Y. Odai Nagoya Math. J. Vol. 107 (1987), 135-146

ON UNRAMIFIED CYCLIC EXTENSIONS OF DEGREE *l* OF ALGEBRAIC NUMBER FIELDS OF DEGREE *l*

YOSHITAKA ODAI

Introduction

Let l be an odd prime number and let K be an algebraic number field of degree l. Let M denote the genus field of K, i.e., the maximal extension of K which is a composite of an absolute abelian number field with K and is unramified at all the finite primes of K. In [4] Ishida has explicitly constructed M. Therefore it is of some interest to investigate unramified cyclic extensions of K of degree l, which are not contained in M. In the preceding paper [6] we have obtained some results about this problem in the case that K is a pure cubic field. The purpose of this paper is to extend those results.

Let Q denote the field of rational numbers and let Z be the ring of rational integers. Let ζ be a primitive *l*-th root of unity. Let $k = Q(\zeta)$ and $L = K(\zeta)$. In Section 1 we see how an unramified cyclic extension N of K of degree l is obtained from an element α of L. Here α satisfies some conditions, one of which is that there exists an ideal \mathfrak{A} of L such that $(\alpha) = \mathfrak{A}^l$. In Section 2, assuming that L is a ramified Galois extension of k, we give a criterion for N to be contained in M by means of α (see Theorem 1). In Section 3, assuming that l is regular, we define F_1 (resp. F_0) as the composite of all those N, for which \mathfrak{A} are ambigious over k(resp. principal) (see Definition). Theorem 2 proves that $F_1 = F_0 M$. In Section 4 F_0 is investigated and Theorem 4 gives infinitely many examples of N not contained in M.

NOTATIONS. G = Gal(L/K) is a cyclic group of order l-1. Let τ be a generator of G and let \dot{r} be the element of Z/lZ such that $\zeta^r = \zeta^{\dot{r}}$. Let Z/lZ[G] denote the group ring of G over Z/lZ. We define

$$\dot{e}_i = -\sum\limits_{j=0}^{l-2} \dot{r}^{-ij_{ au j}} \qquad ext{for } 1 \leq i \leq l-1 \,.$$

Received May 16, 1986.

Then \dot{e}_i are mutually orthogonal idempotent elements of Z/lZ[G]. For a Z/lZ[G]-module A, let

$$A(i) = A^{i_i} = \{a^{i_i}; a \in A\},\$$

then $A(i) = \{a \in A; a^{\dot{e}_i} = a\} = \{a \in A; a^r = a^{\dot{r}^i}\}$ and $A = \prod_{i=1}^{l-1} A(i)$ (direct product). We take r (resp. e_i) as an element of Z (resp. Z[G]) congruent to \dot{r} (resp. \dot{e}_i) modulo l. For an algebraic number field F, let F^* (resp. E_F) denote its multiplicative group (resp. its unit group).

§1. Preliminaries

In this section, let K be an algebraic number field (not necessarily of degree l) such that $K \cap k = Q$. The main idea of this section is due to G. Gras [1].

Let \mathscr{K} be the set of all the cyclic extensions of K of degree l and let \mathscr{L} be the set of all the cyclic extensions of L of degree l, which are abelian over K. We note that any element of \mathscr{L} is written in the form $L(\sqrt[l]{\alpha})$, where $\alpha \in L^*$. For $1 \leq \lambda \leq l$, let

$$P_{\lambda} = \{(t_1, \cdots, t_{\lambda}) \in \{1, \cdots, l-1\}^{\lambda}; \sum_{i=1}^{\lambda} r^{t_i} \equiv 0 \pmod{l}\}.$$

Let us define that $(t_1, \dots, t_{\lambda})$ and $(t'_1, \dots, t'_{\lambda})$ are equivalent if $t_1 - t'_1 \equiv \dots \equiv t_{\lambda} - t'_{\lambda} \pmod{l-1}$ and let T_{λ} be a complete system of representatives of the equivalence classes. For $(t) = (t_1, \dots, t_{\lambda}) \in P_{\lambda}$, we can take $\Gamma(t) \in \mathbb{Z}[G]$ such that $e_1 \cdot \sum_{i=1}^{\lambda} \tau^{t_i} = l\Gamma(t)$ since $e_1 \tau \equiv e_1 r \pmod{l\mathbb{Z}[G]}$. Let $\operatorname{Tr}_{L/K}$ denote the trace map from L to K.

LEMMA 1. For $L(\sqrt[l]{\alpha}) \in \mathscr{L}$, let

$$A_{\lambda} = \begin{cases} 0 & \text{if } T_{\lambda} \text{ is empty,} \\ l \sum_{(t) \in T_{\lambda}} \operatorname{Tr}_{L/K}(\alpha^{\Gamma(t)}) & \text{otherwise,} \end{cases}$$
$$a_{1} = -A_{1}, \quad a_{\lambda} = -\lambda^{-1}(A_{\lambda} + \sum_{i=1}^{\lambda-1} a_{i}A_{\lambda-i}) \quad \text{for } 2 \leq \lambda \leq l.$$

Let x be a root of $f(X) = X^{\iota} + \sum_{\lambda=1}^{\iota} a_{\lambda} X^{\iota-\lambda} = 0$. Let ρ be the mapping $L({}^{\iota}\sqrt{\alpha}) \to K(x)$. Then ρ is a bijection of \mathscr{L} onto \mathscr{K} .

