sum_{k<0} e^{-a_k x}) dx \quad \text{for } x < 0.$$

We call $\{a_k\}$ the parameter sequence of μ .

Proof. Denote by CE^d the subclass of $\mathscr{I}(\mathbf{R})$ consisting of distributions whose Lévy measure is of the form (4.3) satisfying conditions (4.1) and (4.2). The assertion of the theorem is that $CE = CE^d$. Let $\mu \in CE^d$ and let $\{a_k\}$ be its parameter sequence. Set

(4.4)
$$q(x) = \sum_{k>0} 1_{(a_k,\infty)}(x) + \sum_{k<0} 1_{(-\infty,a_k)}(x),$$

where $\mathbf{1}_{A}(x)$ is the indicator function of a set A. Noting that $\{a_{k}\}$ is a monotone sequence, we have by (4.2) that $\int_{\mathbf{R}} |u|^{-3}q(u)du < \infty$. It is easy to see that the Lévy measure ν of μ is written as

$$\begin{aligned} \psi(dx) &= \left(\int_{\mathbf{R}_{+}} e^{-xu} q(u) du\right) dx \quad \text{for } x > 0, \\ &= \left(\int_{\mathbf{R}_{-}} e^{-xu} q(u) du\right) dx \quad \text{for } x < 0. \end{aligned}$$

Hence, μ is a *B* distribution with triplet $(\gamma, \sigma^2, q(x)dx)$ with some γ and σ^2 . Now we show that μ is approximated by CE^{f} -distributions. Let

$$q_{1,n}(x) = \sum_{0 < k \le n} 1_{(a_{k,\infty})} (x) + \sum_{0 > k \ge -n} 1_{(-\infty,a_{k})} (x) q(x)$$

and

$$\gamma_{1,n} = \int_{\mathbf{R}_{+}} \frac{x}{1+x^2} \left\{ \int_{\mathbf{R}_{+}} e^{-xu} q_{1,n}(u) \, du \right\} dx + \int_{\mathbf{R}_{-}} \frac{x}{1+x^2} \left\{ \int_{\mathbf{R}_{-}} e^{-xu} q_{1,n}(u) \, du \right\} dx.$$

In case $\sigma^2 > 0$, set $\alpha_n = (2n/\sigma^2)^{1/2}$ and let

$$q_{2,n}(x) = 0$$
 for $|x| < \alpha_n$,
 $= n$ for $|x| \ge \alpha_n$,

and choose $\beta_n > 0$ so that

(4.5)
$$(\gamma - \gamma_{1,n})/\beta_n \to 0 \text{ as } n \to \infty$$

and $\beta_n > \alpha_n$. In case $\sigma^2 = 0$, let

 $q_{2,n}(x)\equiv 0$

and choose $\beta_n > 0$ so to satisfy (4.5). Let δ_n be the integral part of $\{|\gamma - \gamma_{1,n}| / \int_{\mathbf{R}_+} \frac{1}{1+x^2} e^{-\beta nx} dx\}$ and let

$$\tilde{q}_n(x) = 0$$
 for $x < \beta_n$,
 $= \delta_n$ for $x \ge \beta_n$.

Define

$$q_{3,n}(x) = \tilde{q}_n(x) \quad \text{if } \gamma > \gamma_{1,n}$$
$$= \tilde{q}_n(-x) \quad \text{if } \gamma \le \gamma_{1,n}.$$

Let

(4.6)
$$\gamma_n = \gamma_{1,n} + \operatorname{sign}(\gamma - \gamma_{1,n}) \,\delta_n \int_{\mathbf{R}_+} \frac{1}{1+x^2} \, e^{-\beta n x} dx.$$

Then, $Q_n(dx) = \{\sum_{j=1}^3 q_{j,n}(x)\} dx$ satisfies (2.3). Let $\mu_n = (\gamma_n, 0, Q_n) \in B$. Since $\gamma_n = \int_{\mathbf{R}_+} \frac{x}{1+x^2} dx \int_{(0,\infty)} e^{-xu} Q_n(du) + \int_{\mathbf{R}_-} \frac{x}{1+x^2} dx \int_{(-\infty,0)} e^{-xu} Q_n(du),$

 μ_n is approximated by CE^f -distributions. It is easy to see that $Q_n(I) \rightarrow \int_I q(x) dx$ for every bounded interval I in **R**. We have by (4.2) that

$$\lim_{M\to\infty}\limsup_{n\to\infty} 2\int_{|u|>M} u^{-3}q_{1,n}(u) du$$
$$=\lim_{M\to\infty}\sum_{k}\frac{1}{(|a_{k}|\vee M)^{2}}=0.$$

