
1 Dependability

Terms like reliability, availability, maintainability, safety, and dependability are often
used loosely in colloquial conversation without relying on their precise definition and
representation. However, in scientific literature it is important to define these terms
precisely so that they can be described, represented, and evaluated without any loss
of precision. This chapter is an attempt to present this latter view in a comprehensive
manner and set the stage for the detailed exposition that follows in the subsequent
chapters.

1.1 Definition

The scientific use of the terms dependability, availability, reliability, maintainability, and
safety were first defined rigorously by Laprie [1]. The terminology was further refined
and comprehensive definitions relating to dependability were given in a landmark paper
by Avizienis et al. [2].

Dependability is treated as an umbrella concept that encompasses attributes such as
reliability, availability, safety, integrity, and maintainability. Security-related concepts
such as confidentiality, availability, and integrity were also brought under the overall
framework in this paper. Further elaboration on these ideas has been suggested
elsewhere, including [3]. Let us now examine the term dependability in some detail.

The IEC international vocabulary [4] defines the dependability (of an item) as the
“ability to meet success criteria, under given conditions of use and maintenance.” In
the information technology area [5], the meaning of the word “dependability” has
been thoroughly investigated by the International Federation for Information Processing
(IFIP) working group WG10.4 (on dependable and fault-tolerant computing), and a
recent definition issued by this group appears in [2]:

The dependability of a computer system is the ability to deliver a service that can justifiably be
trusted. The service delivered by a system is its behavior as it is perceived by its user(s); a user is
another system (physical, human) that interacts with the former at the service interface.

A 1988 survey of several definitions of computer-based system dependability resulted
in the following summary [6]:

Dependability of a computer system may be defined as the justifiable confidence the manufacturer
has that it will perform specified actions or deliver specified results in a trustworthy and timely
manner.
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In this context a system can be a single component, a module, a subsystem of a
complex system, such as a power or chemical or nuclear plant, a computer system, a
software system such as a web server, a data center, a telephone network, smart grid,
cloud, an avionic traffic control system or an aircraft flight control system.

Dependability is the result of a large number of physical, technological, and structural
characteristics of the system, in addition to the impact of the environmental and
operating (application) conditions: the materials with which the elementary components
are built, the assembly techniques, the operating conditions including the workload
being processed and the thermal conditions, the interaction with the human operator, the
technical assistance and maintenance policies. Understanding, modeling, and analyzing
the dependability of a system with the aim of pinpointing potential weaknesses and
improving the capability to operate correctly requires the harmonious combination
of different disciplines, from materials science to probability and statistics, from
manufacturing engineering to man–machine interaction and production organization.

The degree to which a system is able to provide the expected operation or service for
which it is designed needs to be quantitatively assessed by defining proper measurable
quantities. The quantitative assessment of system dependability thus becomes essential
in system design, planning, implementation, validation, manufacturing, and field
operation. A number of requirements, methods, and techniques have been established
and standardized to quantitatively evaluate the capability of a system for providing the
desired operation.

Along the various phases of the design and manufacturing process of a system there
is a need to predict with the lowest possible degree of uncertainty: how the system
will behave in operation during its entire useful life; how malfunctions or failures will
appear during operation and with what frequency; how long the duration of the outages
will be and what resources are needed to maintain the system in a correct operating
state. The quantitative evaluation of these attributes plays a critical role in assessing the
effectiveness of design alternatives, the choice of appropriate materials or parts, and in
determining the success of a product or system.

In order to quantitatively assess and assure the dependability attributes of a system,
different measures are introduced and a set of modeling and analysis techniques have
been developed to derive and evaluate the measures. The following sections examine
these in further detail.

1.2 Dependability Measures and Metrics

Dependability, as defined earlier, is a qualitative property, an aptitude of the system to
conform to design specifications and user expectations. However, in order to establish
a quantitative theory of dependability, specific quantities that characterize different
aspects or attributes of dependability have to be formally defined so that they can be
evaluated through unambiguous mathematical techniques.

