I. Kubo and Y. Yokoi Nagoya Math. J. Vol. 115 (1989), 139-149

A REMARK ON THE SPACE OF TESTING RANDOM VARIABLES IN THE WHITE NOISE CALCULUS

IZUMI KUBO AND YOSHITAKA YOKOI

Dedicated to Professor Takeyuki Hida on the occasion of his sixtieth birthday

§1. Introduction

The first author and S. Takenaka introduced the structure of a Gel'fand triplet $\mathscr{H} \subset (L^2) \subset \mathscr{H}^*$ into Hida's calculus on generalized Brownian functionals [4–7]. They showed that the space \mathscr{H} of testing random variables has nice properties. For example, \mathscr{H} is closed under multiplication of two elements in \mathscr{H} , each element of \mathscr{H} is a continuous functional on the basic space \mathscr{E}^* , in addition it can be considered as an analytic functional, and moreover $\exp[t\varDelta_{v}]$ (\varDelta_{v} is Volterra's Laplacian) is real analytic in $t \in \mathbf{R}$ as a one-parameter group of operators on \mathscr{H} , etc.

In this paper, we will prove, by a method different from [4-7], that each element of \mathscr{H} is continuous on the basic space \mathscr{E}^* and by using this result we will show that the evaluation map $\delta_x: \varphi \mapsto \varphi(x) \ (x \in \mathscr{E}^*)$ belongs to \mathscr{H}^* . The norm of δ_x will also be estimated.

The fact that δ_x belongs to \mathscr{H}^* is very useful in the argument of positive functionals [8].

§ 2. Gel'fand triplets

Here we will summarize fundamental facts about three Gel'fand triplets $\mathscr{F} \subseteq \mathscr{F}^{(0)} \subseteq \mathscr{F}^*$, $\exp\left[\hat{\otimes}\mathscr{E}\right] \subseteq \exp\left[\hat{\otimes}\mathcal{E}_0\right] \subseteq \exp\left[\hat{\otimes}\mathscr{E}^*\right]$ and $\mathscr{H} \subseteq (L^2)$ $\subset \mathscr{H}^*$, which were introduced and discussed in [4-7, 9], for later use. Let T be a separable topological space with a topological Borel field \mathscr{B} and ν be a σ -finite measure on T without atoms. We suppose that there exists a Gel'fand triplet (or a rigged Hilbert space) $\mathscr{E} \subset L^2(T, \nu) \subset \mathscr{E}^*$ (cf. [3]). Namely, the space \mathscr{E} of testing functions on T is topologized by the pro-

Received August 28, 1987.

jective limit of Hilbert spaces $\{E_p\}_{p \in \mathbb{Z}}$ with inner products $\{(\xi, \eta)_p; \xi, \eta \in \mathscr{E}\}_{p \in \mathbb{Z}}$ such that

- (G.1) $(\xi, \eta)_0 \equiv \int_T \xi(t) \eta(t) d\nu(t),$
- (G.2) the norms $\{\|\xi\|_p = ((\xi, \xi)_p)^{1/2}\}_{p \in \mathbb{Z}}$ are consistent and increasing,
- (G.3) E_{-p} is the dual space of E_p $(p \ge 0)$, and
- (G.4) for any p there exists $q \ (>p)$ such that the injection mapping $\iota_{p,q} \colon E_q \to E_p$ is of Hilbert-Schmidt type.

The dual space \mathscr{E}^* of \mathscr{E} is the inductive limit of E_{-p} as $p \to \infty$. We denote by $\langle \cdot, \cdot \rangle$ the canonical bilinear forms between any dual pairs. Then obviously, $\langle \xi, \eta \rangle = (\xi, \eta)_0$ holds if $\xi, \eta \in \mathscr{E}$.

Further let us assume the following [A.1] and [A.2].

[A.1] There exists a constant $\rho \in (0, 1)$ such that

- (2.1) $\rho \|\xi\|_{p+1} \ge \|\xi\|_p$ for any $\xi \in \mathscr{E}$ and any $p \in \mathbb{Z}$.
- [A.2] The evaluation map $\delta_t \colon \xi \mapsto \xi(t)$ gives a continuous map $t \mapsto \delta_t$ from T into E_{-1} with

(2.2)
$$\|\delta\|^2 \equiv \int_T \|\delta_t\|^2_{-1} d
u(t) < \infty \ .$$

Then [A.1] assures suitable analytical properties of nonlinear functionals which appear in these Gel'fand triplets. [A.2] assures that each testing function $\xi(t) \in \mathscr{E}$ is continuous and that the injection $\iota_{0,1}$ is of Hilbert-Schmidt type.