We see by (4.6) that, for every M,

$$\lim_{n\to\infty} 2\int_{|u|>M} |u|^{-3} \{q_{2,n}(u) + q_{3,n}(u)\} du$$
$$= \lim_{n\to\infty} \{\sigma^2 + \delta_n / \beta_n^2\} \to \sigma^2.$$

We have by (4.6) that

$$|\gamma_n-\gamma|\leq \int_{\mathbf{R}_+}\frac{1}{1+x^2}e^{-\beta_nx}dx\to 0 \text{ as } n\to\infty.$$

Thus by Theorem 2.1, $\mu_n \to \mu$ as $n \to \infty$. Hence, CE^d -distributions can be approximated by CE^f -distributions. Now we show that the class CE^d is closed

https://doi.org/10.1017/S0027763000004165 Published online by Cambridge University Press

under weak convergence. Let $\mu_n \in CE^d$ and let $\mu_n \to \mu \in \mathscr{P}(\mathbf{R})$. Then, by Theorem 2.1, $\mu \in B$. Let q_n be the density of Q-measure of μ_n . Consider the convergence of the Q-measures on $(0, \infty)$. Since q_n is a nondecreasing function, Q-measure of μ is absolutely continuous, its density q is nondecreasing. Moreover, $q_n(x)$ converges to q(x) at every continuity point of q. Noting that q_n is a step function of step size 1, we have that q is also a step function with step size being positive integers. The same argument yields that the Q-measure of μ has a density q also on $(-\infty, 0)$ and that q is a nonincreasing step function on $(-\infty, 0)$ with step size being negative integers. By (2.3), q(x) = 0 near x = 0. Hence the class CE^d is closed. Hence $CE^d = CE$.

Remark 4.1. The condition (4.2) for the parameter sequence $\{a_n\}$ of $\mu \in CE$ is equivalent to

$$\int_{|x|<1} x^2 \nu(dx) < \infty$$

for the Lévy measure ν of μ .

Remark 4.2. (i) A measure ν of the form (4.3) with subsidiary conditions (4.1) and (4.2) satisfies $\int_{|x|>1} |x|\nu(dx) < \infty$. Hence, for a *CE* distribution, instead of (2.2) we can use another representation of its characteristic function. Let $\mu \in CE$ with canonical representation $[\gamma, \sigma^2, \nu]$. Then its characteristic function is represented as

(4.7)
$$\mathcal{F}\mu(z) = \exp\{i\gamma' z - \sigma^2 z^2/2 + \int_{\mathbf{R}_0} (e^{ixz} - 1 - izx)\nu(dx)\}.$$

Here

(4.8)
$$\gamma' = \gamma + \int_{\mathbf{R}_0} x^3 (1+x^2)^{-1} \nu(dx).$$

We call (4.7) the modified representation of $\mu \in CE$. We denote the modified representation of μ by $\{\gamma', \sigma^2, \nu\}$ or $\{\gamma', \sigma^2, \{a_j\}\}$, where $\{a_j\}$ is the parameter sequence of μ . Using this representation, as is shown in the next theorem, we can represent the Laplace transforms of *CE* distributions as rather simple products.

(ii) Let $\mu_n \in CE$ and let $[\gamma_n, \sigma_n^2, \nu_n]$ and $\{\gamma'_n, \sigma_n^2, \nu_n\}$ be the canonical and the modified representations of μ_n , respectively. If $[\gamma_n, \sigma_n^2, \nu_n]$ satisfies the condition of Theorem A with $\mu = [\gamma, \sigma^2, \nu] = \{\gamma', \sigma^2, \nu\}$, then

(4.9)
$$\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} \int_{|x| < \varepsilon} |x|^3 \nu_n(dx) = 0$$

Hence by Theorem A, $\gamma_n' \to \gamma'$ as $n \to \infty$. The converse is also valid. Hence for *CE* distributions, the condition (iii) of Theorem 2.1 can be replaced $\lim \gamma_n' = \gamma'$.

THEOREM 4.2. A distribution μ is a CE distribution if and only if there are $\gamma' \in \mathbf{R}, \sigma^2 \geq 0$ and an \mathbf{R}_0 -valued non-decreasing sequence $\{a_n\}_{n \in \mathbb{Z}_0 \cap I}$ for an interval I containing 0 such that (4.1) and (4.2) are satisfied and the Laplace transform of μ is represented as

(4.10)
$$\mathscr{L}\mu(s) = \exp(-\gamma' s + \sigma^2 s^2/2) \prod_n a_n (s+a_n)^{-1} e^{a_n^{-1} s}$$

for $-a_1 < \text{Re } s < -a_{-1}$.