IFIP WG10.4 views dependability issues from three aspects: threats, attributes, and
means. The taxonomy of the precise terms and their relationship is delineated in the

https://doi.org/10.1017/9781316163047.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781316163047.003


1.2 Dependability Measures and Metrics 5

Dependability

Threats
Failures
Errors
Fault

Means

Fault Forecasting
Fault Tolerance
Fault Removal
Fault Prevention

Attributes

Maintainability
Safety
Reliability
Availability

Figure 1.1 IFIP WG10.4 dependability tree.

dependability tree as shown in Figure 1.1 [2, 5]. The dependability tree has subsequently
been extended to include security as well [2].

The threats to dependability can be viewed in terms of faults, errors, and failures.
Faults are adjudged causes of errors and failures. A fault, when exercised, may
produce an internal error. Errors, either singly or on accumulation, may give rise
to a failure. Failure of a subsystem in turn becomes a fault at the system level.
Faults for electronic hardware have been further classified into permanent, transient,
and intermittent [7]. For software, faults were recently classified into “Bohrbugs,”
(non-aging-related) “Mandelbugs,” and aging-related bugs [8], and for networks errors
have been classified into single-bit, multiple-bit, and correlated errors in [9]. Failures
have been classified into omission failures, value (or content) failures, and timing
failures [10]. Timing failures are also known as performance failures or dynamic
failures. Failures are also classified by their severity [11] or criticality [12]. For
instance, failures in safety-critical and life-critical systems can be classified into safe and
unsafe failures. For capturing security metrics, failures have been classified into those
compromising confidentiality, those compromising integrity and those leading to a lack
of access (that is, unavailability) [13, 14]. For further discussion on this topic, see [2].

The means to achieving and assuring dependability include fault prevention (or
fault avoidance), which consists of carefully designing a system with a minimal
number of faults, and fault removal, which is the process of finding and fixing bugs
during testing or during operation. Fault tolerance constitutes a set of techniques
that allow the system as a whole to continue to function in spite of component or
subsystem failures. The use of redundancy is an essential part of fault tolerance. Using
more components than required (massive redundancy), repeating an operation (time
redundancy) or using more bits than required (information redundancy) are commonly
used techniques. Furthermore, the management of redundancy including detection,
location, reconfiguration and recovery is an essential aspect of fault tolerance. Finally,
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fault forecasting consists of methods to predict the occurrence of faults/errors/failures
or associated dependability attributes.

The attributes of dependability that will be considered in the subsequent chapters of
this book are informally defined next, by combining the definitions taken from both the
IEC international vocabulary [4] and the IFIP WG10.4 working group [2].

Reliability

• ability to perform a required function under given conditions for a given time
interval [4];

• continuity of correct service [2].

Availability

• ability to be in a state to perform a required function, under given conditions,
at a given instant of time, or after enough time has elapsed, assuming that the
required external resources are provided [4];

• readiness for correct service [2].

Maintainability

• ability to be retained in, or restored to, a state in which it can perform a required
function, under given conditions of use and maintenance [4];

• ability to undergo modifications and repairs [2].

A fundamental difference between reliability and availability is that reliability refers
to failure-free operation during an interval, while availability refers to failure-free
operation at a given instant of time, usually the time when a device or system is accessed
to provide a required function or service. Reliability is a measure that characterizes
the failure process of an item, while availability combines the failure process with the
restoration or repair process and looks at the probability that at a given time instant
the item is operational independently of the number of failure/repair cycles already
undergone by the item.

Each one of the above attributes can be characterized by different metrics that will
be formally defined in Chapter 3. In the probabilistic approach to the quantitative
dependability assessment, the above attributes (reliability, availability, maintainability)
will be computed as the probability of occurrence of specific events.