Since $\mathscr{E} \subseteq E_0 = L^2(T, \nu) \subseteq \mathscr{E}^*$ is a Gel'fand triplet, by Bochner-Minlos' theorem, we can find a probability measure μ on \mathscr{E}^* such that

(2.3)
$$\int_{\mathfrak{s}^*} \exp\left[i\langle x,\,\xi\rangle\right] d\mu(x) = \exp\left[-\frac{1}{2}\|\xi\|_0^2\right].$$

Notice that the measure μ is full on E_{-1} , i.e. $\mu(E_{-1}) = 1$ by (2.3). Let us denote $L^2(\mathscr{E}^*, \mu)$ simply by (L^2) .

Let $E_p^{\otimes n}$ be the *n*-fold symmetric tensor product of E_p . By virtue of (G.2), we have natural inclusions $E_{p+1}^{\otimes n} \subseteq E_p^{\otimes n}$. Let $\mathscr{E}_p^{\otimes n}$ denote the projective limit of $E_p^{\otimes n}$ and $\mathscr{E}^{*\otimes n}$ the inductive limit of $E_{-p}^{\otimes n}$ as $p \to \infty$. We always associate *the inductive limit convex topology* with the inductive limit space. Here we remark the following Lemma, which implies the continuity of the mapping $\mathscr{E}^* \ni x \mapsto x^{\otimes n} \in \mathscr{E}^{*\otimes n}$.

140

LEMMA 2.1. Fix a $y \in \mathscr{E}^*$, e.g. $y \in E_{-q}$ for some $q \ge 0$, and a neighbourhood W which is given by the absolutely convex envelope of the sets $\{z \in E_{-p}; \|z\|_{-p} < \gamma_p\}, p \ge q \text{ with given } \gamma_p, 0 < \gamma_p \le 1.$ Then for any $x \in \mathbb{R}$ W+y, there exists a finite number of positive numbers $lpha_p, \ q \leq p \leq N,$ with $\sum\limits_{p=a}^{N} lpha_p \leq 1$ such that $x^{\hat{\otimes}^n}$ is expressed in the form

$$(2.4) x^{\hat{\otimes}n} = y^{\hat{\otimes}n} + \sum_{p=q}^{n} v_{n,p} with \|v_{n,p}\|_{E^{\hat{\otimes}n}} < n(1+\|y\|_{-p})^{n-1}\alpha_{p}\gamma_{p}$$

for any $n \ge 1$.

Proof. Since any $x \in W + y$ can be written as $x = y + \sum_{p=q}^{N} \alpha_p z_p$ with $\sum_{p=a}^{N} \alpha_p \leq 1, \ \alpha_p > 0 \ \text{and} \ \|\boldsymbol{z}_p\|_{-p} < \boldsymbol{\gamma}_p,$ $v_{n,p} \equiv \sum_{k=1}^{N} \binom{n}{k} \sum_{\max(p_1, \dots, p_k) = n} \alpha_{p_1} \cdots \alpha_{p_k} z_{p_1} \hat{\otimes} \cdots \hat{\otimes} z_{\tau_k} \hat{\otimes} y^{\hat{\otimes}(n-k)}$

 $p \geq q$, satisfy the requirement.

The orthogonal direct sum

(2.5)
$$\exp\left[\hat{\otimes}E_p\right] \equiv \sum_{n=0}^{\infty} \oplus (n!)^{1/2} E_p^{\hat{\otimes}n}$$

with inner product

(2.6)
$$((f_n)_{n\geq 0}, (g_n)_{n\geq 0})_{\exp[\hat{\otimes} E_p]} = \sum_{n=0}^{\infty} n! (f_n, g_n)_{E_p^{\hat{\otimes} n}}$$

is called a Fock's space. Its dual space is $\exp\left[\hat{\otimes}E_{-p}\right]$ with the canonical bilinear form

(2.7)
$$\langle (G_n)_{n\geq 0}, (f_n)_{n\geq 0} \rangle = \sum_{n=0}^{\infty} n! \langle G_n, f_n \rangle$$

for $(G_n)_{n\geq 0} \in \exp\left[\hat{\otimes} E_{-p}\right]$ and $(f_n)_{n\geq 0} \in \exp\left[\hat{\otimes} E_p\right]$, $(p\geq 0)$. Again by virtue of (G.2), we have natural inclusions $\exp\left[\hat{\otimes} E_{p+1}\right] \subseteq \exp\left[\hat{\otimes} E_p\right]$ for $p \in \mathbb{Z}$. We denote by exp $[\hat{\otimes}\mathscr{E}]$ the projective limit of exp $[\hat{\otimes}E_n]$ and by exp $[\hat{\otimes}\mathscr{E}^*]$ the inductive limit of exp $[\hat{\otimes} E_{-n}]$ as $p \to \infty$, respectively.

