ONE-SIDED IDEALS IN NEAR-RINGS OF TRANSFORMATIONS

H. E. HEATHERLY

(Received 23 September 1969: revised 16 March 1970) Communicated by B. Mond

1. Introduction

Let (G, +) be an arbitrary group and let $T_0(G) = \{f \in Map(G, G) : 0f = 0\}$; the system composed of $T_0(G)$ and the operations of pointwise addition and composition of functions form a (left) near-ring. Berman and Silverman, in their investigation of near-rings of transformations [3], found that for every group G the associated near-ring of transformations $T_0(G)$ has no proper ideals. In the present paper left and right ideals of $T_0(G)$ are considered.

D. W. Blackett [4] investigated one-sided ideals in $T_0(G)$ for G finite. Blackett's results appear as consequences of the more general study in this paper. We show that for G finite $T_0(G)$ is the direct sum of minimal right ideals, but this does not hold for G infinite. Minimal one-sided ideals will be characterized completely. Maximal one-sided ideals are considered; every right (left) ideal is contained in a maximal right (left) ideal. A correspondence between normal subgroups of G and left ideals in $T_0(G)$ is given. The center of $(T_0(G), +)$ is found to be a left ideal.

2. Preliminaries on near-rings

An algebraic system $(N, +, \cdot)$ is a (*left*) near-ring if

- (1) (N, +) is a group, not necessarily abelian,
- (2) (N, \cdot) is a semigroup,
- (3) c(a+b) = ca+cb for each $a, b, c \in N$.

In this paper it shall further be required that zero is a two-sided annihilator. This is not a consequence of (1)-(3).

 $T_0(G)$ serves as a motivational example of a near-ring. Furthermore every near-ring can be embedded in a $T_0(G)$ for some G [5].

A group G together with a mapping $(g, r) \rightarrow gr$ of $G \times N$ into G such that for $x \in G$ and $n, m \in N$

- (1) x(n+m) = xn+xm
- $(2) \ x(nm) = (xn)m$

is a *near-ring module* over the near-ring N. Note, it follows that if $0 \in G$, $a \in N$, then 0a = 0.

Near-ring homomorphism and N-homomorphism are defined as usual. Ideals (submodules) are exactly the kernels of homomorphisms (N-homomorphisms). It is well known that an ideal of N is a subset M such that

- (1) (M, +) is a normal subgroup of (N, +)
- (2) $nm \in M$ for each $n \in N, m \in M$
- (3) $(n_1+m)n_2-n_1n_2 \in M$ for each $m \in M, n_1, n_2 \in N$.

Subsets satisfying (1) and (2) are *left ideals* of N and subsets satisfying (1) and (3) are right ideals of N. A subgroup B of (N, +) is an N-subgroup (left N-subgroup) if $b \in B$ and $n \in N$ implies $bn \in B(nb \in B)$. Every right ideal is a $T_0(G)$ -subgroup, but the converse does not hold.

3. Right ideals in $T_0(G)$

Let S be a non-empty subset of G and define $A(S) = \{\alpha \in T_0(G) : S\alpha = 0\}$. These annihilating sets, A(S), are right ideals of $T_0(G)$. For convenience let $P_x = A(G - \{x\}), x \neq 0$. P_x may also be described as $\{\alpha(x, y) : y \in G\}$, where $t\alpha(x, y) = 0$ if $t \neq x$ and $x\alpha(x, y) = y$. The following properties of the $\alpha(x, y)$ follow immediately:

PROPERTY A. If $y \neq s \neq 0$, then $\alpha(x, y)\alpha(s, t) = \alpha(x, 0) = 0$ and $\alpha(x, s)\alpha(s, t) = \alpha(x, t)$.

PROPERTY B. The set $\{\alpha(x, x) : x \in G - \{0\}\}$ is a collection of pairwise orthogonal idempotents.