• For computing the attribute reliability, we refer to the event that the system is
operating continuously without failures in a given interval under specified operating
and environmental conditions. The reliability is the probability that this event occurs.

• For computing the attribute availability, we refer to the event that the system is
operating at a given point in time independently of the number of failures (and
repairs) already incurred by the system. The availability is the probability that this
event occurs.
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• For computing the attribute maintainability, we refer to the event that when the system
is not operational due to failures, it will be recovered to an operating condition. The
maintainability is the probability that this event occurs.

The traditional dependability metrics defined above take a system-oriented perspec-
tive [2]. Service-oriented dependability metrics as defined by Tortorella [15], on the
other hand, take a user-oriented perspective. Tortorella [15] classifies the figures of merit
for service dependability into three attributes:

Service accessibility: the ability to initiate the service request when desired.
Service continuity: the successful continuation of a successfully initiated service

request.
Service release: the successful completion of an initiated service request.

Bauer and Adams [16] state that since most services are reliable, it is more convenient to
focus on the much smaller number of unreliable service events or service defects. These
service defects are conveniently normalized as the number of calls or customer demands
not served per million attempts, referred to as defects per million (DPM) [16, 17].

1.3 Examples of System Dependability Evaluation

So far, we have examined several conceptual and theoretical aspects of dependability.
We present a brief overview of several examples of dependability evaluation in this
section. The motivation behind presenting these examples is threefold:

• provide concrete evidence of the applicability of the techniques that will be
encountered in the subsequent chapters of this book;

• illustrate how the dependability techniques are employed in the evaluation of specific
systems;

• showcase different real-life case studies that span the whole gamut of dependability
evaluation, ranging from pure reliability evaluation to systems showing attributes of
availability, maintainability, and beyond.

1.3.1 Pure Reliability Evaluation

Mission-critical systems like aircraft and spacecraft flight control, nuclear reactor
control systems and telecommunication systems are characterized by stringent require-
ments imposed by government regulatory bodies on the probability of catastrophic
failure. As an example, the US Federal Aviation Administration (FAA) mandates
that the catastrophic failure probability of aircraft should be below 10−9/flight-hour
[18, 19]. These are classic examples of systems requiring pure reliability evaluation.
Ramesh et al. [20] consider the reliability evaluation of an aircraft in a flight
operation time management scenario. They develop analytical and numerical methods
for probabilistic risk analysis using fault trees, Markov chains, and stochastic Petri
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nets. Hjelmgren et al. [21] carry out the reliability analysis of a fault-tolerant Full
Authority Digital Electronic Control system (FADEC) used for control of an aircraft gas
turbine engine on an aircraft equipped with a single engine. Two redundancy options,
including a two-channel hot standby and a three-channel triple modular redundancy
(TMR) system that is reconfigured into a two-channel hot standby after an error has been
detected and located, are evaluated. Markovian models are used to assess the probability
of failure for the system. The operational framework for fault detection, identification
and recovery in autonomous spacecraft has been studied in [22] using dynamic fault
trees and Bayesian networks.

1.3.2 Safety Analysis of Critical Systems

In safety-critical systems, like chemical, nuclear or power plants, or intensive care units
for emergency rooms or operating theatres in a hospital, the occurrence of a system
failure may entail catastrophic consequences for human life or the environment. The
interest in the analysis is to evaluate the probability that such a catastrophic condition
may occur, and the time of the first occurrence of such a catastrophic condition.

1.3.3 Availability and Maintainability Evaluation

High-availability systems, such as the IBM BladeCenter R©, are designed to provide
commercial services such as e-commerce, financial, stock trading, and telephone
communication services [23]. Blade servers are widely adopted because of their
modular design, with industry-standard racks accommodating multiple servers together
with shared power, cooling, and other services within the rack chassis. Availability
requirements for such systems are in the region of 0.999 99 (“five nines”), with annual
mean system downtime requirements below six minutes. Smith et al. [23] present a
detailed availability analysis of an IBM BladeCenter comprising up to 14 separate blade
servers contained within a single chassis. They construct a comprehensive two-level
hierarchical model with a higher-level fault tree model of the system with the underlying
subsystems and components being modeled as lower-level Markov chains. Specific
dependability metrics for this model include the system availability and the downtime
in minutes/year. In addition, they conduct sensitivity analysis of the system, including
the contribution of each component to a single blade downtime.