(a) The triplet $\exp\left[\hat{\otimes}\mathscr{E}\right] \subseteq \exp\left[\hat{\otimes}E_0\right] \subseteq \exp\left[\hat{\otimes}\mathscr{E}^*\right]$ **Proposition 2.2.** is a Gel'fand triplet. (b) The mapping from \mathscr{E}^* to $\exp[\hat{\otimes}\mathscr{E}]$ defined by

$$\mathscr{E}^* \ni x \longmapsto \exp\left[\hat{\otimes} x\right] \equiv \sum_{n=0}^{\infty} \oplus \frac{1}{n!} x^{\hat{\otimes}^n} \in \exp\left[\hat{\otimes} \mathscr{E}^*\right]$$

is continuous.

(c) For $(g_n)_{n>0} \in \exp[\hat{\otimes} \mathscr{E}]$, define a functional $\Psi(x)$ on \mathscr{E}^* by

$$\varPsi(x)\equiv\sum_{n=0}^{\infty}\langle g_n,x^{\hat{\otimes}n}
angle$$
 .

Then $\Psi(x)$ is a continuous functional on \mathscr{E} . (d) For $(G_n)_{n\geq 0} \in \exp[\mathscr{E}^*]$, define a functional $U(\xi)$ on \mathscr{E} by

$$(2.8) U(\xi) \equiv \sum_{n=0}^{\infty} \langle G_n, \, \xi^{\hat{\otimes} n} \rangle$$

Then $U(\xi)$ is a continuous functional on \mathscr{E} .

Proof. (a) is seen in [4] by (2.1). (b) Fix a $y \in \mathscr{E}$ and let q be a natural number such that $y \in E_{-q}$. For a given absolutely convex neighbourhood V of the origin of $\exp[\mathscr{E}^*]$ of the form

$$V=\operatorname{conv}ig(igcup_{p\geq q}\{oldsymbol{z};\,\|oldsymbol{z}\|_{ ext{exp}\left[\hat{\otimes} E_{-p}
ight]}$$

put $\gamma_p \equiv \min \{ \varepsilon_p \exp [-(1 + \|y\|_{-p})^2], 1 \}$ and let W be the neighbourhood in Lemma 2.1. Then by (2.4), for $x \in W + y$ we have the expression

$$\exp\left[\hat{\otimes} x\right] - \exp\left[\hat{\otimes} y\right] = \sum_{q \le p \le N} \left(\sum_{n=1}^{\infty} \oplus \frac{1}{n!} v_{n,p}\right)$$

with norms

$$\left\|\sum_{n=1}^{\infty} \oplus \frac{1}{n!} \upsilon_{n,p}\right\|_{\exp\left[\hat{\otimes} E_{-p}\right]} = \left(\sum_{n=1}^{\infty} \frac{n!}{(n!)^2} \|\upsilon_{n,p}\|_{E-p}^2 \right)^{1/2} < \alpha_p \varepsilon_p \,.$$

Hence $\exp [\hat{\otimes} x] \in V + \exp [\hat{\otimes} y]$ for any $x \in W + y$. Thus (b) is proved. By (b), (c) is obvious since $(g_n)_{n\geq 0}$ is a continuous linear functional on $\exp [\hat{\otimes} \mathscr{E}^*]$ and since $\Psi(x) = \langle (g_n)_{n\geq 0}, \exp [\hat{\otimes} x] \rangle$, (d) is easier to prove. \Box

Let \mathscr{F} (resp, $\mathscr{F}^{(p)}$, \mathscr{F}^{*}) be the image space of $\exp[\hat{\otimes}\mathscr{E}]$ (resp. $\exp[\hat{\otimes}\mathscr{E}_{p}]$, $\exp[\hat{\otimes}\mathscr{E}^{*}]$) under the mapping (2.8) and introduce a topology from the original space. Then $\mathscr{F}^{(p)}$ is the reproducing kernel Hilbert space with the reproducing kernel $\exp[(\xi, \eta)_{-p}]$. The following Propositions are shown in [4].