Proof. Let $N' = L({}^{\iota}\sqrt{\alpha})$. N' is a cyclic extension of K of degree l(l-1). Let N be a unique subfield of N', of degree l over K. Then the mapping $N' \to N$ is clearly a bijection of \mathscr{L} onto \mathscr{K} . Therefore it suffices to show that N = K(x). The generator τ of G can be extended to be a generator of $\operatorname{Gal}(N'/N)$. Let ν be the generator of $\operatorname{Gal}(N'/L)$

such that ${}^{\iota}\sqrt{\alpha}{}^{\nu} = {}^{\iota}\sqrt{\alpha} \cdot \zeta$.

1st step. Let $y = \operatorname{Tr}_{N'/N}({}^{l}\sqrt{\alpha}) = \sum_{i=1}^{l-1} {}^{l}\sqrt{\alpha}^{*i}$. Assume that $y \in K$. Then $y^{*j} = y$ for $1 \leq j \leq l-1$, i.e.,

$$\sum_{i=1}^{l-1} \zeta^{jri} \cdot {}^{l} \sqrt{\alpha} {}^{\mathfrak{r}^{i}} = \sum_{i=1}^{l-1} {}^{l} \sqrt{\alpha} {}^{\mathfrak{r}^{i}} \qquad \text{for } 1 \leq j \leq l-1 \,.$$

This implies that the matrix $(\zeta^{jr^{i}} - 1)_{1 \leq i, j \leq l-1}$ is not regular. It is a contradiction. Therefore $y \notin K$ and N = K(y).

2nd step. We see from Kummer theory that $\alpha^{i-r} \in L^{*i}$, which implies that $\alpha^{e_1} \equiv \alpha \pmod{L^{*i}}$. Since $L({}^i\sqrt{\alpha^{e_1}}) = L({}^i\sqrt{\alpha})$, we have that N = K(z)where $z = \operatorname{Tr}_{N'/N}({}^i\sqrt{\alpha^{e_1}})$ (cf. 1st step). Let $B_{\lambda} = \operatorname{Tr}_{N/K}(z^i)$ for $1 \leq \lambda \leq l$. If $B_{\lambda} = A_{\lambda}$, we see from Newton relations for elementary symmetric forms that the minimal polynomial of z over K is f(X). This implies N = K(x). Therefore it suffices to show that $B_{\lambda} = A_{\lambda}$.

3rd step.

$$B_{\lambda} = \sum_{j=1}^{l} \left(\sum_{i=1}^{l-1} \zeta^{j\tau^{i}} \cdot {}^{t} \sqrt{\alpha^{\epsilon_{1}}}^{t^{i}} \right)^{\lambda}$$
$$= \sum_{j=1}^{l} \sum_{\langle t \rangle} \zeta^{jR(t)} \cdot {}^{l} \sqrt{\alpha^{\epsilon_{1}}}^{S(t)}$$

where (t) runs over $\{1, \dots, l-1\}^{i}$ and $R(t) = \sum_{i=1}^{l} r^{t_{i}}$, $S(t) = \sum_{i=1}^{l} \tau^{t_{i}}$. As $\sum_{j=1}^{l} \zeta^{jR(t)} = l$ or 0 according as $R(t) \equiv 0 \pmod{l}$ or not, we have that

$$B_{\lambda} = \begin{cases} 0 & \text{if } P_{\lambda} \text{ is empty,} \\ l \sum_{(t) \in P_{\lambda}} {}^{t} \sqrt{\alpha^{e_1}}^{S(t)} = l \sum_{(t) \in T_{\lambda}} \operatorname{Tr}_{N'/N}({}^{t} \sqrt{\alpha^{e_1}}^{S(t)}) & \text{otherwise.} \end{cases}$$

It follows from $e_1S(t) = l\Gamma(t)$ that

$$({}^{\iota}\sqrt{\alpha^{e_1}}^{S(\iota)})^{\iota} = (\alpha^{r(\iota)})^{\iota}$$
 and $({}^{\iota}\sqrt{\alpha^{e_1}}^{S(\iota)})^{e_1} = (\alpha^{r(\iota)})^{e_1}.$

Noting that $\zeta^{e_1} = \zeta$, we have that

$${}^{\iota}\sqrt{\alpha^{e_1}}^{S(t)} = \alpha^{\Gamma(t)}$$

This implies $B_{\lambda} = A_{\lambda}$ and completes the proof of the lemma.

Let \mathscr{K}° (resp. \mathscr{L}°) be the set of all the elements of \mathscr{K} (resp. \mathscr{L}) which are unramified over K (resp. L).

