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DEFINABILITY THEOREM FOR THE INTUITIONISTIC
PREDICATE LOGIC WITH EQUALITY

CHIHARU MIZUTANI

Introduction

Svenonius’ definability theorem and its generalizations to the infinitary
logic L,,, or to a second order logic with countable conjunctions and dis-
junctions have been studied by Kochen [1], Motohashi [2], [3] or Harnik
and Makkai [4], independently. In this paper, we consider a (Svenonius-
type) definability theorem for the intuitionistic predicate logic IL with
equality.

First we recall Svenonius’ theorem and Motohashi’s theorem. Suppose
that L, is a first order logic with equality, L, is a second order logic with
countable conjunctions and disjunctions and L is either L, or L,. Let P
be a k-ary predicate constant not in L, T(P) a set of sentences (resp.
negative sentences) in L,(P) (resp. L,(P)). In the case of L = L,, we assume
that the set of individual free variables are divided into two infinite dis-
joint sets X and Y. Now, consider the following three conditions:

(i) For any models a, b of T(P), a|L =b|L and a = b imply a = ).

(i1) TP)rw Vi (YB)(P(@) = ¢@)) for some formulas ¢y(X), - - +, ¢.(%)
in L.

(i) TP, (VR)(P(7) = ¢(u)) for some Motohashi P-formula ¢(x) in
L(P) whose free variables are among % < X.

(See [3] or [4] about Motohashi P-formula in L(P).)
Then, Svenonius’ theorem is that the conditions (i) and (ii) are equivalent
in the case of L = L, and Motohashi’s theorem is that the conditions (i)
and (iii), hence also (ii), are all equivalent in the case of L = L,.

When we study the relations between these conditions for the intui-
tionistic predicate logic IL, we must consider the following syntactical
condition (i)’ instead of the semantical condition (i).
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@)y Isomy(I; P, @), T(P), T(Q) Frw.q.n (Y2 (P(@) = Q(@)), where I'is a
binary predicate constant not in L, @ is a k-ary predicate constant not in
L, T(Q) is the set of sentences obtained from T(P) by replacing all the
occurrences of P by @, Isom,(I; P, @) is the set of sentences expressing
that I is an isomorphism which is identity on the formulas in L and such
that it corresponds the predicate P to €. Notice that the condition (i)
is equivalent to (i) in the classical logic L. Therefore, by replacing (i) by
(1)), we can consider two possible questions, Q1: whether or not (i)’ is
equivalent to (ii) in the case of L = IL, Q2: whether or not (i) is equi-
valent to (iii) in the case of L = IL. The answer for Q1 is negative (A
counterexample will be given in §4). On the other hand, the answer for
Q2, as it turns out, is affirmative. These are our assertions. Moreover
it should be noted that we can know these facts only by a syntactical
method.

This paper consists of four sections. After defining a Motohashi P-
formula explicitly in § 1, we shall state our Main theorem in § 2, which
will be proved in § 3. Our entire proof in § 3 will be carried out concretely
by a proof-theoretic method.

§1. Preliminaries

Let L be a first order language with equality symbol =, P and @
two fixed k-ary predicate constant symbols not in L, and I a fixed binary
predicate constant symbol not in L. We distinguish free variables (denoted
by x,y, --- with or without subscripts) from bound variables (denoted by
u, v, --- with or without subscripts) in L. Assume that the free variables
in L are divided into two infinite disjoint sets X and Y. We denote by
IL, the intuitionistic predicate logic with equality and by %, the logic
IL(P, @, I) obtained from IL by adding all of P, @ and I

The class #(P) of Motohashi P-formulas in L(P) is the smallest class
satisfying the following three conditions:

(1) Each atomic formula in L whose free variables are among X is
in A4(P).

(2) Each atomic formula in L(P) whose free variables are among Y
is in #(P).

(3) A(P) is closed under —, A, V, D, V and 3.