Proof. Let s = x + iy. Note that

$$\log \left(\left| (1 + s/a_n) e^{-a_n^{-s}} - 1 \right| + 1 \right)$$

$$\leq \left| (1 + s/a_n) e^{-a_n^{-1}s} - 1 \right|$$

$$\leq \left| e^{-a_n^{-1}s} - 1 + s/a_n \right| + \left| s/a_n \right| \left| e^{-a_n^{-1}s} - 1 \right|$$

$$\leq \left| s/a_n \right|^2 R^{-2} (1 + R) e^R \quad \text{for } \left| s/a_n \right| < R.$$

Hence by (4.2), it is easy to see that the right hand side of (4.10) is convergent for $-a_1 < \text{Re } s < -a_{-1}$. For s = -iz, $z \in \mathbf{R}$, it is equal to

$$\exp(i\gamma' z - \sigma^2 z^2/2) \prod_n a_n (-iz + a_n)^{-1} e^{-ia_n^{-1} z}$$

We can rewrite the above formula as

$$\exp\{i\gamma'z - \sigma^2 z^2/2 + \sum \left[\log\{a_n(-iz+a_n)^{-1}\} - ia_n^{-1}z\right]\}$$

= $\exp\{i\gamma'z - \sigma^2 z^2/2 + \sum_{n>0} \int_0^\infty (e^{izx} - 1 - izx)x^{-1}e^{-a_nx}dx + \sum_{n<0} \int_{-\infty}^0 (e^{izx} - 1 - izx)|x|^{-1}e^{-a_nx}dx\}$
= $\exp\{i\gamma'z - \sigma^2 z^2/2 + \int_0^\infty (e^{izx} - 1 - izx)[\sum_{n>0} x^{-1}e^{-a_nx}]dx + \int_{-\infty}^0 (e^{izx} - 1 - izx)[\sum_{n<0} |x|^{-1}e^{-a_nx}]dx\}.$

Here we choose the branch of the logarithm so the argument is between $-\pi$ and π . On the other hand, $\int e^{sx} \mu(dx)$ is finite if $-a_1 < \text{Re } s < -a_{-1}$. This shows the validity of Theorem 4.2.

The above representation shows that the class of densities of CE distributions coincides with the class of PF densities defined in Karlin [2] p. 335.

The quantities γ' appearing in (4.10) and (4.8) are identical. Write the closures of CE_{+}^{f} and CE_{-}^{f} as CE_{+} and CE_{-} , respectively. It is easy to show that the class CE_{+} coincides with the class CE_{+} defined in [8] and the class CE_{+} (resp. CE_{-}) coincides with the class of CE distributions with supports in \mathbf{R}_{+} (resp. \mathbf{R}_{-}).

5. Class CME

In [8], the class CME_+ is defined by $CME_+ = ME_+ * CE_+$ and it is proved that the class CME_+ is the closure of CME_+^f . Let $CME_- = ME_- * CE_-$. Then, the class CME_- is the closure of CME_-^f . We denote by CME the closure of CME^f . This class contains both CME_+ and CME_- . Define ME_+^f as follows: $\mu \in$ ME_+^f if and only if $\mu \in ME_+$ and the mixing distribution G of μ is supported on a finite number of points in $(0, \infty]$. Let ME_-^f be the mirror image of ME_+^f and let $ME_-^f = ME_+^f * ME_-^f$.

THEOREM 5.1. CME = CE * ME.

Proof. By definition CE is the closure of CE^{f} . It is easy to see that ME is the closure of ME^{f} . Hence we have $CME^{f} \subset CE * ME \subset CME$. Now we show that CE * ME is closed, which will prove the theorem. Let $\{\mu_{n}\}$ be a sequence in CE * ME converging to a distribution μ . Let $\mu_{n}^{1} \in CE$ and $\mu_{n}^{2} \in ME$ be such that $\mu_{n} = \mu_{n}^{1} * \mu_{n}^{1}$, for $n = 1, 2, \ldots$ Since the components $\{\mu_{n}^{1}\}$ and $\{\mu_{n}^{2}\}$ are both shift compact, $\{\mu_{n}^{2}\}$ is conditionally compact by Theorem 3.3. Hence $\{\mu_{n}^{1}\}$ is also conditionally compact. Now we can choose a subsequence n' so that $\mu_{n'}^{1} \rightarrow \mu^{1}$ $\in CE$ and $\mu_{n'}^{2} \rightarrow \mu^{2} \in ME$ as $n' \rightarrow \infty$ and we have

$$\mu = \mu^1 \ast \mu^2.$$

Hence, CE * ME is closed.