1.3.4 Software Dependability

Software aging [24] is now a well-recognized phenomenon, resulting from degradation
in the software state or the execution environment. This degradation is due to
such causes as memory bloating and leaking, unreleased file locks, data corruption,
storage space fragmentation and accumulation of roundoff errors. The net result is
performance degradation of the software, possibly resulting in a crash/hang failure.
Software aging-related bugs are included in the software fault classification (Bohrbugs
or Mandelbugs) by [24]. To counteract the effects of aging-related problems, software
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rejuvenation is often employed, which entails occasionally stopping the software,
cleaning up its state and the environment and restarting the software. The primary
motivation behind this example [24] is to derive optimal rejuvenation schedules to
maximize availability or minimize downtime cost. Toward this goal, the authors first
construct a semi-Markov reward model based on workload and resource usage data
collected from a Unix environment. The model is then solved to obtain estimated times
to exhaustion for each resource. The results from the semi-Markov reward model are
then fed into a higher-level semi-Markov availability model that accounts for failure
followed by reactive recovery, as well as proactive recovery, to determine the optimal
rejuvenation schedule.

1.3.5 Service-Oriented Dependability

Service-oriented environments like telecommunication systems are better evaluated
using service-oriented dependability metrics. In this example, we focus on an
environment that supports Voice over IP (VoIP) functionality using the session initiation
protocol (SIP), an application-layer control protocol for creating, modifying, and
terminating sessions, including Internet telephone calls, multimedia distribution, and
multimedia teleconferences. A typical SIP-based communication involves interaction
between two parties: the user agent client (UAC) and the user agent server (UAS). To
establish a SIP call session, signaling messages are exchanged with the mediation of an
application server. The application server, such as the IBM’s WebSphere Application
Server (WAS) [25] or BEA’s WebLogic Server [26], is implemented as a software
process and provides rich SIP functionality for the users. This example [17, 27]
considers that the SIP application installed on the application server is a back-to-back
user agent (B2BUA), which acts as a proxy for SIP messages in VoIP call sessions [28].
Any failure of the application server will result in lost calls, either newly arriving calls
due to blocking, or in-progress calls due to cutoff. A blocked call event is defined as
a call that was prevented from being successfully established due to failures. A cutoff
call event occurs when a stable call is terminated prior to either party going on-hook. In
this example, we are primarily interested in computing DPM, a commonly used service
(un)reliability measure for telecommunication systems. DPM accounts for all types of
call losses, including blocked and cutoff calls.

1.3.6 Task-Oriented Dependability

A task, which requires a specified amount of work to be executed, is processed by a
system that may change its computational power in time due to failures and repairs or
to variations in the performance level. A task-oriented view of such a system recognizes
the fact that the task completion time is affected by changes in the system computational
power. For example, the occurrence of a fault during the execution of a task may cause
the task to be dropped, or to be preempted and then resumed at a later system recovery,
or to be preempted and then restarted from the beginning when the system is up again.
Analysis of the distribution of the task completion time under different interruption and
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recovery policies when the computing system changes its mode of operation randomly
can be found in [29–31].