COROLLARY. The restriction of ρ on \mathcal{L}° is a bijection of \mathcal{L}° onto \mathcal{K}° .

Proof. Let $N' \in \mathscr{L}$ and $N = \rho(N') \in \mathscr{K}$. Then N'/L and N/K are cyclic extensions of degree l. As [L:K] = l - 1, we see that N/K is unramified if and only if N'/L is unramified.

EXAMPLE. Let T denote $\operatorname{Tr}_{L/K}$.

In the case l = 3: If we take r = -1 and $e_1 = -1 + \tau$, then

 $f(X) = X^3 - 3X - T(\alpha^{1-r}).$

In the case l = 5: If we take r = 2 and $e_1 = -1 + 2\tau + \tau^2 - 2\tau^3$, then

$$\begin{split} f(X) &= X^{5} - 10X^{3} - 5T(\alpha^{-1+\tau^{2}})X^{2} \\ &+ (5 - 5T(\alpha^{-1-\tau+\tau^{2}+\tau^{3}}))X - T(\alpha^{-2-\tau+2\tau^{2}+\tau^{3}}) \,. \end{split}$$

$\S 2$. Criterion to be contained in the genus field

Hereafter we assume that K is an algebraic number field of degree l such that L is a Galois extension of k. (Then L/k is a cyclic extension of degree l.) Let σ be a generator of Gal(L/k). Then L is a Galois extension of Q, in fact, Gal(L/Q) is generated by σ and τ .

Let M' denote the genus field of L over k, i.e., the maximal extension of L which is a composite of an abelian extension of k with L and is unramified at all the finite primes of L.

LEMMA 2. Let $L(\sqrt[n]{\alpha})$ and K(x) be as in Lemma 1. If L is ramified over k, then we have that

$$L(\sqrt[l]{\alpha}) \subset M' \iff K(x) \subset M.$$

Proof. Let $N' = L(\sqrt[l]{\alpha})$ and N = K(x). Assume that $N' \subset M'$. Then, as N' is abelian over K and over k, we see that N' is a Galois extension of Q. Moreover, since L is ramified over k, then $\operatorname{Gal}(N'/k) \simeq (Z/lZ)^2$. If K is not Galois over Q, then an application of Lemma 2 in [5] to $\operatorname{Gal}(N'/Q)$ proves that $N \subset M$. If K is cyclic over Q, then so is L. We see from Kummer theory that N' is abelian over Q, which implies that $N \subset M$. The converse is clear.

THEOREM 1. Let K be an algebraic number field such that $K \cap k = Q$. Let α be an element of L* satisfying the following conditions:

- $0. \quad \alpha \not\in L^{*\iota}.$
- I. $\alpha^{\tau-r} \in L^{*l}$.
- II. (i) There exists an ideal A of L such that (α) = A^l,
 (ii) α is a l-th power residue modulo (1 ζ)^l.

Let x be as in Lemma 1. Then K(x) is an unramified cyclic extension of K of degree l. Conversely any unramified cyclic extension of K of degree

l is obtained as above.

Moreover, if K is an algebraic number field of degree l such that L is a ramified Galois extension of k, we obtain that $K(x) \not\subset M$ if and only if III. $\alpha^{\sigma^{-1}} \notin L^{*^{l}}$.

Proof. The first assertion follows from Lemma 1, its corollary and the ramification theory in Kummer extensions (cf. [3] Ia Satz 9). The second assertion follows at once from Lemma 2 and the fact that

 $L(\sqrt[l]{\alpha}) \not\subset M' \iff L(\sqrt[l]{\alpha})$ is not abelian over $k \iff \alpha^{\sigma-1} \notin L^{*l}$.

§3. The fields F_2 and F_1

In this section, let l be a regular odd prime number and let K be an algebraic number field of degree l such that L is a Galois extension of k. Then L is ramified over k.

Let $\mathscr{H} = \{c \in \text{the ideal class group of } L; c^{l} = 1\}$ and let \mathscr{H}_{0} denote the identity subgroup $\{1\}$ of \mathscr{H} . Let \mathscr{H}_{2} (resp. \mathscr{H}_{1}) denote the Sylow *l*-subgroup of the group of ambiguous ideal classes (resp. ideal classes represented by ambigious ideals) of L over k. As the class number of kis not divisible by l, we see easily that

$$\mathscr{H}_0 \subset \mathscr{H}_1 \subset \mathscr{H}_2 \subset \mathscr{H}$$
.

So these are Z/lZ[G]-modules. Let N be an unramified cyclic extension of K of degree l. By Theorem 1, N is obtained from $\alpha \in L^*$ such that $(\alpha) = \mathfrak{A}^i$ where \mathfrak{A} is an ideal of L. The condition I of the theorem implies that the ideal class $c1(\mathfrak{A})$ represented by \mathfrak{A} belongs to $\mathscr{H}(1)$. We see from Lemma 1 that $c1(\mathfrak{A})$ is uniquely determined. For $i \in \{0, 1, 2\}$, we say that N is associated with \mathscr{H}_i if $c1(\mathfrak{A}) \in \mathscr{H}_i(1)$.