It should be noted that P(y, ---,y,) is in #(P) for any y,, - - -, ¥, in Y but
P(x,, ---, x,) is not in .#(P) for any x,, ---, x, in X.
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§2. Main Theorem

Let T(P) be a set of sentences in L(P) and T(Q) the corresponding
set of sentences of L(®) formed by replacing the occurrences of P every-
where by @. Suppose Isom,(I; P, ) is the set of sentences:

Vu)@v)I(u,v), (Vv)@Auw) I(u, v)
V) (vo)I (@, v). D . P = Q®),
(va)(vo)(I(z, v) . O . 9(@) = (@),

where 7(%) is an atomic formula in L; the sequences # and U of bound
variables have the same length and if @ = {u,, ---,u,), 0= v, -+, U,
then I(z, 0) is an abbreviation for I(u,, v)A - - - AI(u,, v,). Then our Main
theorem states:

MaiN THeEOREM (Definability theorem for the intuitionistic predicate
logic). The following two conditions are equivalent:

(1) Isomy(I; P, Q), T(P), T(Q) . (V&) (P(7) = Q(@)).

(2) T(P)l—1o (YO)(P(@) = ¢(G)) for some Motohashi P-formula ¢(x)
in L(P) whose free variables are among ¥ < X.

Remark. Unfortunately, the condition (2) does not mean that T(P)
defines P explicitly, because ¢ may have the predicate symbol P. But, we
can not take P(x) itself as ¢(%x), since P(X) is not a Motohashi P-formula
in L(P). I am sure that our Main theorem is the most general form of
Svenonius-type definability theorem that we can hope for in the case of
the intuitionistic predicate logic. The reason for this contention will be
discussed in §4.

§3. A proof of Main theorem

Throughout this section, we assume that the language L has no
individual constant symbol or function constant symbol but that it has
two propositional constant symbols T, | for simplicity and that the logic
IL (hence IL(P),.%) is formulated in Gentzen style whose axiom sequents
are as follows:

(1) —> T.

(2) L —

(8) —> x = x, where x is a free variable.

(4) E(x,y), - EQxp yn)s By, vy 20) —> R(ys, -+, V),
where R is an m-ary predicate constant symbol, x,, ---, x,, and y,, - -, ¥,
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are free variables, and E(x,,y, is an equality chain for x, to y, for each

1< i< m, that is, E(x,, y,) is a set of the form {E,, ..., E,} such that for
each 1 <j < n, E; is a formula either of the form z, = z,;,, or z,,, = 2,
and 2, = x,, 2,,, = ¥,, where 2, ---, 2,,, are free variables.

An axiom sequent of the form (4) is called an axiom sequent for the
predicate R, and if all E(x, y, are empty sets in (4) then it (i.e., an axiom
sequent of the form R(x,, - - -, x,) —> R(x,, - - -, x,,)) is said to be an identity
axiom sequent for R, otherwise, it is said to be an equality axiom sequent
for R. We use the usual inference rules (for example, rules in LJ). By
I-quantification rules, we mean the quantification rules whose principal
formulas have the predicate I. For any language Ln, a quantification
rule whose principal formula is in Ln is called an Ln-quantification rule.

Lemma 1. Suppose that ¢o(P;¥) is a Motohashi P-formula in L(P) and
¥ is a finite sequence of distinct free variables including all members of Y
occurring in ¢. If a sequence ¥, whose length is the same as that of ¥,
consists of distinct free variables not occurring in ¢, then

Isom,(I; P, Q) =2 I(7,5) —> o(P; %) = 0(Q; 7).

Lemma 1 is easily proved by induction on the complexity of ¢(P; )
from the definition Isom,(I; P, ), and if we use this lemma, it is obviously
shown that the condition (2) implies the condition (1) in our Main theorem.

Now we proceed to prove that (1) implies (2). For this it is sufficient
to show that the following theorem holds.

THEOREM. Suppose that X is a finite sequence of distinct free variables

and 6(P; %), ¥(Q; x) are formulas in L(P), L(Q), respectively, all of whose
free variables are chosen from %. If

Isom,(I; P, @) . 6(P; X) —> (@; %),

then there exists a Motohashi P-formula ¢(x) in L(P) whose free variables
are among x such that the two sequents

0(P; %) —> ¢(X) and ¢(x) —> ¥(P; X)
are both provable in IL(P).