PROPOSITION 2.3. (a) $\mathscr{F} \subset \mathscr{F}^{(0)} \subset \mathscr{F}^*$ is a Gel'fand triplet. (b) Let ξ , and ζ be in \mathscr{E} and n, m be non-negative integers. Then $\langle \xi, \eta \rangle^m$ and $\langle \xi, \zeta \rangle^n$ belong to $\mathscr{F}^{(p)}$ and satisfy the equality

$$(\langle \xi, \eta \rangle^m, \langle \xi, \zeta \rangle^n)_{\mathscr{F}^{(p)}} = \delta_{m,n} n! (\eta, \zeta)_p^n \quad for any \ p \in \mathbb{Z}.$$

142

PROPOSITION 2.4. For each fixed $\xi \in \mathscr{E}$, write

(2.9)
$$f(\xi) = f(\xi; x) \equiv \exp\left[\langle x, \xi \rangle - \frac{1}{2} \|\xi\|_0^2\right].$$

Then the mapping $\mathcal S$ defined by

(2.10)
$$(\mathscr{S}\varphi)(\xi) \equiv \int_{\mathfrak{s}^*} \varphi(x) f(\xi, x) d\mu(x) = \int_{\mathfrak{s}^*} \varphi(x+\xi) d\mu(x)$$

is an isomorphism from (L^2) onto $\mathscr{F}^{(0)}$. Especially,

(2.11)
$$(\mathscr{S}f(\eta))(\xi) = \exp\left[\langle \eta, \xi \rangle\right] \quad \text{for any } \xi, \ \eta \in \mathscr{E}$$

and

(2.12)
$$\mathscr{S}: H_n(\langle x, \eta \rangle; \|\eta\|^2) \longmapsto \langle \xi, \eta \rangle^n,$$

where $H_n(z; \gamma)$ (n = 0, 1, 2, ...) are the Hermite polynomials with parameter γ defined by the generating function $\exp\left[\omega z - \frac{\gamma}{2}\omega^2\right]$;

(2.13)
$$\sum_{n=0}^{\infty} \frac{1}{n!} \omega^n H_n(\boldsymbol{z};\boldsymbol{\gamma}) \equiv \exp\left[\omega \boldsymbol{z} - \frac{\boldsymbol{\gamma}}{2} \omega^2\right].$$

Put $\mathscr{H}^{(p)} \equiv \mathscr{S}^{-1}(\mathscr{F}^{(p)})$ for $p \geq 0$ and $\mathscr{H} \equiv \mathscr{S}^{-1}(\mathscr{F})$ and introduce inner products by

$$(arphi,\,\psi)_{{}_{\!\mathscr{F}}{}^{(p)}}\equiv(\mathscr{S}arphi,\,\mathscr{S}\psi)_{{}_{\!\mathscr{F}}{}^{(p)}}$$

in $\mathscr{H}^{(p)}$. Let $\mathscr{H}^{(-p)}$ be the dual of $\mathscr{H}^{(p)}$ for $p \geq 1$, and \mathscr{H} (resp. \mathscr{H}^*) be the projective (resp. inductive) limit of $\mathscr{H}^{(p)}$. We call \mathscr{H} the space of *testing* random variables and \mathscr{H}^* the space of generalized random variables.

PROPOSITION 2.5. For any $\xi \in \mathcal{E}$, $f(\xi; x)$ is in \mathcal{H} and the mapping \mathcal{S} is extended on \mathcal{H}^* by

(2.14)
$$(\mathscr{S}\Psi)(\xi) = \langle \Psi(x), f(\xi; x) \rangle.$$

Then \mathscr{S} gives the isomorphism from $\mathscr{H} \subseteq (L^2) \subseteq \mathscr{H}^*$ to $\mathscr{F} \subseteq \mathscr{F}^{(0)} \subseteq \mathscr{F}^*$. Namely, $\mathscr{H}^{(p)}$ is isomorphic to $\mathscr{F}^{(p)}$ through \mathscr{S} for any $p \in \mathbb{Z}$.

PROPOSITION 2.6. For $p \ge 0$, the isomorphism

$$\exp\left[igotimes E_p
ight]
ightarrow (f_n)_{n \geq 0} \longmapsto arphi \in \mathscr{H}^{(p)}$$

is given by

(2.15)
$$\varphi = \sum_{n=0}^{\infty} I_n(f_n), \qquad \|\varphi\|_{\mathscr{X}^{(p)}} = \|(f_n)_{n\geq 0}\|_{\exp\left[\hat{\otimes}E_p\right]},$$

where $I_n(f_n)$ is the multiple Wiener-Itô integral

(2.16)
$$I_n(f_n) = \int \cdots \int_{T^n} f_n(t_1, \cdots, t_n) W(dt_1) \cdots W(dt_n)$$

with respect to the Gaussian white noise W(dt) given by the relation

(2.17)
$$\langle x, \xi \rangle = \int_T \xi(t) W(dt, x) \ a.s. \ x \in \mathscr{E}^* \ (\mu)$$

§ 3. The space \mathscr{H} of testing ramdom variables

In [4-7], it was shown that the multiplication $\varphi, \psi \mapsto \varphi \cdot \psi$ is continuous as the mapping from $\mathscr{H} \times \mathscr{H}$ into \mathscr{H} . Further each element of $\varphi \in \mathscr{H}$ is continuous functional on \mathscr{E}^* . More surprising thing is that each $U(\xi) \in \mathscr{F}$ can be extended to a continuous functional $\tilde{U}(x)$ on \mathscr{E}^* and the class $\{\tilde{U}(x); U(\xi) \in \mathscr{F}\}$ coincides with \mathscr{H} . Those results were proved in a very complicated way with the help of Volterra's Laplacian.