Remark 5.1. A distribution $\mu \in CME$ is determined by the modified representation $\{\gamma, \sigma^2, a = \{a_i\}\}$ of its *CE* component and the *Q*-measure *Q* of its *ME*

component. Let us call $(\gamma, \sigma^2, \boldsymbol{a}, Q)$ the quadruplet of the *CME* distribution μ . Since there are many ways of decomposing μ as $\mu = \mu_1 * \mu_2$ with $\mu_1 \in CE$ and $\mu_2 \in ME$, there are many quadruplets that determine μ . But, among them, there is a unique decomposition which maximizes the density of the *Q*-measure of μ_1 . Choosing $\mu_1 \in CE$ and $\mu_2 \in ME$ in this way, the quadruplet $(\gamma', \sigma^2, \boldsymbol{a}, Q)$ is uniquely determined by μ . In the following, by qudruplet of μ , we always mean this quadruplet.

The parameter sequence $a = \{a_j\}_{j \in \mathbb{Z}_0 \cap I}$ may possibly be empty. In case a_j is not defined, we regard $a_j = \infty$ if j > 0 and $a_j = -\infty$ if j < 0.

6. Representation of Laplace transforms of distributions of classes ME_+^d and CME_+^d

We say that a distribution on $(0, \infty]$ is discrete if its support is a finite or countably infinite set which has no accumulation point in $[0, \infty)$. A distribution μ on \mathbf{R}_+ is said to belong to class ME_+^d if μ belongs to ME_+ and its mixing distribution is discrete.

THEOREM 6.1. Let $\{a_j\}$ and $\{\beta_j\}$ be sequences of positive real numbers such that $0 < \alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots$ and $\alpha_j, \beta_j \to \infty$ as $j \to \infty$. Then the infinite product

(6.1)
$$f(s) = \prod_{j=1}^{\infty} (1 + \frac{s}{\beta_j}) / (1 + \frac{s}{\alpha_j})$$

absolutely and uniformly converges on each compact set in $\mathbb{C} \setminus \{-a_1, -\alpha_2, \ldots\}$ and there is $\mu \in ME^d_+$ such that

$$\mathcal{L}\mu(s) = f(s) \quad \text{for } s > 0.$$

Moreover, $\mathcal{L}\mu(s)$ is written as

(6.2)
$$\mathscr{L}\mu(s) = \exp \int_0^\infty (e^{-sx} - 1) \{\int_0^\infty e^{-xu} q(u) du\} dx,$$

where

$$\begin{array}{ll} q(u) = 0 & 0 < u < \alpha_1, \\ = 1 & \alpha_j < u < \beta_j, \quad j = 1, 2, \dots \\ = 0 & \beta_j < u < \alpha_{j+1}, \quad j = 1, 2, \dots \end{array}$$

Proof. First step. We show the absolute and uniform convergence of f on each compact set in $\mathbb{C}\setminus\{-\alpha_1, -\alpha_2, \cdots\}$. Set

and

$$b_j(s) = 1 - a_j(s).$$

 $a_j(s) = (1 + \frac{s}{\beta_j})/(1 + \frac{s}{\alpha_j})$

Then we have

(6.3)
$$b_j(s) = s (1 + s/\alpha_j)^{-1} \{ (\alpha_j)^{-1} - (\beta_j)^{-1} \}$$

and the inside of the braces in (6.3) is positive. Let $D_T = \{s ; |s| < T\}$. If there is *i* such that $\alpha_i \leq T < \alpha_{i+1}$, then choose *M* so that $1/M < 1/T - 1/\alpha_{i+1}$. Then we get that, for $s \in D_T$ and for all $j \geq i+1$,

$$|1/s + 1/\alpha_j| \ge |1/s| - |1/\alpha_j|$$

> $1/T - 1/\alpha_j \ge 1/T - 1/\alpha_{i+1} > 1/M$.

That is,

$$(6.4) | s/(1+s/\alpha_j) | < M$$

Moreover, $|b_j(s)| < 1$ for large j, since α_j , $\beta_j \to \infty$ as $j \to \infty$. We denote by $U_{T,\delta}$ the set D_T with the δ -neighborhoods of $-\alpha_1, \ldots, -\alpha_i$ excluded. Since $s/(1 + s/\alpha_j)$ is bounded in j and $s \in U_{T,\delta}$, there is M > 0 such that

$$\sum_{j=1}^{\infty} \left| b_j(s) \right| \leq \sum_{j=1}^{\infty} M \left(\frac{1}{\alpha_j} - \frac{1}{\alpha_{+1}} \right) \leq \frac{M}{\alpha_1} < \infty$$

for $s \in U_{T,\delta}$. By this we have that $\sum_{j=1}^{\infty} b_j(s)$ converges absolutely and uniformly on any compact set in $\mathbb{C} \setminus \{-\alpha_1, -\alpha_2, \ldots\}$. Hence the infinite product f(s)converges absolutely and uniformly on any compact set in $\mathbb{C} \setminus \{-\alpha_1, -\alpha_2, \ldots\}$.