Proof of theorem. We assume that

Isom,(I; P, @) |, 6(P; X) —> ¥(Q; X) .
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Then, for some finite subset # of Isom,(I; P, ), we get a derivation in
P(say, 2,) which has the sequent

S, 0(P; X) —> (Q; X)

as its end-sequent. The sequential transformations Step 1~Step 5 men-
tioned below give us a tree form 2, that is enough for us to prove the
theorem in a simpler manner.

Step 1: Elimination of the equality axiom sequents for the predicate I.
Step 2: Elimination of the cut rules.

Step 3: Specialization of the I-quantification rules.

Step 4: Elimination of the identity axiom sequents for the predicate I.

Step 5: Elimination of the left weakening rules with respect to the
predicate I.

We shall denote by 2,.,, the new tree form obtained from 2, by
carrying out the transformation of Step i for each 1 < i< 5. Since a
new tree form 2,(i = 4, 5, 6) may contain topmost sequents which are not
axiom sequents in .# or inference rules which do not belong to %, it is
not a derivation in %. But, for simplicity, it is also called a derivation
in % as long as there is no confusion in proving the theorem.

We let I(x, y) be an abbreviation for AQu)@Av)(x = u Ay = v A I(u, v)),
and if x, ¥ are sequences of free variables of the same length n, and @, ¥
are sequences of bound variables of the same length n, then I(%, 7) means
AuEE =u ANy=0 A I(@0)ie., Qu)---Qu,)3v)---QAu)(x; = \- - -
NX,=U, ANVi=U AN Ny, = vn/\I(u,,v,)/\-'-/\I(umvn))-

Step 1. Elimination of the equality axiom sequents for the predicate I.
LemMA 2.1. The sequent
E(x;, y)), E(xy, 2), Ia(xn %) —> L(yy, 52)

is provable in ¥ without equality axiom sequents for I, where E(x,y,) is
an equality chain for x;, to y, (i = 1, 2).

LEmma 2.2. The following four sequents are provable in &% without
equality axiom sequents for I:

(i) (Vw)@Ev)I(y, v) — (Vu)@v) L, v),
(il) (Vu)EwI(y, v) —> (Vo) Fu) I(u, v),
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(i) (vo)(VO)(VE)(VD) @ = No=0U NI@, ) N P@@).>D.QD) N
Vo) (VO (YVE)VO) @ =T No=0 AN I@,0) \ Q®).D.P@))
—> (Va)(V0)(I(T, 0) . © . P(@) = Q(D),
i) (V) (VO(VZ)(VO)@ =T Ao =0 A L@, 0) A\ 5@). D .9@) N
VR VOVE)VI) @ =0 No=0 A I@,0) A\ 5D . D .na)
—> (V@) (V0) (1@, 0) . D . 7(@) = 7(0)),
where 7(x) is an atomic formula in L.

Now, for each set I' of formulas in ¥ we denote by I, the set of
formulas which results from I" by replacing the parts of the form I(x,y)
in each formula in I" by I(x,y) simultaneously.

Let 2% be the tree form obtained from 2, by substituting I'* — ©* for
each sequent I' — @ which occurs in 2,. Let 9, be the tree form obtained
from 2% by adding, over the sequent II* — A* the derivation & with end-
sequent /I* — A*, where the sequent /I* — /* ranges over all of the topmost
sequents in 2%, each of which is corresponding to an axiom sequent for
the predicate I, say Il — A; and the existence of the derivation & is
guaranteed by Lemma 2.1. This J, is a derivation with end-sequent .#*,
0(P; %) > v(Q;X) in &. If we put 9, as follows, it becomes a derivation
in % with end-sequent #*, (P; %) —(Q;x) and without equality axiom
sequents for I. 92,:

l 61 i« D
(cut)."f ~+(an _element of 4% st 0(P; x)—»«]/(Q x)
I*, 6(P; %) — ¥(Q; %)

where * is the set obtained from #* by substituting: (Vu)@v)IL(u, v) by
(Vw)@v) I(u, v); (Vu)@Qu)L(u, v) by (Vv)QAuw) I(k, v); (VE) (VD) (G, v) . D . F(u)
= G©) by Vo)(VO)(V@)V)@ = Nv=0 AN I@,v) AN F@@) .> .G@)
AN NVD)NVO)YNVE)V) @ =0 N =0 A I@,v) N G@O).D.F(@), where
(F, G) is either the pair (P, @) of the predicates or the pair (3, 7) of an
atomic formula 7 in L. (This sentence is said to be of type (F, G).) The
existence of &, is guaranteed by Lemma 2.2. Double lines == mean that
cut-rules are applied #*times for each element of .#*.