Here we prove the continuity in $x \in \mathscr{E}^*$ for every functional $\varphi(x) \in \mathscr{H}$ and the continuity of the evaluation map:

$$(3.1) \qquad \qquad \delta_x \colon \mathscr{H} \ni \varphi \longmapsto \varphi(x) \in \mathbf{R} ,$$

directly by using basic results.

Firstly, we prove that the multiple Wiener-Itô integral $I_n(f_n)$ has a continuous version as a functional on \mathscr{E}^* if f_n is a good function.

THEOREM 3.1. For $f_n \in \mathscr{E}^{\hat{\otimes}n}$,

$$(3.2) I_n(f_n)(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{n! 2^{-k}}{(n-2k)! k!} \langle x^{\hat{\otimes} (n-2k)}, f_{n+n-2k} \rangle \quad a.s. \ x \in \mathscr{E}^*,$$

where

(3.3)
$$f_{n\mid n-2k}(t_1, \cdots, t_{n-2k})$$

$$\equiv \int \cdots \int_{T^k} f_n(t_1, \cdots, t_{n-2k}, u_1, u_1, \cdots, u_k, u_k) d\nu(u_1) \cdots d\nu(u_k).$$

Proof. We denote by $\mathscr{I}_n(f_n)$ the right hand side of (3.2) for $f_n \in \mathscr{E}^{\otimes n}$. Then it is a continuous (non-linear) functional of $x \in \mathscr{E}^*$ because of Lemma 2.1 and of the following estimation:

(3.4)
$$\|f_{n|n-2k}\|_{E_p^{\hat{\otimes}(n-2k)}} \leq \int \cdots \int_{T^k} \|f_n(t_1, \cdots, t_{n-2k}, u_1, u_1, \cdots, u_k, u_k)\|_{E_p^{\hat{\otimes}(n-2k)}} d\nu(u_1) \cdots d\nu(u_k)$$

$$\leq \int \cdots \int_{T^k} \|f_n\|_{E_p^{\bigotimes n}} \|\delta_{u_1}\|_{-1}^2 \cdots \|\delta_{u_k}\|_{-1}^2
ho^{2(p-1)k} d
u(u_1) \cdots d
u(u_k) \ \leq \|f_n\|_{E_p^{\bigotimes n}} (\|\delta\|
ho^{p-1})^{2k} \, .$$

Consequently, for $x \in E_{-p}$, we have

$$(3.5) |\mathscr{I}_{n}(f_{n})(x)| \leq \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n! 2^{-k}}{(n-2k)! k!} ||x||_{-p}^{n-2k} ||f_{n|n-2k}||_{E_{p}^{\hat{\otimes}(n-2k)}} \\ \leq \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n! 2^{-k}}{(n-2k)! k!} ||x||_{-p}^{n-2k} (||\delta|| \rho^{p-1})^{2k} ||f_{n}||_{E_{p}^{\hat{\otimes}n}} \\ \leq \sqrt{n!} \sum_{k=0}^{n} \frac{n!}{(n-k)! k!} ||x||_{-p}^{n-k} (||\delta|| \rho^{p-1})^{k} ||f_{n}||_{E_{p}^{\hat{\otimes}n}} \\ \leq \sqrt{n!} (||x||_{-p} + ||\delta|| \rho^{p-1})^{n} ||f_{n}||_{E_{p}^{\hat{\otimes}n}},$$

by $2^{-k}/k! = (2k-1)!!/(2k)! \le \sqrt{n!}/(2k)!$ for $2k \le n$. Since $\mathscr{I}_n(f_n)$ is linear in f_n , $\mathscr{I}_n(f_n^{(j)})$ converges to $\mathscr{I}_n(f_n)$ uniformly on any bounded set B of \mathscr{E}^* , if $f_n^{(j)} \to f_n$ in $\mathscr{E}^{\hat{\otimes} n}$.