DEFINITION. For $i \in \{0, 1, 2\}$, F_i is defined as the composite of all the unramified cyclic extensions of K of degree l, which are associated with \mathscr{H}_i .

Remark. We see that F_0 is the same as the composite of all the unramified cyclic extensions of K of degree l, which are obtained from the units of L.

To investigate F_i (i = 0, 1, 2), we first consider the genus field M of K. Let p_1, \dots, p_s be all the rational primes congruent to 1 modulo l and totally ramified in K. Then $(p_i) = p_i^{1+\tau+\dots+\tau^{l-2}}$ for $1 \leq i \leq s$, where p_i are

prime ideals of k. Let h denote the class number of k. We write

$$\mathfrak{p}_i^h = (\pi_i) \text{ for } 1 \leq i \leq s, \text{ where } \pi_i \in k^*.$$

LEMMA 3. Let $U = \{ \alpha \in k^*; (\alpha, 1 - \zeta) = 1 \}$ and $U' = \{ \alpha \in U; \alpha \equiv 1 \pmod{(1 - \zeta)^t} \}$. Then:

(i) For any $\alpha \in U$, there exists a rational integer m such that $(\alpha \zeta^m)^{e_1} \in U'U^i$.

(ii) Let ρ be as in Lemma 1 and put $\rho(L) = K$. Let us take π_i so that $\pi_i^{e_1} \in U'U^i$ for $1 \leq i \leq s$; then

$$M = egin{cases} M_{\scriptscriptstyle 0} \cdot
ho(L({}^{\iota}\sqrt{\,\zeta\,})) & ext{if } L({}^{\iota}\sqrt{\,\zeta\,})/L ext{ is unramified,} \ M_{\scriptscriptstyle 0} & ext{otherwise,} \end{cases}$$

where $M_{\scriptscriptstyle 0} = \prod_{i=1}^{s} \rho(L({}^{\iota}\sqrt{\pi_i^{e_1}}))$. (If s = 0, we define $M_{\scriptscriptstyle 0} = K$).

Proof. (i) Let $V = U/U'U^i$. V is a Z/lZ[G]-module. Let $\pi = 1 - \zeta$; then $\{1 - \pi^i\}_{1 \leq i \leq l-1}$ is a Z/lZ-basis of V. As $(1 - \pi^i)^{e_i} \notin U'U^i$, we have that $\dim_{Z/lZ} V(i) = 1$ for $1 \leq i \leq l-1$. As $\zeta^{e_1} = \zeta$, V(1) is generated by ζ . This completes the proof of (i).

(ii) Let $k_i = k(\sqrt[l]{\pi_i^{e_1}})$ and $L_i = L(\sqrt[l]{\pi_i^{e_1}})$. Let $F(p_i)$ (resp. $F(l^2)$) denote a unique subfield, of degree l, of the p_i -th (resp. l^2 -th) cyclotomic field. As $\pi_i^{e_1} \in U'U^i$, only the prime ideals above p_i are ramified in k_i/k . As k_i is a cyclic extension of Q of degree l(l-1), we see that $k_i = kF(p_i)$. Therefore $\rho(L_i) = KF(p_i)$. Similarly, if $L(\sqrt[l]{\zeta})/L$ is unramified, we see that $\rho(L(\sqrt[l]{\zeta})) = KF(l^2)$. Therefore Theorem of [4] completes the proof of (ii).

THEOREM 2. Let l be a regular odd prime number and let K be an algebraic number field of degree l such that L is a Galois extension of k. Let notations be as above. Then we have that

$$F_1 = F_0 M.$$

In particular, if $\mathscr{H}_{2}(1) = \mathscr{H}_{1}(1)$, then

$$F_2 = F_0 M$$
.

Proof. Let $\mathfrak{P}_1, \dots, \mathfrak{P}_t$ be all the prime ideals of L, which are \underline{I} (totally) ramified over k. As (h, l) = 1, we have

$$\mathscr{H}_1 = \langle \mathrm{cl}(\mathfrak{P}_1^h), \, \cdots, \, \mathrm{cl}(\mathfrak{P}_t^h)
angle \, .$$

We write

$$(\mathfrak{P}^{h}_{i})^{l}=(\pi'_{i}) \hspace{0.1in} ext{for} \hspace{0.1in} 1 \leqq i \leqq t, \hspace{0.1in} ext{where} \hspace{0.1in} \pi'_{i} \in k^{*}.$$

Let π_i $(1 \leq i \leq s)$ be as in Lemma 3. Then $(l-1)s \leq t$ and we can take

 $\pi'_i = \pi^{t^a}_b \ ext{for} \ i = as + b, ext{ where } a = 0, \ \cdots, l-2 \ ext{and } b = 1, \ \cdots, s \, .$

