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INTEGRAL REPRESENTATION OF SMOOTH FUNCTIONS

IN WEIGHT CLASSES AND ITS APPLICATION

TAKAHIDE KUROKAWA

§ 1. Introduction

Let Rn be the jz-dimensional Euclidean space, and for each point x =

(xu , xn) we write \x\ = (x\ + + Λ£)1/2 For a multi-index a = (au , an),

we denote by xa the monomial xl1- xa

n

n, which has degree |α| = Σ i = i ^

Similarly, if Dj = djdXj for 1 <ίL j -^ n, then

denotes a differential operator of order \a\. We also write <x\ = ax\- α j .

Throughout this paper, let 1 < p < oo and (1/p) + (1/pO = l For a real

number r, we denote by Lp'r the class of all measurable functions / for

which

H/ϊL, =

The notation <& denotes the LF-space consisting of all C°°-functions with

compact support. The symbol @>f stands for the topological dual of 2.

Let m be a positive integer. We denote by L%r the space of all u e &'

such that DaueLPir for any a with \a\ = m. We set

If u belongs to S, then u can be represented by its partial derivatives of

m-th order as follows (Yu.G. Reshetnyak [4]):

u(*)= Σ
\x —

where σn denotes the surface area of the unit sphere. In this paper, we

are concerned with integral representation of u e C°° Π I4' r and its integral
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estimates. As an application we give an improvement of T.S. Pigolkina's

result ([3]).

Throughout this paper, we use the symbol C for generic positive

constant whose value may be different at each occurrence, even on the

same line.

§ 2. Integral representation of smooth functions and its integral

estimates

The following lemma is due to G.O. Okikiolu ([2]).

LEMMA 2.1. Let (S, ms) and (T, mτ) be measure spaces, and let K(s, t)

be a measurable function on S X T. Suppose that there are positive

measurable functions φx on S, φ2 on T and positive constants Ml9 M2 such

that

(2.1) I φ2(t)p'\K(s, t)\dmτ(t) <: Mf'φ^sY ,
JT

(2.2) ί φ&yiKis, t)\dms(s) £ Mξφ2(ty .
Js

If the operator Kf is defined by

Kf(s) = f K(s, t)f(t)dmτ(t),
JT

then

s

i/p

The following lemma is proved by applications of Lemma 2.1.

LEMMA 2.2. Let f be a measurable function on (1, oo). Then:

( i ) If q < 1 and £ > 0, then

Γ \\s - ty-'fiήdt

(ii) If i >0, then

Γ| Γ(β - ty-'f(t)dt \l + logs

(iii) If q > i > 0, then
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Proof. ( i ) It suffices to show

Q~HQ /V- 1 /-<?P + 1 ffAfiP-^rJf Q^P~1/ΓJQ <Γ P\ \f(t\\Pf<iv-lrit

Ji Ji I Ji

We take (S, τns) = ((1, oo), strife), (Γ, mΓ) - ((1, oo)? t
qp~ιdt) and

K(s, t) - ,

I 0 ,
Since q < 1, we can choose a number α such that — 1/p' < α < — g + (1/p).

For ^i(s) = ^2(s) = sa, we can show (2.1) and (2.2). Hence we obtain (i)

by application of Lemma 2.1.

(ii) It is enough to show

ΓlJV%s - ty-H-p+1f(t)tp-ιdt\P(l + ]ogsypsp-ιds £

We take (S, τnώ0 - ((1, oo), (1 + log s)-psp-lds), (Γ, m Γ ) = ((1, c>o)? p-'dt) and

5, ί) = ,

I 0 ,
We can show (2.1) and (2.2) for φ,(s) - s~1/p'(l + logs)(1-°/p# and

Γ1/P'(l + log t)-"pt with 0 < ε < 1.

(iii) It is sufficient to show

Γ Γ(t - s)e-H-q^/p)fif)dt}Ps{q-£)p-ιds < cΓ\f(t)\pdt.
J l J s ί J 1

We take (S, ms) = ((1, oo), s^-^-'ds), (T, mτ) = ((1, oo), dt) and

K(s, t) = ,
1 0, 1 <t<ts.