First consider the case $f_n = \eta(t_1) \cdots \eta(t_n)$. Then the equality $I_n(f_n) = H_n(\langle x, \eta \rangle, \|\eta\|_0^2)$ is well known (actually it is shown by Propositions 2.4 and 2.6). Since the equality

$$egin{aligned} &\langle x^{\hat{\otimes}(n-2k)}, f_{n+n-2k}
angle &= \langle x^{\hat{\otimes}(n-2k)}, \|\eta\|_0^{2k} \eta(t_1) \cdots \eta(t_{n-2k})
angle \ &= \|\eta\|_0^{2k} \langle x, \eta
angle^{n-2k} \end{aligned}$$

holds, (3.2) is obvious in this case by the formula of the Hermite polynomials;

$$H_n(z; \gamma) = \sum_{k=0}^{\lfloor n/2
floor} (-1)^k rac{n! (\gamma/2)^k}{(n-2k)! \, k!} \, z^{n-2k} \quad (ext{see p. 193 [11]}).$$

For a general f_n in $\mathscr{E}^{\otimes n}$, there exists a sequence of the form $\{f_n^{(j)} = \sum_l c_{j,l}(\eta_l^{(j)})^{\otimes n}\}_{j=1}^{\infty}$ which converges to f_n in $\mathscr{E}^{\otimes n}$. Then $I_n(f_n^{(j)}) = \mathscr{I}(f_n^{(j)})$ holds a.s. $x \in \mathscr{E}^*$ and $\mathscr{I}_n(f_n^{(j)})$ converges to $\mathscr{I}_n(f_n)$ for every $x \in \mathscr{E}^*$. Since

$$\|I_n(f_n^{(j)}) - I_n(f_n)\|_{(L^2)} = \sqrt{n!} \|f_n^{(j)} - f_n\|_{E_0^{\otimes n}},$$

a suitable subsequence of $I_n(f_n^{(j)})$ converges to $I_n(f_n)$ a.s. This implies that $I_n(f_n) = \mathscr{I}_n(f_n)$ a.s. $x \in \mathscr{E}^*$.

Now we are ready to prove our main theorem:

THEOREM 3.2. For any $\varphi \in \mathcal{H}$, φ has a continuous version $\varphi(x)$ and it is bounded on each bounded set of \mathcal{E}^* . Moreover the evaluation map $\delta_x: \varphi \to \varphi(x)$ is a continuous linear functional on \mathscr{H} , i.e., $\delta_x \in \mathscr{H}^*$ for any $x \in \mathscr{E}^*$.

Proof. For $\varphi \in \mathcal{H}$, let $(f_n)_{n\geq 0}$ be the element of $\exp[\hat{\otimes} \mathscr{E}]$ satisfying (2.15) in Proposition 2.6. Put

$$g_m \equiv \sum_{k=0}^{\infty} (-1)^k rac{(m+2k)! 2^{-k}}{m! k!} f_{m+2k|m}.$$

Then $(g_m)_{m\geq 0}$ belongs to $\exp\left[\hat{\otimes}\mathscr{E}\right]$, because

$$\begin{split} \|(g_{m})_{m\geq 0}\|_{\exp\left[\hat{\otimes}E_{-p}\right]} &\leq \sum_{m=0}^{\infty} \sqrt{m!} \|g_{m}\|_{E^{\hat{\otimes}m}_{-p}} \\ &\leq \sum_{n=0}^{\infty} \sqrt{m!} \left(\sum_{k=0}^{\infty} \frac{(m+2k)! 2^{-k}}{m! k!} (\|\delta\| \rho^{p-1})^{2k} \|f_{m+2k}\|_{E^{\hat{\otimes}(m+2k)}_{-p}}\right) \\ &\leq \sum_{n=0}^{\infty} \sum_{k=0}^{[n/2]} \frac{\sqrt{n!} 2^{-k}}{\sqrt{(n-2k)} k!} (\|\delta\| \rho^{p-1})^{2k} \sqrt{n!} \|f_{n}\|_{E^{\hat{\otimes}n}_{-p-r}} \rho^{rn} \\ &\leq \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{\sqrt{n!}}{\sqrt{(n-k)} k!} \|\delta\|^{k} \sqrt{n!} \|f_{n}\|_{E^{\hat{\otimes}n}_{-p-r}} \rho^{rn} \\ &\leq \sum_{n=0}^{\infty} (1+\|\delta\|)^{n} \rho^{rn} \sqrt{n!} \|f_{n}\|_{E^{\hat{\otimes}n}_{-p-r}} \\ &\leq (1-(1+\|\delta\|)^{2} \rho^{2r})^{-1/2} \|(f_{n})_{n\geq 0}\|_{\exp\left[\hat{\otimes}E_{-p-r}\right]} \end{split}$$

for sufficiently large r as $(1 + ||\delta||)\rho^r < 1$, by $\sqrt{(2k)!} \le 2^k k!$ and $1 \le \frac{n!}{(n-k)!k!}$. By Theorem 3.1 and the definition of $\mathscr{I}_n(f_n)$, we see that