PROPERTY C. 1)
$$\alpha(x, y) + \alpha(x, v) = \alpha(x, y+v)$$

2) $-\alpha(x, y) = \alpha(x, -y)$
3) $\alpha(x, y) - \alpha(x, v) = \alpha(x, y-v).$

PROPERTY D. For $\beta \in T_0(G)$, $\alpha(x, y)\beta = \alpha(x, y\beta)$. For any $\alpha(x, y) \in P_x$ we have

$$\alpha(x, x)\alpha(x, y) = \alpha(x, y)$$

and hence P_x is generated by the idempotent element $\alpha(x, x)$. If $y \neq 0$, then

$$\alpha(x, y)\alpha(y, x) = \alpha(x, x)$$

and hence each $\alpha(x, y)$ generates P_x . We have established

THEOREM 1. For each $x \neq 0$, P_x is a minimal right ideal and a minimal $T_0(G)$ -subgroup. P_x is generated by the idempotent $\alpha(x, x)$ which acts as a left identity for P_x .

It is easy to identify the groups $(P_x, +)$. The mapping $g \to \alpha(x, g)$ is a group isomorphism, hence $P_x \cong G$.

Let $x \in G - \{0\}$. Because of Theorem 1 $P_x \cap \sum_y P_y = (0)$, where $y \in G - \{0, x\}$. Thus the sum of the P_x is a (group) direct sum. For convenience denote this direct sum by P.

THEOREM 2. *P* is a right ideal of $T_0(G)$. This theorem is a consequence of

LEMMA 0. If F is a family of right ideals from a near-ring N, then ΣM , $M \in F$, is a right ideal of N.

PROOF. It is well known that ΣM is a normal subgroup of (N, +). Let $m = \sum_{i=1}^{k} m_i$, where $m_i \in M_i \in F$, be any element in ΣM . The proof that

$$(n_1+m)n_2-n_1n_2\in\Sigma M$$

for each $n_1, n_2 \in N$, is by induction on k. The case k = 1 being obvious we proceed to the inductive step. Let $c_j = \sum_{i=1}^j m_i$. Note that

$$((n_1+c_{k-1})+m_k)n_2-(n_1+c_{k-1})n_2 \in M_k$$

and that $(n_1+c_{k-1})n_2-n_1n_2 \in \Sigma M$ by the induction hypothesis. So $(n_1+m)n_2-n_1n_2$ is in ΣM .

Note that if G is finite, say |G| = n, then $T_0(G)$ and P have the same cardinality, n^{n-1} . A consequence of these remarks is the following theorem originally arrived at by Blackett [4, p. 39] in a different fashion.

THEOREM 3. If G is finite, then $T_0(G)$ is the direct sum of the minimal right ideals.

This theorem is not true for G infinite. This can be seen in a variety of ways, one of the simpler being to examine cardinality: $|T_0(G)| = |G|^{|G|}$, while |P| = |G|.

The following four lemmas lead a complete classification of minimal right ideals in $T_0(G)$. In the following M is a non-zero right ideal of $T_0(G)$.

LEMMA 1. For each $x \in G$, there exists $\beta \in M$, $t \in G$, such that $t\beta = x$.

LEMMA 2. There exists non-zero $p \in M$, $t \in G$ such that tp = 0.

PROOF. Let rng $\beta = \{x\beta : x \in G\}$. We consider two cases.

CASE 1. There exists $\beta \in M$ such that $|\operatorname{rng} \beta| > 2$. Then there exists non-zero $x, t \in G, x \neq t$, such that

$$t\beta = y \neq z = x\beta \neq 0.$$

Choose $\gamma_1, \gamma_2 \in T_0(G)$ so that

$$(t)\gamma_1 = -y, \ (x)\gamma_1 = -z, \ (-z)\gamma_2 = -z, \ (-y)\gamma_2 = 0$$

Let $p = (\gamma_1 + \beta)\gamma_2 - \gamma_1\gamma_2$. Then $xp = z \neq 0$ and $tp = 0$.

Before turning to the case where $|\operatorname{rng} \beta| = 2$ we dispose of the special situation |G| < 4. Since *M* is non-zero, |G| = 1 is not under consideration. For |G| = 2, $T_0(G)$ itself is the only minimal right ideal. Finally for |G| = 3 the minimal right ideals are:

$$\{(0, 0, 0), (0, 0, 1), (0, 0, 2)\}$$
 and $\{(0, 0, 0), (0, 1, 0), (0, 2, 0)\}$,

where (x_0, x_1, x_2) represents the function on C_3 that takes *i* into x_i . In each of these two cases the lemma is easily seen to be satisfied. For the remainder of the proof take $|G| \ge 4$.