Second step. We show that f is the Laplace transform of the ME_{+}^{d} distribution μ defined by (6.2). Note that

$$f_n(s) = \prod_{j=1}^n \left(1 + \frac{s}{\beta_j}\right) / \left(1 + \frac{s}{\alpha_j}\right)$$

is the Laplace transform of an ME_{+}^{f} distribution μ_{n} (Steutel [5]). Moreover, f_{n} is written as

$$f_n(s) = \exp \int_0^\infty (e^{-sx} - 1) \{ \int_0^\infty e^{-xu} q_n(u) \, du \} \, dx \, ,$$

where

$$q_n(u) = 0$$
 $u < \alpha_1$
= 1 $a_j < u < \beta_j$ $j = 1, 2, ..., n,$
= 0 $\beta_j < u < \alpha_{j+1}$ $j = 1, 2, ..., n,$

https://doi.org/10.1017/S0027763000004165 Published online by Cambridge University Press

Here we understand $\alpha_{n+1} = \infty$. We have

$$q_n(u) du \rightarrow q(u) du$$
 as $n \rightarrow \infty$

and

$$\int_{M}^{\infty} \frac{q_{n}(u)}{u^{2}} du \leq 1/M \to 0 \text{ as } M \to \infty.$$

By the continuity theorem for B_+ (Bondesson [1]), letting μ be the distribution with Laplace transform of the form (6.2), we have $\mu_n \to \mu$ as $n \to \infty$. Hence $f_n(s) \to \mathscr{L}\mu(s)$ for s > 0 as $n \to \infty$. On the other hand, $f_n(s)$ converges to f(s) as $n \to \infty$ absolutely and uniformly on any compact set in $\mathbb{C} \setminus \{-\alpha_1, -\alpha_2, \ldots\}, \mathscr{L}\mu(s) = f(s)$ should hold for s > 0. By Theorem 3.1, the mixing distribution G_n of μ_n converges weakly to the mixing distribution G of μ as a distribution on $(0, \infty]$. Since the support of G_n is contained in $\{\alpha_j\}_{j=1}^n \cup \{\infty\}$, the support of G is contained in $\{\alpha_j\}_{j=1}^\infty \cup \{\infty\}$. Hence $\mu \in ME_+^d$. The proof is complete.

THEOREM 6.2. Let $\{\alpha_j\}$ and $\{\beta_j\}$ be non-decreasing infinite sequences of positive real numbers satisfying $\alpha_i \neq \beta_j$ for all i, j. Let $\mu \in ME_+$ such that

(6.5)
$$\mathscr{L}\mu(s) = \prod_{j=1}^{\infty} (1 + \frac{s}{\beta_j})/(1 + \frac{s}{\alpha_j})$$

for $s \ge 0$. Then

$$(6.6) 0 < \alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots$$

Moreover, if α_j , $\beta_j \rightarrow \infty$ as $j \rightarrow \infty$, then $\mu \in ME^d_+$.

Proof. By the assumption,

$$\begin{aligned} \mathscr{L}\mu(s) &= \exp\left[\sum_{j=1}^{\infty} \left\{\log\frac{\alpha_j}{s+\alpha_j} - \log\frac{\beta_j}{s+\beta_j}\right\}\right] \\ &= \exp\left[\sum_{j=1}^{\infty} \int_{\alpha_j}^{\beta_j} \frac{s}{u(s+u)} \, du\right], \text{ for } s \ge 0. \end{aligned}$$

Thus the density q(u) of the Q-measure of μ is written as $q(u) = \sum_{j=1}^{\infty} 1_{(\alpha_j,\beta_j)}(u)$. We show (6.6) by induction. Remind that q(u) is nonnegative and bounded by 1 a.e. Hence $\alpha_1 < \beta_1$. Assume that

$$0 < \alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots < \alpha_n < \beta_n$$

holds for $n \ge 1$. If $\alpha_n \le \alpha_{n+1} < \beta_{n+1}$, then since $\beta_n \le \beta_{n+1}$, q(u) = 2 on (α_{n+1}, β_n) . This can not occur. Hence $\alpha_n < \beta_n < \alpha_{n+1}$. Since q is nonnegative, $\beta_n < \beta_{n+1} < \alpha_{n+1}$ can not occur. Hence $\alpha_n < \beta_n < \alpha_{n+1} < \beta_{n+1}$. The proof is complete.