1.4 Predictive Dependability Assessment

Quantitative dependability analysis is conveniently applied in the earliest phases of
a design process with the goal of evaluating the conformity to specifications and
of comparing different design alternatives. Such methods have also been used in
later phases such as verification or operational phases. Some areas where predictive
dependability techniques are invaluable, not only from a technical but also from a social
and economic point of view, and to determine the success of a project, are:

Risk assessment and safety analysis: The risk level associated with a technological
activity is related to the probability that some malfunction appears in a part of a
system and the consequences that this malfunction may have on the system as a
whole, on the workers or persons working in the proximity of the malfunctioning
system or on the surrounding environment [32]. Dependability theory offers a
framework to evaluate the probability that a malfunction may appear in the
system, thus providing a necessary input in the construction of a quantitative
risk assessment [33]. Quantitative evaluation of safety-critical systems is also the
objective of international electronic standards [34].

Design and contract specifications: In the design specifications of complex or
safety-critical systems, dependability clauses are often included. We have already
seen examples in Sections 1.3.1 and 1.3.3. These clauses may be in the form of
a guaranteed availability, or in the form of an upper bound on the total expected
downtime in a given period (e.g., one year), or in the form of probability of correct
operation in a given mission time. The fulfillment of the dependability clauses
requires the capability of quantitatively predicting the required measures from the
earliest phases of system design.

Technical assistance and maintenance: The cost of the technical assistance and
maintenance services depends on the expected number of requests that will be
issued in a given period of time to keep or to restore the system in proper
operating conditions. The number of requests depends on the expected number
of failures, on their type, and severity, and on the complexity of the actions that
are needed to recover to operating condition. Planning the technical assistance
service requires an a priori estimation of the number of times the assistance will
be needed. Furthermore, the knowledge of the behavior of the system in time may
allow one to predict the expected cost of system outages in a given time interval
of operation and to infer the logistics of the maintenance services – number of
spares for each component or subsystem, scheduling of repair crews, location
of repair facilities, and so forth. Warranty periods can also be seen as an aspect of
guaranteed dependability, since, in this case, the manufacturers assume the cost
of the potential malfunctions and resultant downtime.
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Optimal preventive maintenance: Scheduling of preventive maintenance can be
based on dependability quantification. This has been applied both for hardware
preventive maintenance [35–37] and software preventive maintenance [24, 38].

Lifecycle cost: The cost of a system, considered over its complete lifecycle, may
be considered as composed of several parts: an initial acquisition cost known
as CapX, and the operational, labor, and a deferred maintenance cost distributed
over the life of the system, collectively known as OpX. These cost components
are often in conflict; a highly dependable system tends to have a higher
initial acquisition cost but a reduced deferred cost. Dependability prediction
techniques may help in finding an optimal tradeoff between these cost factors,
by balancing the amount to invest in the initial system dependability to reduce
maintenance, operational, and labor costs distributed over the useful life. Formal
cost minimization techniques can be applied to solve this problem [39].

Market competitiveness: Dependability is often a key ingredient in product differen-
tiation and valorization leading to the commercial success of a product.

Summary

In conclusion, we have presented in this chapter formal definitions of various
dependability-related terms: availability, reliability, maintainability, and safety. We have
briefly referred to various measures of dependability. Several case studies to illustrate
the practical applicability of the techniques were briefly presented. This chapter sets
the stage for the reader to start with a clear understanding of the terminology and
expectations for the rest of the chapters.

1.5 Further Reading

Any journey into understanding dependability begins with [1, 2], where a compre-
hensive overview of the dependability terminology was presented. Another source of
information is the IEC international vocabulary [4]. Two edited volumes by K. B. Misra
provide excellent source material on all the topics discussed here [40, 41]. We caution
the reader, though, that the terminology we use is somewhat different from that used
in [41]. For instance, compare, and contrast our Figure 1.1 with Figure 1.2 in [41].
For software reliability engineering, a good source is [42]; for safe software in critical
applications, [43]. More recent discussions on software failures and their mitigation can
be found in [8, 24, 44]. Tortorella [15] presents detailed definitions of service-oriented
dependability metrics. Computing of service-oriented metrics is discussed in [45]. The
related field of risk assessment is covered in [33, 46].
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