CASE 2. For each non-zero $\beta \in M$, $|\operatorname{rng} \beta| = 2$. Let β be a non-zero element of M. Then there is a non-zero element x of G such that $(x)\beta = y \neq 0$. Let t be a second non-zero element of G. Choose $\gamma_1, \gamma_2 \in T_0(G)$ such that

$$(x)\gamma_1 = -y, (t)\gamma_1 = z$$
 where z is not 0, $-y$, nor $-y-y$,
 $(-y)\gamma_2 = -y, z\gamma_2 = 0$, and $(z+y)\gamma_2 = (z+t\beta)\gamma_2 = 0$.

Then $(\gamma_1 + \beta)\gamma_2 - \gamma_1\gamma_2$ is the desired mapping p.

LEMMA 3. If M is a minimal right ideal, then $G = G_1 \cup G_2$, where

 $G_1 \cap G_2 = \emptyset, \ 0 \in G_1, G_2 \neq \emptyset, \ G_1 M = \{0\},\$

and for each $x \in G_2$, $x\beta \neq 0$ for each non-zero $\beta \in M$.

PROOF. There exists non-zero $x \in G$, $\beta \in M$ such that $x\beta = 0$. The set $\{\gamma \in M : x\gamma = 0\}$ is a non-zero right ideal of $T_0(G)$ and hence is equal to M. Let

 $G_1 = \{t \in G : tM = \{0\}\}$ and $G_2 = G - G_1$.

It is easily seen that G_1 and G_2 are the required sets.

LEMMA 4. If M is a minimal right ideal, then $|\operatorname{rng} \beta| = 2$ for every non-zero $\beta \in M$. Hence G_2 is a singleton.

PROOF. Suppose $\beta \in M$ and 0, y_1 , and y_2 are distinct elements of the range of β . Choose $\gamma \in T_0(G)$ so that $t\gamma = 0$ if $t \neq y_2, y_2\gamma = y_2$. For some $x_1 \in G$, $x_1\beta = y_1$, hence $x_1\beta\gamma = 0$. Since there exists $x_2 \in G$ such that $x_2\beta = y_2$ and therefore $x_2\beta\gamma = y_2$ we have that $\beta\gamma$ is a non-zero element of M that takes x_1 into zero, a contradiction to $x_1\beta \neq 0$ and Lemma 3.

In the proof of Lemma 2 the case |G| < 4 was completely investigated so we may take $|G| \ge 4$.

Suppose $|G_2| > 1$. Then there exists distinct elements $x, t \in G_2$. Choose a non-zero mapping $f_c \in M$ and let $\operatorname{rng} f_c = \{0, c\}$. Choose $\gamma_1, \gamma_2 \in T_0(G)$ such that $x\gamma_1 = -c, t\gamma_1 = b \neq c$, where b is not 0 or $-c-c, (-c)\gamma_2 = -c, b\gamma_2 = 0$. Note that b+c is not b, c, or -c so we can define $(b+c)\gamma_2 = 0$. Then

 $(x)[(\gamma_1+f_c)\gamma_2-\gamma_1\gamma_2]=c \text{ and } (t)[(\gamma_1+f_c)\gamma_2-\gamma_1\gamma_2]=0.$

But $(\gamma_1 + f_c)\gamma_2 - \gamma_1\gamma_2 \in M$ so $t \in G_1$, a contradiction.

Thus every element in a minimal right ideal is of the form $\alpha(x, y)$ for some fixed non-zero x. We thus have

THEOREM 4. The only minimal right ideals of $T_0(G)$ are the P_x .

A submodule N of the R-module M_R is called a simple submodule of M_R if it contains no proper (nontrivial) submodules. P is a $T_0(G)$ -module and because of Theorem 1, P_x is a simple submodule of P. The following lemma enables us to characterize all right ideals of $T_0(G)$ which are contained in P.