(3.6)
$$\tilde{\varphi}(x) \equiv \sum_{n=0}^{\infty} \mathscr{I}_n(f_n)(x) = \langle (g_m)_{m \ge 0}, \exp\left[\hat{\otimes} x\right] \rangle$$

and $\varphi(x) = \tilde{\varphi}(x)$ a.s. μ . By Proposition 2.2 (c), $\tilde{\varphi}(x)$ is a continuous functional on \mathscr{E}^* . By (3.5),

$$|\tilde{\varphi}(x)| \leq \left|\sum_{n=0}^{\infty} \mathscr{I}_n(f_n)(x)\right| \leq (1 - (||x||_{-p} + ||\delta|| \rho^{p-1})^2)^{-1/2} ||\varphi||_{\mathscr{H}^{(p)}}$$

holds for sufficiently large p as $||x||_{-p} + ||\delta||\rho^{p-1} < 1$. This shows that the evaluation map δ_x belongs to \mathscr{H}^* .

From now on, $\varphi(x)$ (for $\varphi \in \mathcal{H}$) is always considered as the continuous version.

§ 4. The evaluation map δ_x

We have seen that δ_y belongs to \mathscr{H}^* , if $y \in \mathscr{E}^*$. Therefore δ_y must belong to $\mathscr{H}^{(-p)}$ for some $p = p(y) \ge 0$ and its image under \mathscr{S} can be

observed. By (2.14) in Proposition 2.5, we have

$$(4.1) \qquad \qquad (\mathscr{S}\delta_y)(\xi) = \langle \delta_y, f(\xi; \cdot) \rangle = f(\xi; y) \qquad \text{for } \xi \in \mathscr{E} \,.$$

Since \mathscr{S} is an isomorphism from $\mathscr{H}^{(-p)}$ to $\mathscr{F}^{(-p)}$, we can estimate the norm of δ_y by computing $\|f(\xi; y)\|_{\mathscr{F}^{(-p)}}$ directly.

Suppose that $y \in E_{-p}$, $p \ge 1$. Since the injection $\iota_{0,p}$ is of Hilbert-Schmidt type, there exists a c.o.n.s. $\{\zeta_j\}_{j=1}^{\infty}$ of E_0 such that $\{\zeta_j\}_{j=1}^{\infty} \subset E_p$ and $\sum_{j=1}^{\infty} \lambda_j^2 < \infty$ for $\lambda_j^2 \equiv \|\zeta_j\|_{-p}^2$. For $\xi \in \mathscr{E}$, we have

$$egin{aligned} f(\xi;y) &= \exp\left[\langle y,\xi
angle - rac{1}{2}\|\xi\|_0^2
ight] = \sum\limits_{j=1}^\infty \left(\sum\limits_{n=0}^\infty rac{1}{n!} \langle \zeta_j^{\hat\otimes n},\,\xi^{\hat\otimes n}
angle H_n(\langle y,\zeta_j
angle)
ight) \ &= \sum\limits_{n=0}^\infty \sum\limits_{n=n_1+\dots+n_j+\dots} \prod\limits_{j=1}^\infty rac{1}{n_j!} \langle \zeta_j^{\hat\otimes n_j},\,\xi^{\hat\otimes n_j}
angle H_{n_j}(\langle y,\zeta_j
angle) \,. \end{aligned}$$

Hence we have, for y any $z \in E_{-p}$,

$$\begin{array}{l} (4.2) \quad (f(\cdot \, ; \, y), \, f(\cdot \, ; \, z))_{\mathscr{F}^{(-p)}} \\ &= \sum\limits_{n=0}^{\infty} \sum \prod\limits_{j=1}^{\infty} \frac{1}{n_j!} \lambda_j^{2n_j} H_{n_j}(\langle \, y, \, \zeta_j \rangle) \cdot H_{n_j}(\langle \, z, \, \zeta_j \rangle) \\ &= \prod\limits_{j=1}^{\infty} \left(\sum\limits_{n=0}^{\infty} \frac{1}{n!} \lambda_j^{2n} H_n(\langle \, y, \, \zeta_j \rangle) \cdot H_n(\langle \, z, \, \zeta_j \rangle) \right) \\ &= \prod\limits_{j=1}^{\infty} \left(1 - \lambda_j^4 \right)^{-1/2} \\ &\times \prod\limits_{j=1}^{\infty} \exp \left[-\frac{1}{2} \frac{\lambda_j^4 \langle \, y, \, \zeta_j \rangle^2 - 2\lambda_j^2 \langle \, y, \, \zeta_j \rangle \langle \, z, \, \zeta_j \rangle + \lambda_j^4 \langle \, z, \, \zeta_j \rangle^2 }{1 - \lambda_j^4} \right] \\ &\leq \prod\limits_{j=1}^{\infty} \left(1 - \lambda_j^4 \right)^{-1/2} \exp \left[\frac{1}{2} (\| \, y \|_{-p}^2 + \| \, z \|_{-p}^2) \right] \end{array}$$