For i > (l-1)s, observing the decomposition groups of the prime ideals \mathfrak{P}_i^l of k over Q, we see that there exist divisers $d(i) \neq l-1$ of l-1 such that $\pi_i^{\prime_{\tau^{d(l)}-1}} \in E_k$. To obtain F_i , we may consider only $\alpha \in L^*$ such that $(\alpha) = \mathfrak{A}^l$ and $\operatorname{cl}(\mathfrak{A}) \in \mathscr{H}_1(1)$. Then

$$lpha \equiv arepsilon \prod_{i=1}^t (\pi'^{e_1})^{a(i)} \pmod{L^{*l}} ext{ where } arepsilon \in E_L ext{ and } a(i) \in Z.$$

Here

$$\begin{cases} \pi_i'^{e_1} \equiv (\pi_b^{e_1})^{r^a} \pmod{L^{*l}} & \text{for } i = as + b \leq (l-1)s , \\ \pi_i'^{e_1} \in E_k L^{*l} & \text{for } i > (l-1)s, \text{ because } e_1 \in (\tau^{d(i)} - 1, l)Z[G] . \end{cases}$$

Therefore

$$lpha \equiv arepsilon' \prod_{i=1}^s (\pi_i^{e_1})^{b(i)} \pmod{L^{st l}} ext{ where } arepsilon' \in E_{\scriptscriptstyle L} ext{ and } b(i) \in Z ext{.}$$

Then Lemma 3 proves that $F_1 = F_0 M$. It is clear that $\mathscr{H}_2(1) = \mathscr{H}_1(1) \Rightarrow F_2 = F_1$. The proof is complete.

COROLLARY. Let notations and assumptions be as in Theorem 2.

(i) In the case that K is cyclic: Let f be the conductor of K. If $f = l^2$ or there exists a prime divisor $p \neq l$ of f such that $p \not\equiv 1 \pmod{l^2}$, then $F_2 = F_0 M$.

(ii) In the case that K is not cyclic: If K is totally real, then $F_2 = F_0 M$.

Proof. Let N denote the norm map from L to k. Let $A = \mathscr{H}_2/\mathscr{H}_1$ and $B = (E_k \cap NL^*)/NE_L$. For $\operatorname{cl}(\mathfrak{A}) \in \mathscr{H}_2$, there exists $\alpha \in L^*$ such that $\mathfrak{A}^{r-1} = (\alpha)$. Let ϕ be the mapping $\operatorname{cl}(\mathfrak{A}) \pmod{\mathscr{H}_1} \to N\alpha \pmod{NE_L}$. It is well known that ϕ is a group isomorphism of A onto B. Both A and B are Z/lZ[G]-modules. As k is Galois over Q, we can write $\tau\sigma\tau^{-1} = \sigma^{r^x}$ where $x \in \{1, \dots, l-1\}$. Then $A(1) \simeq B(l-x)$, because $\phi(a^r) = (\phi(a)^r)^{r^x}$ for $a \in A$. Let $B^+ = (E_{k^+} \cap NL^*)NE_L/NE_L$ and $B_W = (W_k \cap NL^*)NE_L/NE_L$, where k^+ is the maximal real subfield of k and W_k is the group of roots of unity in k. Then $B = B^+ \times B_W$ (direct product). Since the elements of E_{k^+} are invariant by $\tau^{(l-1)/2}$, we see that $B^+ = \prod_{i.even} B(i)$ (direct product) and $B_w = B(1)$.

(i) x = l - 1. Namely $A(1) = B(1) = B_w = (W_k \cap NL^*)/(W_k \cap NE_L)$. It is clear that $\zeta \in NE_L$ if $f = l^2$. Using the properties of Hilbert norm residue symbols (cf. [3] II Section 11) in k, we see that $\zeta \notin NL^*$ if there exists a prime divisor $p \neq l$ of f such that $p \not\equiv 1 \pmod{l^2}$. Therefore $A(1) = \{1\}.$

(ii) If K is totally real, then $\sigma^{-1}\tau^{(l-1)/2}\sigma = \tau^{(l-1)/2}$, i.e., x is even. Hence l-x is odd. $l-x \neq 1$ as K is not cyclic. Therefore $A(1) = B(l-x) = \{1\}$.

§4. The field F_0

In this section l is not necessarily regular. The definition of F_0 in Section 3 is still valid.

THEOREM 3. Let K be a totally real algebraic number field of degree l such that L is a ramified Galois extension of k. Then

 $F_{0} \subset M$.

Proof. Let k^+ (resp. L^+) be the maximal real subfield of k (resp. L). As $L^+ = Kk^+$, L^+ is totally real when K is totally real. Then it follows that $E_L/E_L^i \simeq (W_L E_{L^+})/(W_L E_{L^+})^i$ (as $Z/lZ[\operatorname{Gal}(L/Q)]$ -modules) where W_L is the group of roots of unity in L (cf. Theorem 4.12 of [9]). For $\varepsilon \in E_{L^+}$, noting that ε is invariant by $\tau^{(l-1)/2}$, we have that

$$arepsilon^{ au-r}\in L^{st l}\Longrightarrow arepsilon\in L^{st l}\Longrightarrow arepsilon^{\sigma-1}\in L^{st l}$$
 .