THEOREM 6.3. Let $\mu \in ME_+^d$ and let G be its mixing distribution. Suppose that $\{\alpha_j\}_{1 \leq j < \infty} = (\text{supp } G) \setminus \{\infty\}$, where $\{\alpha_j\}$ is an infinite sequence increasing to ∞ . Then there is a sequence of real numbers $\{\beta_k\}_{k=1}^{\infty}$ such that

 $0 < lpha_1 < eta_1 < lpha_2 < eta_2 < \cdots$

and

$$\mathscr{L}\mu(s) = \prod_{j=1}^{\infty} \left(1 + \frac{s}{\beta_j}\right) / (1 + \frac{s}{\alpha_j}), \ s > 0.$$

Proof. Let $p_j = G(\{\alpha_j\})$ and $p_{\infty} = 1 - \sum_{j=1}^{\infty} p_j$. We have

(6.7)
$$\mathscr{L}\mu(s) = p_{\infty} + \sum_{j=1}^{\infty} \frac{\alpha_j}{s + \alpha_j} p_j \quad \text{for } s > 0.$$

Denote by f(s) the right hand side of (6.7). Set $P = \{-\alpha_i\}_{i=1}^{\infty}$. Then the analytic continuation of f to $\mathbb{C} \setminus P$ is unique and f is a meromorphic function. Every pole of f has degree 1 and the set of poles coincides with P. The function f is term-wise differentiable in $\mathbb{C} \setminus P$ and

$$f'(s) = -\sum_{j=1}^{\infty} \frac{\alpha_j}{(s+\alpha_j)^2} p_j.$$

This shows that f is decreasing in every interval in $\mathbb{R} \setminus P$ and the set of zeros $Z = \{-\beta_i\}_{i \ge 1}$ of f in $\mathbb{R} \setminus P$ satisfies

$$\cdots < -\beta_2 < -\alpha_2 < -\beta_1 < -\alpha_1 < 0.$$

Set s = a + bi. Since

$$f(s) = p_{\infty} + \sum_{j=1}^{\infty} \frac{\alpha_j (a + \alpha_j)}{(a + \alpha_j)^2 + b^2} p_j + i \sum_{j=1}^{\infty} \frac{-\alpha_j b}{(a + \alpha_j)^2 + b^2} p_j,$$

the imaginary part of f(s) vanishes if and only if b = 0. Hence f does not have zero points outside **R**. Set

$$E(u, n) = 1 - u for n = 0,$$

= $(1 - u) \exp \{\sum_{k=1}^{n} \frac{u^{k}}{k}\}$ for $n = 1, 2, ...$

Define a function φ by

$$\varphi(s) = \prod_{j=1}^{\infty} E\left(-\frac{s}{\alpha_j}, j\right).$$

Then, since $\sum_{j=1}^{\infty} \left(\frac{T}{\alpha_j}\right)^j < \infty$ for arbitrary T > 0, φ is an entire function and the set of zero points of φ coincides with P([3] p. 233). Let

$$\varphi_0(s) = \varphi(s)f(s).$$

Then φ_0 is an entire function with the set of zero points coinciding with Z. By Weierstrass's Factorization Theorem ([3] p. 234), there is an entire function g_0 such that φ_0 can be written as

$$\varphi_0(s) = e^{g_0(s)} \prod_{j=1}^{\infty} E\left(-\frac{s}{\beta_j}, j\right).$$

Hence,

$$f(s) = e^{g_0(s)} \prod_{j=1}^{\infty} E(-\frac{s}{\beta_j}, j) / \prod_{j=1}^{\infty} E(-\frac{s}{\alpha_j}, j).$$

This yields

$$f(s) = e^{g_0(s)} \prod_{j=1}^{\infty} (1 + \frac{s}{\beta_j}) / (1 + \frac{s}{\alpha_j}) \exp\left[\sum_{k=1}^{j} \frac{(-s)^k}{k} \{(\beta_j)^{-k} - (\alpha_j)^{-k}\}\right].$$

We have, for any positive integer M,

$$\Pi_{j=1}^{M} (1 + \frac{s}{\beta_{j}}) / (1 + \frac{s}{\alpha_{j}}) \exp\left[\sum_{k=1}^{j} \frac{(-s)^{k}}{k} \{(\beta_{j})^{-k} - (\alpha_{j})^{-k}\}\right]$$