by Proposition 2.3 and the formula

(4.3)
$$\sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(u) H_n(v) = (1-t^2)^{-1/2} \exp\left[-\frac{1}{2} \frac{t^2 u^2 - 2tuv + t^2 v^2}{1-t^2}\right]$$

with $H_n(u) = H_n(u; 1)$ (see [11] p. 194]. In particular,

(4.4)
$$\|f(\cdot;y)\|_{\mathscr{F}^{(p)}}^2 = \prod_{j=1}^{\infty} \left((1-\lambda_j^4)^{-1/2} \exp\left[\frac{\lambda_j^2 \langle y, \zeta_j \rangle^2}{1+\lambda_j^2}\right] \right)$$

 $\leq \prod_{j=1}^{\infty} (1-\lambda_j^4)^{-1/2} \exp\left[\|y\|_{-p}^2\right].$

Summarizing the above computations, we have:

Theorem 4.1. The generalized random variable δ_y has the following

properties;

- (a) $(\mathscr{S}\delta_y)(\xi) = f(\xi; y) = \exp\left[\langle y, \xi \rangle \frac{1}{2} \|\xi\|_0^2\right],$

Proof. The only thing we still have to prove is (d). By (2.2) the injection $\iota_{0,1}$ from E_1 into E_0 is of Hilbert-Schmidt type. By Sazonov's theorem, the support of the measure μ is E_{-1} . Hence the integral in (d) is taken over E_{-1} . Since $\{\langle y, \zeta_j \rangle; j = 1, 2, \cdots\}$ are independent of each other with respect to μ , we can easily calculate;

(4.5)
$$\int_{E_{-1}} \|\delta_{y}\|_{\mathscr{H}^{(-p)}}^{2} d\mu(y) = \prod_{j=1}^{\infty} (1-\lambda_{j}^{2})^{-1}.$$

The left hand side is equal to the Hilbert-Schmidt operator norm of the injection $\iota_{(L^2),\mathscr{K}^{(p)}}$ by the proof of Proposition 3.6 in [9].

In [7], the renormalization : : has been introduced. By the notation used in it we may write

(4.6)
$$\delta_{\nu}(x) = : \exp\left[\langle y, x \rangle \cdot - \frac{1}{2} \int_{T} (x(t) \cdot)^{2} d\nu(t)\right] : 1,$$

because the right hand side is defined by

$$\mathscr{S}^{-1}\left(\exp\left[\langle y,\,\xi
angle-rac{1}{2}\int_{T}\xi(t)^{2}d
u(t)
ight]
ight).$$

ACKNOWLEDGEMENT. The authors give their hearty thanks to the referee for his suggestions to improve the manuscript.

References

- Hida, T., Analysis of Brownian functionals, Carleton Math. Lec. Notes, No. 13, 2nd Ed. (1978).
- [2] Gel'fand, I. M. and Shilov, G. E., Generalized functions, Vol. 2. Academic Press.
- [3] Gel'fand, I. M. and Vilenkin, N. Ya., Generalized functions, Vol. 4. Academic Press.

148

- [4] Kubo, I. and Takenaka, S., Calculus on Gaussian white noises I, Proc. Japan Acad., 56, Ser. A, No. 8, (1980), 376–380.
- [5] —, Calculus on Gaussian white noises II, Proc. Japan Acad., 56, Ser. A, No. 9, (1980), 411-416.
- [6] —, Calculus on Gaussian white noises III, Proc. Japan Acad., 57, Ser. A, No. 9 (1981), 433-437.
- [7] —, Calculus on Gaussian white noises IV, Proc. Japan Acad., 58, Ser. A, No. 9 (1982), 186–189.
- [8] Yokoi, Y., Private notes for positivity of generalized Brownian functionals.
- [9] Ito, Y. and Kubo, I., Calculus on Gaussian and Poisson white noises, (submitted to Nagoya Math. J.).
- [10] Kuo, H.-H., Gaussian measures in Banach spaces, Lect. Notes in Math. Vol. 463, Springer-Verlag, (1975).
- [11] Erdélyi, A., Higher transcendental functions, Vol. 2 (1953), McGraw-Hill.

I. Kubo

Faculty of Integrated Arts and Sciences Hiroshima University Hiroshima 730, Japan

Y. Yokoi

Department of Mathematics Faculty of General Education Kumamoto University Kumamoto 860, Japan