For Φiis) = s"-*'7''' and ^2(0 = r1/CT', we can show (2.1) and (2.2). We

complete the proof of the lemma.

Let u e C". For a nonnegative integer k, by Taylor's formula u can

be represented as follows:

(k + 1) Σ f"" ^ ~ ^)fc (x'ΪDru(tx')dt

where xf = x/|x|. The remainder term in Taylor's formula can be con-

sidered as integral representation of a function by its partial derivatives.

Using spherical coordinates, Taylor's formula and Lemma 2.2 (i), (ii), we
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obtain

PROPOSITION 2.3. Let ί and m be positive integers such that ί ^ m,

and u e C°°.

( i ) If m — (nip) — r > 0, then

\u(x)\p\x\{r-e)pdx\/P

([ \D^u(ξ)\"dσ(ξ)YP + C Σ ( ί \DΊi(x)r\x\lr-m*ly'dxYr .•

(ii) If m — (n/p) — r = 0, ^ e π

\u(x)\p(l + log\x\)-p\x\(r-4)pdx
l /

^C Σ ({ ID^uiξ^dσiξ))1"1 + C Σ ([

Now we shall deal with integral representation of u e C°° Π L^r. For

this purpose we prepare two lemmas. We denote by Σn the unit sphere

{ξ e Rn; |f I = 1}, and let mσ(E) represent the surface area of E C Σn.

LEMMA 2.4. Let 1 - (n/p) - r < 0. // Φ = {0jί=1,...,Ώ c C°° Π Lp'r is α

family of functions such that Diφj = 2)^^ /or αZZ i, 7 = 1, , TZ, then for

each point x there exists a set Eφ(x) c Σn with mσ(Σn — Eφ(x)) = 0,

satisfies the following conditions:

( i ) For ξ e £*(*)

Λoo

i^(x - sζ)\ds < 00 , i = 1, . . . , n .
Jo

(ii) If we put

then ψ(x) is independent of ξ e Eφ(x)> and Djψ = φ3 (j = 1, , n),

(iii) For ξ e Eφ(x) and t > 0

f(x -tξ) = ± ξi Γφάx - sξ)ds.
i = l J t

Proof. By the assumption φt e C°° Π I/P>r, we see that

00 > f \φt(χ - y)\p\y\prdy = f Γ | ^ ( x - sfJlV^'
J lVl^l J | £ | = l J l
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Hence, if we put El = U?=1{f J j ^ ( x - sξW&'+^dβ = ooj, then mσ(El) =

0. By Holder's inequality and the condition 1 — (n/p) — r < 0, we see

that for ξeΣn- El

(2.3) Γ\φi(x - s f ) | ώ < oo, i = l9 "9n.
Jo

Furthermore, by the assumption φt e C°° Π £ p ' r , we have

oo > ί \φi(χ-y)\p\y\prdy

where £, = cos θά \[{z\ sin^ fc(l <>j ^ n - 1) and fn = Π*-ϊ sin^fc. Hence

there exist sets Dij c D, = [0, π] X X [θ'τr] X X [0, π] X [0, 2π] c i?71'1

(jf = 1, . . . , n - 1) such that mn.2(DiJ - 0 and for (^, , Oj9 , ̂ . ^ e

(2.4)
., n - 2 ,

where mn_2 stands for the (n — 2)-dimensional Lebesgue measure and the

symbol /\ denotes that the j-th element is deleted. For each positive

number ε < ττ/2, we put Cs>J>e(^) = x — sξ, ε <̂  θj ^ π — ε (j = 1, , n — 2),

and Cs^Λθn-d = x — sξ, 0 ^θn..! <2π. We shall prove that for (01? ,

Ί<4 (x — sξV

liminf \φt(
S-oo Jθ

dCsj^iθj)

dθj

X

cί^j = 0,

dC....^,.,)

(2.5)

(2.6)

We give the proof of (2.5). We note that

= s(sin^) -(sin^_i
dθ,

We may assume that sin#, •sini9J_1 Φ 0. Suppose

https://doi.org/10.1017/S0027763000000969 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000969


TAKAHID3 KUROKAWA

liminf \"'\φt(x - sζ)\ ^IAJ^AL dθj = a > 0 .
5-00 J ε dθj

Then there exists a number s0 such that for s ^> sQ

a/2 < Γ £ |^(x - 5f)|s(sin^) •(sin^_ 1 )^ .