= $\{\prod_{j=1}^{M} (1 + \frac{s}{\beta_{j}}) / (1 + \frac{s}{\alpha_{j}})\} \exp\left[\sum_{j=1}^{M} \sum_{k=1}^{j} \frac{(-s)^{k}}{k} \{(\beta_{j})^{-k} - (\alpha_{j})^{-k}\}\right].$

If $|s| < \alpha_N$ and M > N, then

$$\sum_{j=N+1}^{M} \sum_{k=1}^{j} \frac{|s|^{k}}{k} \{(\alpha_{j})^{-k} - (\beta_{j})^{-k}\}$$

$$\leq \sum_{k=1}^{\infty} \sum_{j=N+1}^{M} \frac{|s|^{k}}{k} \{(\alpha_{j})^{-k} - (\alpha_{j+1})^{-k}\}$$

$$\leq \sum_{k=1}^{\infty} \frac{1}{k} (|s|/\alpha_{N})^{k} < \infty.$$

It follows that

$$g_1(s) = \sum_{j=1}^{\infty} \sum_{k=1}^{j} \frac{(-s)^k}{k} \{ (\beta_j)^{-k} - (\alpha_j)^{-k} \}$$

is an entire function. By Theorem 6.2,

$$\prod_{j=1}^{\infty} (1 + \frac{s}{\beta_j}) / (1 + \frac{s}{\alpha_j})$$

is a meromorphic function. Hence f(s) is written as

$$f(s) = e^{g(s)} \prod_{j=1}^{\infty} (1 + \frac{s}{\beta_j})/(1 + \frac{s}{\alpha_j}),$$

where $g(s) = g_0(s) + g_1(s)$ is an entire function. For s > 0 let $A(s) = \log f(s)$ and $B(s) = \log \prod_{j=1}^{\infty} (1 + \frac{s}{\beta_j})/(1 + \frac{s}{\alpha_j})$. Since $f(s) = \mathcal{L}\mu(s)$ for s > 0, we have $A(s) = \int_0^\infty (e^{-sx} - 1) \{\int_0^\infty e^{-xu}q(u)du\}dx,$

for
$$s > 0$$
 where $0 \le q(u) \le 1$ a.e. and $\int_0^1 u^{-1}q(u) du < \infty$. Let
 $q_1(u) = 0$ for $0 < \alpha_1$,
 $= 1$ for $\alpha_j < u < \beta_j$ $j = 1, 2, \dots$,
 $= 0$ for $\beta_j < u < \alpha_{j+1}$ $j = 1, 2, \dots$

Since, by Theorem 6.1,

$$B(s) = \int_0^\infty (e^{-sx} - 1) \left\{ \int_0^\infty e^{-xu} q_1(u) \, du \right\} dx,$$

for s > 0 we have

$$g(s) = A(s) - B(s) + C$$

and

$$A(s) - B(s) = \int_0^\infty \frac{s}{(s+u)u} (q_1(u) - q(u)) du,$$

where C is a constant satisfying $e^c = 1$. Since (A(s) - B(s))/s is the Stieltjes transform of $(q_1(x) - q(x))x^{-1}dx$, $(q_1(x) - q(x))x^{-1}$ is obtained by the inversion formula for Stieltjes transform. Since g(s) is an entire function, $(q_1(x) - q(x))x^{-1}dx$ can not have a mass in $(0, \infty)$. Hence

$$q_1(x) - q(x) = 0$$
 a.e.

and g(s) is a constant C. Hence, we have

$$\mathscr{L}\mu(s) = \prod_{j=1}^{\infty} (1 + \frac{s}{\beta_j})/(1 + \frac{s}{\alpha_j}).$$

The proof is complete.

Remark 6.1. Let $\mu \in ME_+^d$ and let G be its mixing distribution. Let $\mathscr{L}\mu(s)$ = $\prod_{j=1}^{\infty} (1 + \frac{s}{\beta_j})/(1 + \frac{s}{\alpha_j})$. Then

$$G(\{\infty\}) = \prod_{j=1}^{\infty} \alpha_j / \beta_j$$

Proof. Let Q be the Q-measure of μ . Since, by Remark 3.1,

$$G(\{\infty\}) = \exp\left\{-\int_0^\infty \frac{1}{u} Q(du)\right\},$$

and since $-\int_0^\infty \frac{1}{u} Q(du) = \sum_{j=1}^\infty \log(\alpha_j/\beta_j)$, we get the conclusion.

https://doi.org/10.1017/S0027763000004165 Published online by Cambridge University Press

Denote $CME_{+}^{d} = CE_{+} * ME_{+}^{d}$.