On the other hand $W_L^{\tau-r}$, $W_L^{\tau-r} \in L^{*\iota}$, since W_L is generated by $-\zeta$ or $-\iota\sqrt{\zeta}$. Therefore $W_L E_{L^+}$ has no elements satisfying the conditions I and III of Theorem 1, and so does E_L . The proof is complete by Remark just following Definition in Section 3.

Next we consider the case that K is not totally real.

LEMMA 4. Let H be a cyclic group of order l and let σ be a generator of H. Let $g(\sigma)$ be the element of Z[H] such that $(1 - \sigma)^{l-1} = 1 + \sigma + \cdots + \sigma^{l-1} + lg(\sigma)$. Then $g(\sigma)$ is invertible in Z[H].

Proof. We see that the ring homomorphism

$$\boldsymbol{Z}[H] \ni f(\sigma) \longrightarrow f(1) \times f(\zeta) \in \boldsymbol{Z} \times \boldsymbol{Z}[\zeta] \text{ (direct product)}$$

is injective, because $(X - 1) \cap (X^{l-1} + X^{l-2} + \dots + 1) = (X^{l} - 1)$ in $\mathbb{Z}[X]$. We note that g(1) = -1 and $g(\zeta) = (1 - \zeta)^{l-1}/l = \prod_{i=1}^{l-1} (1 + \zeta + \dots + \zeta^{i-1})^{-1}$.

Let $g'(\sigma) = \prod_{i=1}^{l-1} (1 + \sigma + \dots + \sigma^{l-1}) - l^{-1} (1 + (l-1)!)(1 + \sigma + \dots + \sigma^{l-1})$ $\in \mathbb{Z}[H]$; then $g'(1) = g(1)^{-1}$ and $g'(\zeta) = g(\zeta)^{-1}$. This proves $g'(\sigma) = g(\sigma)^{-1}$.

Let K be a pure algebraic number field of degree l, i.e., $K = Q(\sqrt[l]{m})$ where $m \neq 1$ is a *l*-th power-free natural number. Then it is well known that L is a ramified Galois extension of k.

THEOREM 4. Let $K = Q(\sqrt[l]{m})$ where $m \neq 1$ is a l-th power-free natural number written as

$$D^{l} + d$$
 with $D, d \in \mathbb{Z}, D > 0, d | D^{l}, d \neq \pm 1, l | D, l \nmid d$.

Let σ be the generator of $\operatorname{Gal}(L/k)$ such that $\sqrt[i]{m} = \sqrt[i]{m} \cdot \zeta$. We define $\eta = (\sqrt[i]{m} - D)^{1-\sigma}$ and

$$arepsilon_{0}=\zeta\cdot\prod\limits_{i=1}^{l-2}\eta^{a(i)\sigma^{i}}$$

where a(i) is a rational integer congruent to $\sum_{j=1}^{i} j^{-1}$ modulo l. Then ε_0 is a unit of L satisfying the conditions 0, I, II and III of Theorem 1. Therefore we have

$$F_{\mathfrak{o}} \not\subset M$$
.

Proof. We note that $\operatorname{Gal}(L/Q)$ is generated by σ and τ with the relations $\sigma^{\iota} = \tau^{\iota-1} = 1$, $\sigma\tau = \tau\sigma^{\tau}$. Let E_0 be the subgroup of E_L generated by E_k and the conjugates of E_K . Then $E_0 \supset E_L^{\iota}$ (cf. [8]). Let $\theta = ({}^{\iota}\sqrt{m} - D){}^{\iota}/d$, then $\theta \in E_K$ (cf. [2]). As $\eta^{\iota} = \theta^{1-\sigma}$, we have that $\eta \in E_L$ and $\varepsilon_0 \in E_L$.

1st step. We note that $m = d(D^{i}d^{-1} + 1)$ where $D^{i}d^{-1} \in \mathbb{Z}$. Therefore d is l-th power-free and $(d, D^{i}d^{-1} + 1) = 1$. $D^{i}d^{-1} + 1 \neq \pm 1$ follows from l|D. We see that

$$(d, D^i d^{-1} + 1) = 1 \quad ext{with} \ d
eq \pm 1, \ D^i d^{-1} + 1
eq \pm 1 \ \Longrightarrow d
eq K^i \Longrightarrow heta \ eq E^i_K \Longrightarrow heta \ eq E^{1-\sigma}_0.$$

Let $g(\sigma)$ be as in Lemma 4; then $\theta^{g(\sigma)} \notin E_0^{1-\sigma}$ follows from this lemma. As g(1) = -1, we have that

(1)
$$\eta^{(1-\sigma)^{l-2}} = (\sqrt[l]{m} - D)^{(l-\sigma)^{l-1}} = d(\sqrt[l]{m} - D)^{lg(\sigma)} = \theta^{g(\sigma)}.$$

Therefore $\eta^{(1-\sigma)^{l-3}} \notin E_0$ and $\eta^{(1-\sigma)^{l-2}} \in E_0$, which implies that

(2)
$$\langle \eta, \eta^{\sigma}, \cdots, \eta^{\sigma^{l-s}} \rangle E_0 / E_0 = \langle \eta, \eta^{1-\sigma}, \cdots, \eta^{(1-\sigma)^{l-s}} \rangle E_0 / E_0 \simeq (\mathbb{Z}/l\mathbb{Z})^{l-2}.$$

We define

$$\mathscr{E}=\langle\eta,\eta^{\sigma},\,\cdots,\eta^{\sigma^{l-3}}\!,\eta^{\sigma^{l-2}}
angle\subset E_{\scriptscriptstyle L}$$
 .