Step 2. Elimination of the cut rules.

This transformation is done in the usual way for the derivation 2,,
and the new derivation 9, satisfies the following conditions:

(a) Its end-sequent is J*, 0(P; X) —> ¥(Q; %),
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(b) It satisfies the eigenvariable conditions and it has no equality
axiom sequent for I nor cut-rule.

Step 3. Specialization of the I-quantification rules.

From the condition (b), 2, has the subformula property. Formulas
which occur in each sequent in 2,, therefore, are subformulas of the for-
mulas occurring in the end-sequent, and so each formula including the
predicate I is a subformula of a sentence in #*.

DeriniTIONs. For each sentence ¢ in .#*, we define (¢)-rules as follows:
(1) ¢ = (Vuw)@v)I(y,v), then

I(x,2), —>6
I'—06

(@

where z is different from x and it does not occur in the lower sequent.
(2) ¢=(Vv)AwI(y,v), then

I(z,x), [ —> @
(@ 7 o

where z is different from x and it does not occur in the lower sequent.
(8) ¢ is of type (F, G), then the rule (p) is either (p), or (p).:

©) Iox=xI'>y=y I'-I1(x}, y1)- - - I'=I(x}, ;) > F (%) I", G(y)—0
! r—06

(¢) I'sx=xT'->y=y I'->I(x, y))- - -I'>I(x}, y2) =G I', F(x)—~6
: I'—0

where x, ¥, ¥/, y are sequences of free variables with the same length n
and X' = <xi, -+, %), ¥ =V, -, Y-

Let S (#*) be the union of #* and the set of all subformulas of a
sentence in £* whose outermost logical symbols are one of D, V,3. Let
S;(.#*) be the set of all subformulas of a sentence of type (F, G) in /*
whose outermost logical symbol is A.

Lemma 3. Suppose that ¥ is a subderivation of 9, with end-sequent
I' -0, and IT'* is I' — S(J%).

(i) If © contains no element of S(S*), then there is a der vation €*
such that (1) its end-sequent is I'* — 0, (2) it contains no I-quantification
rule, but it generally contains (p)-rules for each sentence ¢ in J*.

(ii) Otherwise, say © = {F,/\ .- \F,}, then there are n-derivations %,,
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-+, %, such that (1) their end-sequents are I'* — F,, --.,I'* - F,, respec-
tively, and (2) they contain no I-quantification rule, but they generally con-
tain (p)-rules for each sentence ¢ in S*.

Proof of Lemma 3. We prove the Lemma by induction on the complexity
of the subderivation ¥ of 2,. If ¥ is an axiom sequent then we have
nothing to prove, so we assume that ¥ is not an axiom sequent. In this
case we divide the proof into several cases according to the last rule R
of ¥. Here we take up only two cases, the proofs of all other cases being
similar to one or the other.

Case 1. R = (D—). In this case ¥ is of the form:

le l 7
RZ“——)F1 I'F,—>0

FOF,I—0

1.1 Suppose that © contains no element of S,(#*).

1.11. F,DF,e S(s*). Then (F,D F,, I')* = I'*, and we may assume
that F;,D F, is of the form X =¥ ANy=y ANI&,¥) AN Fx). D .G(),
without loss of generality. By the induction hypothesis on & and I' — F,
(resp. & and I', F, — 0), there are derivations &, ---, &,.; (n = length of
x) (resp. & *) which satisfy the conditions (1) and (2) on {F,} (resp. ©) of
the Lemma. Then we put €* as follows:

i’épl léaz lé’s ‘Lé’mz \Lé'm»a F*
© I'*—x=x'I'*>y=y I'*>I(x}, y)- - - I'*>I(x,, y,) [ *—>F(x) I'*, G(»)—0O
1 ’

Ir'*s —o0

where ¢ is of type (F, G). This derivation ¥* is the one we wanted.