THEOREM 6.4. Let $\mu \in CME_+$. Suppose that its Laplace transform is represented as

$$\mathscr{L}\mu(s) = \prod_{j=1}^{\infty} (1 + \frac{s}{\beta_j})/(1 + \frac{s}{\alpha_j})$$

where $\{\alpha_j\}$, $(\beta_j\}$ are disjoint divergent non-decreasing sequences of positive reals satisfying $\alpha_j \neq \beta_j$ for all i, j. Then,

(i) there is a subsequence $\{\alpha_{n_i}\}$ of $\{\alpha_i\}$ such that

$$0 < \alpha_{n_1} < \beta_1 < \alpha_{n_2} < \beta_2 < \cdots$$

and

(ii) $\sum_{\gamma \in \Gamma} \gamma^{-1} < \infty$ for $\Gamma = \{\alpha_j\}_{j=1}^{\infty} \setminus \{\alpha_{n_j}\}_{j=1}^{\infty}$.

Hence $\mu \in CME^{d}_{+}$.

Proof. If $\mu \in CME_+$, then there is $\mu_1 \in CE_+$, $\mu_2 \in ME_+$ such that $\mu = \mu_1 * \mu_2$ and there is a finite or infinite sequence $0 < \gamma_1 \leq \gamma_2 \leq \cdots$ s

(6.8)
$$\mathscr{L}\mu_1(s) = \prod_{j=1}^{\infty} 1/(1 + \frac{s}{\gamma_j}),$$
$$\sum 1/\gamma_n < \infty.$$

See [8]. Hence,

$$\mathscr{L}\mu_2(s) = \prod_{j=1}^{\infty} (1 + \frac{s}{\delta_j})/(1 + \frac{s}{\tau_j})$$

where

$$\{\delta_j\} = \{\beta_j\} \cup (\{\gamma_j\} \setminus \{\alpha_j\}), \ \{\tau_j\} = \{\alpha_j\} \setminus \{\gamma_j\}, \\ 0 < \tau_1 \le \tau_2 \le \cdots, \\ 0 < \delta_1 \le \delta_2 \le \cdots.$$

We may assume that $\{\tau_j\}$ is an infinite sequence. Then δ_j , $\tau_j \to \infty$ as $j \to \infty$. By Theorems 6.1 and 2, we have

$$0 < au_1 < \delta_1 < au_2 < \delta_2 < \cdots$$

and $\mu_2 \in ME_+^d$. Hence $\mathcal{L}\mu(s)$ can be analytically continued to $\mathbb{C} \setminus \{-\alpha_1, -\alpha_2, \ldots\}$ and zero points of analytic continuation of $\mathcal{L}\mu(s)$ are contained in $\{\beta_j\}$. We have $\{\gamma_j\} \subset \{\alpha_j\}, \{\delta_j\} = \{\beta_j\}$ and we have (i) and (ii).

ΜΑΚΟΤΟ ΥΑΜΑΖΑΤΟ

REFERENCES

- Bondesson, L., Classes of infinitely divisible distributions and densities, Z. Wahrsch. Verw. Gebiete, 57 (1981), 39-71.
- [2] Karlin, S., Total Positivity, Vol. 1, Stanford Univ. Stanford, 1968.
- [3] Nevanlinna, R., Paatero, V., Introduction to complex analysis, Addison-Wesley, Reading-Menlo Park-London-Don Mills, 1969.
- [4] Sato, K., On zeros of a system of polynomials and application to sojourn time distributions of birth-and-death processes, Trans. Amer. math. Soc., 309 (1988), 375-390.
- [5] Steutel, F. W., Preservation of Infinite Divisibility under Mixing and Related Topics, Math. Centre Tracts, 33, Amsterdam, 1970.
- [6] Thorin O., An extension of the notion of a generalized Γ -convolution, Scand. Actuarial J., (1978), 141-149.
- [7] Yamazato, M., Strongly unimodal infinitely divisible distributions, Ann. Probab., 10 (1982), 589-601.
- [8] —, Characterization of the class of upward passage time distributions of birth and death processes and related results, J. Math. Soc. Japan, 40 (1988), 477-499.
- [9] —, Hitting time distributions of single points for 1-dimensional generalized diffusion processes, Nagoya Math. J., 119 (1990).
- [10] —, Strong unimodality of infinitely divisible distributions of class CME, submitted.

Departmert of Mathemtics Nagoya Institute of Technology Showa-ku, Nagoya 466 Japan