By Holder's inequality we have

Γ Γ~'\Φt(x - sξ)\pspr+n-1(sinθj)
n-1-)dθJds ^ Cap Γs^^-

J SQJ ε J So

= OO

since 1 — (n/p) — r < 0. However this contradicts (2.4). Hence we obtain

(2.5). We put E? = U?:ϊ{£ (^, , &„ , ^ . ύ e Dlφ 0 < ^ < π) U

{f (^, , ^_2) e Dj,,^, 0 ^ i n . t ^ 2ττ}, and Eφ(x) ^ Σn - {El U U ? , ! ^ ) .

Then mXΣn - Eφ(x)) = 0. By (2.3), (2.5), (2.6) and Stokes' theorem, we see

that for ξ, η e Eφ(x)

= 1 Jo ί = ι JO51

The formulas Djψ = φ} (j = 1, , ri) follow from Stokes' theorem. Thus

we obtain (i) and (ii). The assertion (iii) follows from (ii) and the funda-

mental theorem of calculus. We complete the proof of the lemma.

By repeating use of Lemmas 2.2 (iii) and 2.4, we have

LEMMA 2.5. Let m — (n/p) — r < 0 and ueC°° Π Llιr. Then:

( i ) For a multi-index a with \a) = m

ϊ\x - y\m-n\Dau(y)\dy < OO

for every x e Rn.

(ii) There exists a set Ex c Σn with mσ(Σn - Ex) = 0 such that for

2 Γsm'1\Dau(x - sξ)\ds < co
|α|=mjθ

and

(mlal)ξa Γsm~1Dau(x - sξ)ds
Jo\a\

is independent of ζ e 2?*.

(iii) 1/ we seί
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v(x) = Σ (m/al)ξa Γsm-1Dau(x - sξ)ds , ξ e Ex ,
\a\=m Jo

ί/ιe/2 for ξ e Ex and t > 0

φ : - f£) = Σ (m/al)ξa Γ(s - t)m-ιDau{x - sξ)ds .
| α | = m Jί

(iv)

I |φ;)|p|*|*(r-m)cte) ^ C Σ ( |Z)^(x)|p|xiprdx) .
\J 1*1̂ 1 / |o|=wι \J |a?|^l /

Now we shall prove

THEOREM 2.6. Let ue C°° Π Lv^r and we suppose that the integral part

[m — (nip) — r] = k of m — (τι/p) — r is not greater than m — 2. 27ιeτι Z/iere

exists α polynomial P(x) = Σk+ι^lβ]^m-ιCβx
β such that, if we set υ(x) = u(x)

- P(x), then for k + 1 <: \γ\ ̂  m - 1

ZΓφ:) = 2 m ~~ ^ Γ ( χ - yy D«+ru(y)dy

l« l=m-|Π Of! J o

/or almost every ξ e Σn.

Proof. For each β with |/3| = m — 1 wre see that

n

\Δ. I) ±JrU\— ίis/ — U U\— Zq) — — / , i

where the symbol e3 stands for the multi-index (0, , 1, , 0). Since

k <; m — 2 implies 1 — (n/p) — r < 0, by the condition w e C°° (Ί I4' r and

Holder's inequality we have

Γ\DeJ+βu(-sξ)\ds
Jo

CO

for almost every ξ e Σn. Hence Dβu(— t£) converges to Cβ(ξ) as U —> °°,

and by (2.7) we have

(2.8) Cβ(ξ) - Dβu(0) = - Σ f, Γ β ^ + ^ ( - sξ)ds
j = l JO

for almost every ξ e Σn. It follows from Lemma 2.5 and (2.8) that Cβ(ξ) are

the same for almost all ξ e Σn and we write C/f) = Cβ. Moreover we have
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Dβu(x - tξ) - Dβu(x) = -Σξj PDeJ+βu(x - sξ)ds.
i = i Jo