1.12. F, D F,2 S(#%*). In this case, F,¢ S(f*) and (F, D F,,IN* =
F, D F,,I'*. By the induction hypothesis on & and I' — F, (resp. & and
I', F, — 0), there is a derivation &* (resp. #*) such that the conditions
(1) and (2) hold. Hence we put ¢* as:

&t e
gI*—F I'*,F,—>0

FIDFz, F*———)@

1.2. Not 1.1. Similar to case 1.1.
Case 2. R= 3 —). % is of the form:
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F(2), I —lf e
@WFQ), [ —> 0’

where z does not occur in the lower sequent.

2.1. Suppose that ® contains no element of S,(#*).

211. Av)F@) e S(#*). Then (Av)F(),)* =TI'* and (v)F(v) must
be either of the form (v) I(x, v) or of the form (V) I(v, x). We may assume
that Fv)F(v) = Av)I(x,v). Hence F(2) = I(x,2)e S(#*). From the in-
duction hypothesis on & and F(2),I" — 0, we get a derivation &* which
satisfies the conditions (1) and (2). Take ¥* as

Ve
I(x,2), [* —> 0
Ir's—»oe’

(%))

where ¢ = (Yu)(3v) I(u, v).

2.12. Av)F(v) ¢ Si(#*). Then F(2) ¢ S(#*), (AQu)F (), I')* = Quv)F(v),
I'*, and F(z) must be a formula in L(P, ). Hence R is an L(P, @)-quantifi-
cation rule. By the induction hypothesis on & and F(2), I' —> 0, we get
a derivation &* which satisfies the conditions (1) and (2). It is enough
to take €* as

F(2), I'* J—j@
@vF(@), '™ —>0

2.2. Not 2.1. Similar to case 2.1.

Now we apply Lemma 38 for the derivation 2, and its end-sequent
JI* 0(P; %) - ¥(Q; %), and we get a derivation 2§ (say, 2,) such that:

(a) Its end-sequent is 8(P; %) —V (Q; %),

(¢) No I-quantification rule occurs in it and it contains (¢)-rules for
each sentence ¢ in S*.

Moreover, it is obvious that 9, satisfies the condition (b) and the
following condition:

(d) It has the I-eigenvariable property, that is, at an instance of some
rule in 2,, an atomic formula of the form I(x,y) occurring in the antece-
dent of the upper sequent but not occurring in the antecedent of the lower
sequent has the eigenvariables of the rule.
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Step 4. Elimination of the identity axiom sequents for the predicate I.

LemmA 4. Suppose that 2 is a subderivation of 2, with end-sequent
I' > 0, and I(x,y) does not occur in I'. Then there exists a derivation 2*
such that (1) its end-sequent is I' — 0*, where 0* = 6 — {I(x, y)} (hence it
is an empty set or O itself), (2) it contains no I-quantification rule, and it
contains (p)-rules for ¢ = (Vu)@Av)I(u,v) or (Vv)@Aw) I(u,v) and (p)*-rules
for each sentence ¢ of type (F, G) in S*, where a (p)*-rule is either a (p)}-
rule or a (p)f-rule as follows:

(o) ' >%=%T-—>3y=5y I'— FX) I',GH — 06
I'—6

(0)F ' —»x=x1T—>y=y I —G@y I, Fx) —> 6O
2 F——)@ ’

where I' contains the set {I(X',y)} = {I(x}, 5D, - - -, I(x,, y.)} as a subset and
X, X', ¥, ¥ are sequences of free variables with the same length.

Let 2, be the derivation obtained from 2, by applying the above Lemma
4 to 9, and its end-sequent 4(P; %) — ¥(Q;X). Then 2; clearly satisfies
the conditions (a)’ and (b). Moreover, none of the identity axiom sequents
for I are contained in 9, because 2, has the I-eigenvariable property.