LEMMA 5. (Beidleman [1, p. 60]). If M_R is a near-ring module, then the following are equivalent:

- (1) Every submodule is a sum of simple submodules of M_R ,
- (2) M_R is a sum of simple submodules,
- (3) M_R is a direct sum of simple submodules,
- (4) Every submodule of M_R is a direct summand.

THEOREM 5. Every right ideal of $T_0(G)$ which is also contained in P is of the form

$$\sum_{x} \oplus P_{x}, \text{ where } x \in H \subseteq G - \{0\}.$$

The proof follows from Theorems 1 and 4, Lemma 5, and

$$P=\sum \oplus P_x, x \in G-\{0\}.$$

The above are 'internal' facts about P. The following are "external" facts.

P is contained in a maximal right ideal. In fact a standard Zorn's Lemma argument shows that every right ideal is contained in a maximal right ideal. What maximal right ideals are available? For any non-zero $x \in G$ let $A(x) = A(\{x\})$.

THEOREM 6. Every A(x), $x \neq 0$, is a maximal right ideal and a maximal $T_0(G)$ -subgroup.

PROOF. Since every right ideal of $T_0(G)$ is also a $T_0(G)$ -subgroup, it suffices to show that A(x) is a maximal $T_0(G)$ -subgroup of $T_0(G)$. Let B be a $T_0(G)$ -subgroup of $T_0(G)$ which properly contains A(x). Choose $\beta \in B$ such that $(x)\beta =$ $b \neq 0$. Take $\eta \in T_0(G)$ such that $(b)\eta = x$ and $(t)\eta = 0$ for each $t \neq b$. Then $\beta\eta \in B$ and $(x)\beta\eta = x$. Hence, we can assume that $x\beta = x$. Choose $\Phi \in A(x)$ such that $(t)\Phi = -(t)\beta + t$, if $t \neq x$. Then $(t)[\beta + \Phi] = t$ if $t \neq x$ and $(x)[\beta + \Phi] = x$, hence $\beta + \Phi$ is the identity mapping on G. Since $\beta + \Phi - \beta \in A(x)$, it follows that $\beta + \Phi \in B$. This shows that $B = T_0(G)$ and the theorem follows.

Beidleman [2] defines the radical J(M) of a near-ring module M_N as the intersection of all submodules which are maximal as N-subgroups. As a consequence

of Theorem 6, $J(T_0(G)) = 0$. Note that every right ideal of $T_0(G)$ is a $T_0(G)$ -submodule and conversely.

It is easy to see that P is not contained in any A(x). In fact $P_x \cap A(x) = (0)$. By Theorem 6 it follows that $T_0(G) = P_x \oplus A(x)$. Note that by Theorem 5 $A(x) \cap P = \Sigma \oplus P_t$, $t \neq 0$, x and hence (by the 2nd isomorphism theorem for near-ring modules)

$$T_0(G)/P = P + A(x)/P \cong A(x)/P \cap A(x).$$

There is an ascending sequence of right ideals containing P, however. Let

$$T_{\lambda} = \{ f \in T_0(G) : | \text{support } f | < \aleph_{\lambda} \},\$$

for each ordinal λ . Here support $f = \{x \in G : xf \neq 0\}$. Each T_{λ} is a right ideal and since P is exactly those functions of finite support we have $P = T_0$. Also for $\aleph_r = |G|$

$$P = T_0 \subset T_1 \subset \cdots \subset T_\tau \subset T_0(G),$$

where T_{t} is contained in a maximal right ideal; the question arises: is T_{t} maximal?

The right ideals $A_n = A(\{x_1, \dots, x_n\})$, where the x_n are distinct non-zero elements of G, gives rise to an infinite descending chain of right ideals in the case where G is infinite. So $T_0(G)$ is not right Artinian for G infinite. The question of whether $T_0(G)$ is right Noetherian is open, even for G countable.

The following general lemma will prove useful in the next theorem.