The equation (1) implies $\eta^{\sigma^{l-2}} \equiv \theta \pmod{\langle \eta, \eta^{\sigma}, \cdots, \eta^{\sigma^{l-3}} \rangle} \mathcal{E}^l$, since $\theta^{\sigma} \equiv \theta \pmod{\mathcal{E}^l}$. As $\theta \notin E_L^l$, we see from (2) that

(3)
$$\mathscr{E} \cap E_L^l = \mathscr{E}^l \text{ and } \mathscr{E}/\mathscr{E}^l \simeq (\mathbb{Z}/l\mathbb{Z})^{l-1}.$$

2nd step. We shall prove that ε_0 satisfies the conditions I, II and III (0 follows from III). The condition III: Since $\eta^{\sigma^{l-1}} = \eta^{-1-\sigma-\cdots-\sigma^{l-2}}$ and $a(l-2) \equiv 1 \pmod{l}$, we see that $\varepsilon_0^{\sigma^{-1}} \in \mathscr{E} \setminus \mathscr{E}^l$. Therefore (3) implies that ε_0 satisfies III. The condition I: For $j \in (\mathbb{Z}/l\mathbb{Z})^*$, we define

$$\eta_{(j)} = \eta^{1+\sigma+\dots+\sigma^{j'-1}}$$

where j' is a positive rational integer congruent to j modulo l. This definition does not depend on the choice of j' because $\eta^{1+\sigma+\dots+\sigma^{l-1}} = 1$. As $(\mathbf{Z}/l\mathbf{Z})^* = \langle \dot{r} \rangle$, it is clear that

$$\mathscr{E} = \left< \eta_{\scriptscriptstyle (1)}, \eta_{\scriptscriptstyle (\dot{r})}, \, \cdots, \eta_{\scriptscriptstyle (\dot{r}^{l-2})} \right>.$$

Since $\eta^{\tau} = \eta^{1-\sigma + \cdots + \sigma^{\tau'-1}}$, we have that $\eta_{(j)}^{\tau} = \eta_{(jr)}$. Therefore we see from (3) that

$$\{\varepsilon \in \mathscr{E}; \varepsilon \text{ satisfies } \mathbf{I}.\} = \langle \varepsilon_i \rangle \mathscr{E}^t \qquad \text{where } \varepsilon_i = \prod_{i=0}^{l-2} \eta_{(r^i)}^{r^{l-1-i}}.$$

If $\dot{r}^i = j$, then $r^{l-1-i} \pmod{l} = \dot{r}^{-i} = j^{-1}$. Hence

$$\varepsilon_1 \equiv \prod_{j=1}^{l-1} (\eta^{1+\sigma\cdots+\sigma^{j-1}})^{b(j)} \pmod{\mathscr{E}^l}$$

where b(j) is a rational integer congruent to j^{-1} modulo l,

$$\equiv \prod_{i=0}^{l-2} \eta^{(b(i+1)+\dots+b(l-1))\sigma^{i}} \pmod{\mathscr{E}^{l}} \equiv \prod_{i=1}^{l-2} \eta^{-a(i)\sigma^{i}} \equiv (\zeta^{-1}\varepsilon_{0})^{-1} \pmod{\mathscr{E}^{l}}.$$

Therefore $\zeta^{-1}\varepsilon_0$ satisfies I, and so does ε_0 as $\zeta^{r-r} = 1$. The condition II: Clearly ε_0 satisfies II(i). We note that $l \not\mid m$ as $l \mid D$ and $l \not\mid d$. Then $\eta = ({}^t \sqrt{m} - D)/\zeta ({}^t \sqrt{m} - D\zeta^{-1}) \equiv \zeta^{-1} \pmod{(1-\zeta)^l}$ because $({}^t \sqrt{m}, 1-\zeta) = 1$ and $(1-\zeta)^l \mid D(\zeta^{-1}-1)$. Hence $\varepsilon_0 \equiv \zeta \cdot \prod_{\substack{\nu=1 \\ \nu=1}}^{l-2} \zeta^{-\alpha(i)} \equiv 1 \pmod{(1-\zeta)^l}$ because $\sum_{\substack{l=1 \\ \nu=1}}^{l-2} a(i) \equiv 1 \pmod{l}$. Therefore ε_0 satisfies II(ii). The proof of the theorem is complete.