Step 5. Elimination of the left weakening rules with respect to I.

Any occurrence of an atomic formula of the form I(x,y) in the
antecedent of each sequent in 9, is due to left weakening rules with re-
spect to I because 2, has no axiom sequent for I. We then remove all
of the atomic formulas of the form I(x,y) occurring in the antecedent of
each sequent in 2; and we add them to the antecedent of each topmost
sequent in 2,. In this manner we obtain a new tree form 2, from Z,.
If we admit, as an axiom sequent in %, a new sequent obtained from an
axiom sequent by adding atomic formulas of the form I(x,y) in the
antecedent of it and also admit (p)-rules for ¢ = (Yu)(@v)I(u, v) or (Yv)(Ju)
I(u, v) and (p)*-rules for a sentence ¢ of type (F, G) in #* as an inference
rule in %, then 9, becomes our desired derivation in Z.

Therefore each sequent occurring in 2, is of the form:

{I(x, )}, I'(P), I'(Q) —> O(P), 6,Q),

where ¥ and y are sequences of free variables with the same length and if
X = <x17 v ',xn>’y = <y1, o "yn>, then {I(E’ 5’)} means {I(xl’ yl)) R} I(xm yn)}'
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Besides, I',(P), 0,(P) are sets of formulas in L(P); I'(Q), O,(Q) are sets
of formulas in L(Q), and 6,(P)U®,(Q) has at most one element.

DeriNITIONS. A 6-tuple 4 = (%, 7; I'|(P), I'{(Q); OP), OLQ)> is called
an I-partition of a sequent I' — @ if it satisfies the conditions (1)-(3):

(1) I'-{I® 3} =TI(P), I'(Q) and 6 = 6,(P), 0,Q).

(2) x(resp.y) is a finite sequence of free variables which includes
all the free variables occurring in I'(P)UO,(P) (resp. I, (@)U 6O,(Q)).
Furthermore, if a free variable x; of X occurs both in I';(P)U®,(P) and in
I'(Q)U6y(Q), then so is y, of ¥ (with the same index), and vice versa.

(3) I'(P), 6(P) (resp. I'y(Q), OQ)) are sets of formulas in L(P) (resp.
L(Q)), and 6,(P)UB,Q) consists of at most one element.

A sequent is said to be I-partitionable if it has an I-partition. It is
obvious that each sequent in 9, is I-partitionable. This is due to the fact
that the end-sequent 8(P; %) — ¢(Q; %) in Z, has the I-partition 4 = (%, ¥;
{0(P; %)}, 0; 0, {(+(@; X¥)}> and at any instance of an inference rule in 9, if the
lower sequent is I-partitionable then the upper sequent is I-partitionable.

It now remains for us to prove the following proposition. Let FV be
the set of all free variables in L and FV(%,) be the set of all free vari-
ables occurring in 2,. Fix a one-one function f from FV? into X such
that range (f) is infinite and range (f) € X — FV(2,).

PropPosITION. Suppose that 2 is any subderivation of 9, and 4 =
&, 5, T'(P), I'y(Q); O.(P), 0Q)> is any I-partition of the end-sequent of 2.
If 6(P) is empty (resp. O,(Q) is empty), then there exists a formula ¢ in
A (P) such that:

(1) each free variable in ¢ appears in f(X,y),

(2) the two sequenis

I'(P) —> go(f . 9) ) and ¢(f @ ?)> , T'\(P) —> 6,(P)
x y
(resp. go(f (’—; y) ) , I'(P)—> 6(P) and I'(P)—> ;o(f (’_“y’ 7) ))

are both provable in IL(P), where, if X = (%}, ***, X,p and ¥ = {yy, -+, ¥
then (%, 5 = {f(x, ), - [(Xns Y)Ds go(f (3—2_; %) ) denotes the formula ob-
tained from ¢ by replacing each f(x,y,) by x; 1 < i< n). Similarly with
go(f (3—6_’ 7 ) Moreover, I'(P) and 0,(P) are sets derived from I',(Q) and 0,Q)

Y
respectively by replacing every occurrence of the predicate @ in each formula
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of I'(Q) and 0,Q) by the predicate P.