By an argument similar to the proof of Lemma 2.4 (ii), we see that

Dβu(x — tξ) — Dβu(— tξ)-^O as Z-> oo for almost every ξ e Σn. Hence for

almost every ξ e Σn we have

Dβu(x) = CB + Σ ξj Γ Dej+βΦ - sξ)ds .
j=l JO

We p u t ux{x) = u(x) — Σi\β\=m-ΛCβlβ\)xβ. F o r β w i t h \β\ = m — 1 we see

that

D^^x) = Dβu(x) - Cβ = Σ £, ί°°J9^+^(x - sf)ds
i=i Jo

for almost every f e Σn. Next let 2 <̂  ̂  ^ m — k — 2. Suppose that u£(x)

= w(x) — Σm-*ύ\β\zm-i(Cβlβΐ)χβ a n d for each multi-index Γ with m — £ <

\T\ -^ m — 1, D7u£ can be represented as follows:

J7^(x) = Σ m~~ | r ' ^ Γ s w " | r | - 1 D ί

|δ|=m-|rl ^ ! Jo

for almost every ξ e Σn. If \γ\ ̂  m - ί ^ A + 2, then m - |r | - (rc/p) - r

< 0, so that by Lemma 2.5 (jv) we have

f \Dru£(x)\p\x\p{r-^-ιmdx < oo ,
J | Λ ? | ^ l

and hence, since m — \7\ — (n/p) — r < — 1,

oo

for almost every ξ e Σn. Therefore for |ζ| = m — ί — 1, Dζu&{— sξ) con-

verges to Q as s -> oo, and

(x) = Q + Σ fi Γΰβi+cMι(Λ;
y=i Jo

for almost every ξ e Σn. We put ui+1 = w/x) - Σιcι=m-<-i (CJζl)xζ = u(x)

\)xβ. For r with m - ^ ^ |r | ^ m - 1 we see that

Dru£+1(x) = D r ^(x) = Σ ,
\δ\=m-\r\ δ\

Let |r | = m - ^ - 1. Since De^ru e C°° Π Lp'r and i - (nip) - r < 0, by

Lemma 2.8(iii) and Fubini's theorem we have
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Druί+ι(x) = Uulx) - Cγ = Σ f, [~D"+rut{x - sξ)ds
j = i Jo

= Σ ξj Γ Σ m ~ ff1 ~ * ί* ί°°(s - ί)m-' n- 2-D^+ 5 + rΦ -
y=i Jo iδ |=m-irl-i 0 ! Jt

2
| ί | = m - | r l (5!

for almost every ξeΣn. Thus we obtain the function v = wm_fc_i which

possesses the following properties: v(x) = u(x) — Σk+iz\β\zm-i(Cβlβΐ)xβ a n ( i

for r with A + l ^ | r | ^ m - l

Drυ(x) = Σ m ~ | r ' fα fsm-"' |-1Z)e+rM(x - sζ)ds
ι«ι=m-iri α: ! J o

for almost every ξ e Σn. Therefore we also have

Drυ(x) = (llσn)\ D«v(x)dσ(ξ)
J 111=1

= Σ m ~ l r | f fYsm-m- 1.D<"+ rιφc-
ι « ι = m - i r i c f ^ α : ! J i ί i = i J o

= Σ
ι « ι = m - i r i

we complete the proof of the theorem.

The following corollary is a consequence of Proposition 2.3, Lemma

2.5 and Theorem 2.6.