LEMMA 6. (Beidleman [1, p. 54]). If the N-module M_N is the direct sum of submodules $M_{\lambda}, \lambda \in \Lambda$, then for each $m = m_{\lambda_1} + \cdots + m_{\lambda_n}$ in M, where $m_{\lambda_i} \in M_{\lambda_i}$, and for each $r \in N$,

$$mr = m_{\lambda_1}r + \cdots + m_{\lambda_n}r.$$

THEOREM 7. If there exists a right ideal V of $T_0(G)$ such that $P \oplus V = T_0(G)$, then G is finite and V = (0), i.e. P cannot be a proper direct summand.

PROOF. If G is finite, then $P = T_0(G)$ because of Theorems 3 and 4. Hence, assume G is infinite and $V \neq (0)$. Then

$$1 = \alpha(x_1, y_1) + \cdots + \alpha(x_n, y_n) + \rho, \rho \in V.$$

This yields $-y_i + x_i = x_i\rho$ for $i = 1, 2, \dots, n$ and for $t \neq x_i, t = t\rho$. If for some $j, y_j \neq x_j$, then we arrive at a contradiction as follows. Choose $\beta_x \in T_0(G)$ such that $t\beta_x = x$, if $t \neq 0$, where $x \notin \{x_1, \dots, x_n, 0\}$. Then using Lemma 6, and property D we obtain

$$\beta_x = 1\beta_x = \sum_{i=1}^n \alpha(x_i, x) + \rho\beta_x$$

and
$$x = x_j \beta_x = x + (-y_j + x_j)\beta_x = x + x$$
, or $x = 0$.
Hence

$$1 = \alpha(x_1, x_1) + \cdots + \alpha(x_n, x_n) + \rho;$$

so again using Lemma 6 we have $\alpha(x, x) = \rho \alpha(x, x)$ for each $x \neq x_i$, $i = 1, \dots, n$. But $\rho \alpha(x, x) \in V$, so $0 \neq \rho \alpha(x, x) \in P \cap V$, contrary to $P \cap V = (0)$.

4. Left ideals

Let C^+ be the center of $(T_0(G), +)$ and let C(G) be the center of G.

LEMMA 7. An element f is in C^+ if and only if the image of f, written rng f, is in C(G).

PROOF. Let $f \in C^+$. Consider (x)f, for any non-zero $x \in G$. For each $y \in G$ there exists $h \in T_0(G)$ such that (x)h = y. So

$$(x)f + y = (x)[f + h] = (x)[h + f] = y + (x)f$$

and hence $(x)f \in C(G)$.

The converse follows immediately.

LEMMA 8. C^+ is a left ideal of $T_0(G)$.

PROOF. Of course C^+ is a normal subgroup of $(T_0(G), +)$. Since for each $g \in T_0(G)$, $f \in C^+$:

$$\operatorname{rng} gf \subseteq \operatorname{rng} f \subseteq C(G),$$

it follows by Lemma 7 that $gf \in C^+$.

NOTE. For any element $c \in C(G)$ the mapping $f_c \in T_0(G)$ defined by $xf_c = c$, for $x \neq 0$, has its image in C(G) and hence must be in C^+ . So if G has a non-trivial center then $C^+ \neq (0)$; moreover $(T_0(G), +)$ is centerless if and only if G is centerless.

Next left ideals of $T_0(G)$ will be classified in terms of normal subgroups of G. Let L be a left $T_0(G)$ -subgroup of $T_0(G)$. Define $GL = \{xl | x \in G, l \in L\}$.

LEMMA 9. (a) If L is a left $T_0(G)$ -subgroup of $T_0(G)$, then GL is a subgroup of G.

(b) If L is a left ideal of $T_0(G)$, then GL is a normal subgroup of G.

PROOF. (a) Let $x_i l_i \in GL$, i = 1, 2. Then there exists $f \in T_0(G)$ such that $x_2 f = x_1$. Thus

$$(x_1)l_1 - (x_2)l_2 = (x_2)fl_1 - (x_2)l_2 = (x_2)[fl_1 - l_2].$$

Since $fl_1 \in L$ it follows that $fl_1 - l_2 \in L$, hence $(x_1)l_1 - (x_2)l_2 \in GL$. This shows GL is a subgroup of G.