Proof of Proposition. The proof is by induction on the complexity of
2. When 2 is not an axiom sequent, we divide the proof into five cases
according to the last rule R of 2.

Case 1. R is one of the rules (w—), (—w), (—1—), (=), (A—), (= V),
(—D). In this case, our desired formula ¢ may be the formula itself ob-
tained via the induction hypothesis.

Case 2. R is one of the rules (= A), (V—), (D). In this case, our
desired formula ¢ is the resulting from ¢,, ¢, by connecting one of A, V,
D, where ¢,, ¢, are formulas obtained from the induction hypothesis.

Case 3. R is an L(P, @)-quantification rule. We only consider the
case R = (V—). 2 is of the form:

F(x), I’ i@: e
VOF@), ' —> 6

Let 4 = (&, 5; I'(P), '(Q); 0.(P), 0,(®)> be an I-partition of the lower
sequent (VU)F(v), I' — 6. Without loss of generality, we may assume that
F, (Vu)F(v) are not in I'.

Subcase 3.1. (YU)F(v)e I'(P). Take I'(PY = I'(P) — {(Vu)F(v)}.

a) xexXNy. 4 = <X x5 x; ['(PY U{F()}, ['(Q); 0(P), 0Q)) is an
I-partition of the upper sequent F(x), I"— 6. From the induction hypothesis
on & and 4, we get a formula ¢'(f(%, y), f(x, x)) in #(P) which satisfies
1), (2) on 4. If O,(P) is empty (resp. OQ) is empty), therefore, the two
sequents

I'(PY, F(x) - fol(f(i_; », f(x; x)) and 90/(f(§: », f(-"; x)) , T'y(P) — 0,(P)

resp.
[q)/(f(x_’ 3, f(x, x)) ,I'(PY, F(x) — 6,(P) and I'yP)— 9ol(f(g—ia ), f(x, x))
X X y N X

are provable in IL(P). Hence it is enough to put ¢ = (QU)¢'(f(Z, ¥), v),
where the quantifier @ is defined as follows:

Qz{a(resp. Y) if xex — 3

Y (resp. 3) o.t.
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b) xexNy. By the induction hypothesis on & and an I-partition
4 = (&, y; T'(PY U{F(x)}, I'{(Q); 6,(P), ©,(Q)) of the upper sequent, we have
a formula ¢ in #(P) which satisfies conditions (1), (2) on 4’ and also con-
ditions (1), (2) on 4.

Subcase 3.2. (VUO)F(v) € I'y(Q). Similar to subcase 3.1.

Case 4. R = () with v = (Vu)(3Qv)I(u, v) or (Yv)@Au)I(u, v). We may
assume that v = (Vu)(@v)I(u,v). Then 2 is of the form:

le
pix,2),I' —> 6
I'—6

where z is different from x and it does not occur in I — 6.

Let 4 = (%, 5; I'(P), ['y(Q); 6,(P), 0,(Q)> be an I-partition of the lower
sequent I' — 6. Then 4 = (&7 x, 7" z; I'(P), ['y(Q); 6.(P), OAQ)> is an I-
partition of the upper sequent I(x, 2), I'—6. From the induction hypothesis
on & and 4, we get a formula ¢'(f(%, y), f(x, 2)) in #(P) such that con-
ditions (1), (2) on 4’ hold. By the condition (2) on 4/, if 6,(P) is empty
(resp. 0,(Q) is empty), then two sequents

F;(P) s Sol(f(f—c’ y)’ f(x’ Z)) and sD/(f(:’_:‘;’ :’)7)’ f(x; 2)) , 112(1)) - @2(P)

) X

resp
|:¢/(f(3_i’ 3, f(x, 2) ), I'(P)— 60P) and I'y(P)— s0/(f(3i‘:, ), f(x, Z))
x , X y 5, Z
are both provable in IL(P). Take ¢ = (Av)¢'(f(%, y), v) (resp. ¢ = (YU)¢’
(f(®, ), v)). This formula ¢ is the desired one.