COROLLARY 2.7. Lei k = [m — (n/p) — r] and u 6 C°° Π L^'r. ΓΛen

^Λere exists a polynomial P(x) = Σfc+ig^ι^m_iC^xi5 swc/i ί/iaί, ι/ a e set v(x)

= u(x) - P(x), then for ϊ with k + I <L\ϊ\ £ m - I

and for T with \r\ £ k

^ \l>u(x)r\xrdxyr + c Σ (J WviSWdoG))

(m - (nip) - r i f θ , l , , m - l ) ,

(f |I»'i<x)|'(l -
\ J |5c|^l

https://doi.org/10.1017/S0027763000000969 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000969


10 TAKAHIDE KUROKAWA

ί/p

\D'φ)\p\x\prdx)l/P + C Σ fί \Dsv(ξ)\*dσ(ξ))

(m-(n/p)-r = 0,1, - , m - 1) .

§ 3. Density of finite functions

T.S. Pigolkina [3] proved that, if r <; 0, then for u £ Lξιr there exists

a sequence {φN}N=i,2t... C 2 such that \u — φN\m-p,r tends to 0 as N-> 00.

In this section we show that the above assertion holds for all real number r.

First we establish an analogue of Theorem 3.1 in [1], By [l p. 13],

for each positive integer m, there exists a function ωm which possesses

the following properties:

( i ) ω m eC~.

(ii) ωm{x) = 0 for x with \x\ ̂  1.

(iii)

(iv) ϊωm(x)x7dx = 0 for γ with 1 ^ \ϊ\ ̂  m - 1.

We put Ωo - {|x| < 5/4} and Ωj = {3(2 -̂3) < |χ| < 9(2^3)}, 7 = 1, 2, . As

in [1; Lemma 1.2], for {βj}j=0,i, . there exist functions {p;}J=0,i, . C C°°

which satisfy the following conditions:

( i ) pj^O and Σ 7 = o PJ(X) = 1 for all x e Rn.

(ii) supp pj C ΩJ, j = 0,1,

(iii) IB^-WI ^ C2-J le l /or c/Z xei? n .

For a locally integrable function u, we set

Efu(x) = Σ Pj(x) \u(x - εVy)ωm(y)dy, ε > 0 .
j = 0 J

By an argument similar to the proof of Theorem 3.1 in [1], we obtain

PROPOSITION 3.1. If ueL%r, then Efue C°° Π Lξιr and \E?u - u\m.p>r

tends to 0 as ε —> 0.

Now we shall prove

THEOREM 3.2. If ue Lζιr, then there exists a sequence {̂ }̂ =i,2,. . c 2

such that \u — φN\m p,r tends to 0 as N-+ 00.

Proof. By Proposition 3.1, it suffices to show the theorem for ue C°°

Π L%r. By Corollary 2.7 there exists a polynomial P of degree m — 1

such that, if we put υ = w — P, then 1; has the properties in Corollary
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2.7. We take a function h e C^iR1) such that 0 ^ h ^ 1, h(t) = 1 for * <; 1

and Λ(ί) = 0 for ί ^ 2. For iV = 2, 3, , we set

ί/ι((log|x|))/logiV), for x ^ O ,

[ 1, for x = 0.

Then £fo e ̂ . For a multi-index /5 with \β\ ̂  1 we have

(3.1) ΰ^v(x) = 0 f/ |x| < N or if \x\ > N2,

(3.2) \DβgIi(x)\^CQ.ogN)-ί\x\-w for all xeRn.

We put φN = ^ vu. For a with \a\ = m we see that

WD iu - ^ ) | | p , r - | |D (ι; - ^ ϋ ) | | p , r

Σ ({\D°-?gN(x)Dβv(x)ni + \x\TdxT"£ ([ \D'υ(x)\'(l + \x\rdxY' +CΣ ({\D°-?gN(x)Dβv(x)ni + \x\Tdx

Since Dav = DaueLp'r, ΓN tends to 0 as N-> oo. By (3.1) and (3.2) we

have

ir ̂  C2 (ί
β<a\J N£\x\

Hence by Corollary 2.7, PN tends to 0 as N —> oo. Since ^iV € Q), we obtain

the theorem.
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