Remark. For a fixed l, there exist infinitely many pure algebraic number fields of degree l, satisfying the assumption of Theorem 4. For example, let D = 2lD', d = 2 with $D' \in \mathbb{Z}$, > 0; then it is known that $D^{l} + d$ is *l*-th power-free for infinitely many D' (cf. [7]).

EXAMPLE. Let f(X) be as in Example of Section 1. Let μ denote $\sqrt[l]{m}$. (1) In the case l = 3: We can take

$$\varepsilon_0 = \zeta \eta^{\sigma}$$
 (cf. [6]).

For $\alpha = \varepsilon_0$, we have

$$f(X) = X^3 - 3X - d^{-2}((9D^6 + 12D^3d + 2d^2) + (-18D^5 - 12D^2d)\mu + 9D^4\mu^2)$$

For example, let D = 6 and d = 2; then $m = 218 = 2 \cdot 109$ and

$$f(X) = X^3 - 3X - 106274 + 35208\,\mu - 2916\,\mu^2.$$

(2) In the case l = 5: We can take

$$\varepsilon_0 = \zeta \eta^{\sigma - \sigma^2 + \sigma^3}$$

For $\alpha = \varepsilon_0$, we have

$$\begin{split} f(X) &= X^{5} - 10X^{3} \\ &- 5d^{-4}(\mu - D)^{4} (5\sum_{\substack{i,j,k \in \mathbf{Z}/5\mathbf{Z} \\ i+2j+4k=2}} [2,i][8,j][6,k] - (\mu - D)^{16})X^{2} \\ &+ \{5 - 5d^{-6}(\mu - D)^{6}(5\sum_{\substack{i,j,k \in \mathbf{Z}/5\mathbf{Z} \\ 2i+3j+4k=1}} [8,i][4,j][12,k] - (\mu - D)^{24})\}X \\ &- d^{-8}(\mu - D)^{8}(5\sum_{\substack{i,j,k \in \mathbf{Z}/5\mathbf{Z} \\ 2i+3j+4k=3}} [14,i][2,j][16,k] - (\mu - D)^{32}), \end{split}$$

where

$$[n,i] = \sum_{\substack{0 \leq j \leq n \\ j \pmod{b} = i}} \frac{n!}{j!(n-j)!} (-D)^{n-j} \mu^j \quad \text{for } n \in \mathbb{Z}, > 0 \text{ and } i \in \mathbb{Z}/5\mathbb{Z}.$$

For example, let D = 10 and d = 2; then $m = 100002 = 2 \cdot 3 \cdot 7 \cdot 2381$ and

$$f(X) = X^{\scriptscriptstyle 5} - 10X^{\scriptscriptstyle 3}$$

+ (214851250061249942499980 - 7812953131906269875000 μ

- $-\ 273446250065312500000\ \mu^{\scriptscriptstyle 2}-\ 78125468730624975000\ \mu^{\scriptscriptstyle 3}$
- + 2148500000350000000 μ^4) X^2
- + (- 6103955090097800313125937395000015
 - $-610378418345705492203375041750000 \,\mu$
 - $\ 488294531251561134375000000 \ \mu^2$

YOSHITAKA ODAI

- + 12207617196230505390610000050000 μ^{3}
- + 4883050784218754125000000 μ^4)X
- + 305189818922084520832602335793971812998499996
- $-7628387370359553697124163530698356329475000 \,\mu$
- 763153085778873923150280657848341250000000 μ^2
- + 305206910252698725568190329921282625025000 μ^{3}
- 45779296903685893553409505874946800000000 μ^4 .

References

- [1] G. Gras, Extensions abéliennes non ramifiées de degré premier d'un corps quadratique, Bull. Soc. Math. France, 100 (1972), 177-193.
- [2] F. Halter-Koch und H.-J. Stender, Unabhängige Einheiten für die Körper $K = Q^{(n}\sqrt{D^n \pm d})$ mit $d \mid D^n$, Abh. Math. Sem. Univ. Hamburg, 42 (1974), 33-40.
- [3] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Physica-Verlag, Würzburg/Wien, 1970.
- [4] M. Ishida, On the genus field of an algebraic number field of odd prime degree, J. Math. Soc. Japan, 27 (1975), 289-293.
- [5] S. Kobayashi, On the *l*-dimension of the ideal class groups of Kummer extensions of a certain type, J. Fac. Sci. Univ. Tokyo Sec. IA, 18 (1971), 399-404.
- [6] Y. Odai, Some unramified cyclic cubic extensions of pure cubic fields, Tokyo J. Math., 7 (1984), 391-398.
- [7] G. Ricci, Ricerche aritmetiche sui polinomi, Rend. Circ. Mat. Palermo, 57 (1933), 433-475.
- [8] C. Walter, A class number relation in Frobenius extension of number field, Mathematika, 24 (1977), 216-225.
- [9] L. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1982.

Department of Mathematics Faculty of Science Tokyo Metropolitan University Fukasawa Setagaya-ku, Tokyo 158