(b) Let $(x)l \in GL$ and $g \in G$. Consider g+(x)l-g. There exists $h \in T_0(G)$ such that (x)h = g, hence

$$g+(x)l-g = (x)h+(x)l-(x)h = (x)[h+l-h].$$

Now $h+l-h \in L$, hence GL is a normal subgroup of G.

To each left ideal L there corresponds a normal subgroup GL. This correspondence need not be one-to-one. Note that GL = (0) if and only if L = (0) and $GT_0(G) = G$. It is possible for GL = G and yet L be a proper left ideal, as the following example illustrates.

EXAMPLE. Let G be infinite and define

$$B_{\lambda} = \{ f \in T_0(G) : |\operatorname{rng} f| < \aleph_{\lambda} \}.$$

For each ordinal λ , B_{λ} is a left $T_0(G)$ -subgroup. Consider G abelian and $\aleph_{\lambda} \leq |G|$; then B_{λ} is a proper left ideal of $T_0(G)$ and satisfies $GB_{\lambda} = G$. The latter is clear since for each non-zero $a \in G$ the function $xf_a = 0$ if $x \neq a$, $af_a = a$ is in B_{λ} . For $\aleph_a = |G|$ we have the proper ascending chain of left ideals.

 $(0) \subset B_0 \subset B_1 \subset \cdots \subset B_a \subset T_0(G).$

For any group G if $z \in GL$, then for each non-zero $x \in G$, $\alpha(x, z) \in L$. Some consequences and their immediate corollaries are given in the following

THEOREM 8. Let L be a left $T_0(G)$ -subgroup.

(1) If GL = G, then $P \subseteq L$,

(2) If GL = G and G is finite, then $L = T_0(G)$,

(3) If G is a finite simple group, then $T_0(G)$ has no proper left ideals,

(4) If L is also a right $T_0(G)$ -subgroup, then $P \subseteq L$ and if in addition G is finite, then $L = T_0(G)$,

(5) If G is finite, then $T_0(G)$ is a simple near-ring,

(6) If G is a simple group, then P is contained in every non-zero left ideal of $T_0(G)$.

To each normal subgroup N of G there corresponds a left ideal of $T_0(G)$. Consider

$$L_N = \{l \in T_0(G) : Gl \subseteq N\}.$$

LEMMA 10. L_N is a left ideal of $T_0(G)$.

LEMMA 11. If M and N are normal subgroups of G and $M \subseteq N$, then $L_M \subseteq L_N$. If L_1 and L_2 are left ideals of $T_0(G)$ and $L_1 \subseteq L_2$, then $GL_1 \subseteq GL_2$.

The proof of each of these lemmas follows directly from the definitions.

The inter-relationship between the normal subgroups given by Lemma 9 and the left ideals given by Lemma 10 is investigated next.

Starting with a left ideal L we pass to a normal subgroup GL and then a left ideal L_{GL} . We have $L \subseteq L_{GL}$. Again using Lemma 9 we obtain the normal subgroups GL and GL_{GL} where $GL \subseteq GL_{GL}$ by Lemma 11. But $GL_{GL} \subseteq GL$ by definition so $GL = GL_{GL}$.

Next start with any normal subgroup N of G, then pass to the left ideal L_N and the normal subgroup GL_N . As in the previous paragraph, but using L_N as the left ideal, this yields $L_N \subseteq L_M$, where $M = GL_N$. But $M = GL_N \subseteq N$, so $L_M \subseteq L_N$ and hence $L_N = L_M$.

References

- [1] J. C. Beidleman, On near-rings and near-ring modules (Doctoral Dissertation, Pennsylvania State University, 1964).
- [2] J. C. Beidleman, 'A radical for near-ring modules', Michigan Math. J., 12 (1965), 377-383.
- [3] G. Berman and R. J. Silverman, 'Simplicity of near-rings of transformations', Proc. Amer. Math. Soc., 10 (1959), 456-459.
- [4] D. W. Blackett, Simple and semi-simple near-rings (Doctoral Dissertation, Princeton University, 1950).
- [5] J. J. Malone Jr. and H. E. Heatherly, 'Some near-ring embeddings', Quart. J. Math. Oxford (2), 20 (1969), 81-85.

University of Southwestern Louisiana Lafayette, Louisiana