Case 5. R = (y)* with ¢ is of type (F, G). We may assume that 2
is of the form: '

e & | & 1 &4
RI’——>a=d —>b——b’]’—>F(a)]’G(b)—~——>@

I'—6®

where I(@,b’) = I' and @, @, b, b’ are sequences of free variables with the
same length n.

Let 4 = (&, 5; ['(P), ['(Q); 0,(P), 0(Q)> be an IL-partition of I' —6.
Then @ €% and &’ < 5. Let Z be a repetition-free enumeration of the
elements of aUb — xU¥y. Then 4, = (F7%,7%; I'(P), ['(Q); {@ = @'}, 9,
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4, =<x7z 57z, T'(P), IQ); 0, (b = b)), 4,=<x"% 5y z; I'(P), I'(Q);
{F@)}, 0>, 4, = <X7% 57z I'(P), I'(Q)U{G(B)}; 6«(P), 6(Q)) are I-parti-
tionsof S, =I"'>a=a,S,=">b=0V,8,=I—>F@) and S, =TI, G(b)
— 0, respectively. For each 1 < i < 4, by the induction hypothesis on &,
and the end-sequent S;, we get a formula ¢, in .#(P) which satisfies the
conditions (1), (2) on 4,. Hence the following sequents are provable in

IL(P).
03, I'(P)—>a =7, I'(P) — ¢i(3) ;
I'(P) —> ¢y(2), 0)@), I'(P)—> b =1¥;
¢4(2), I'(P) —> F(a), I'(P) —> ¢i(@) ;

and if 6,(P) is empty (resp, O(Q) is empty) then

I'(P) — ¢,(2), ?’;(E)’ I'y(P), F(E) —> O,(P)
(resp. §04(§), FI(P) — 6,P), F2(P): F(E) -—> 502(5))

where ¢(2) = ¢, f(x I fG, z)) and ¢i2) = So(f(xyy),f(z z)) for each
1<ig4 If we take go as the formula obtained from ¢, A ¢, A (p; A ¢
.D .F (f@, b))) on binding all members of f(Z, Z) by the quantifier 3 or V,
then ¢ is our desired formula in #(P).

Our proof of Proposition is here completed and so our proof of Main
theorem.

§4. T(P) does not define P explicitly up to disjunction

We cannot hope that the condition (1) in the Main theorem and the
following condition:

(3) T(P)r110m) Vi (V) (P(@) = ¢(u)) for some formulas ¢,(%), -,
¢.(X) in L
are equivalent.

CoUNTEREXAMPLE. Let T(P) = {(Vu)(P(w) = (R(x) D Av)(P(v) A R(v)))),
where R is a unary predicate in L. In this case, condition (1) holds by
our Main theorem but condition (3) does not holds as follows. For
simplicity, we denote the single element of T'(P) by T(P) itself. Assume

that
(1) 1o T(P) —> \A (V) (P(w) = p(u),
where ¢,(x), - - -, ¢,(x) are formulas in L. Since two sentences
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TP) =YW (P(v). D . R D @Av)(Pv) A Rv)))
A (Ve)(R(w) D @v)(P() A R(v)). D . P(w)
and
(Vu)(P(w) . © . R(w)>Av)(P@) A\ R(v))
are provable in IL(P), we get

1 (V) (R(w) © @v)(P() A\ R(©) . O . P(w)) —> \n/1 (Vu)(P(u) = ¢(w)) .

Put H(P) = (Vu)(R(u) D Au)(P(W)AR{)). D .P(u)). Then H(P) is a Harrop
formula (see [5]) and so, for some 1 <i<n

<2 1o H(P) —> (Vu) (P(u) = ¢(w)) .

Let x be a free variable. From (2), the following two sequents are provable
in IL(P):

(3> H(P), P(x) —> ¢{x),

(4) H(P), ¢{(x) —> P(x).

Hence we can easily show that ¢,(x) is provable in IL(P) by replacing all
the occurrences of P(*) by T in a derivation with end-sequent (3) and
next applying cut rules. Hence, the following sequent is provable in IL(P),

{5 H(P) — (Vu)P(u) .

On the other hand, it is obvious that the sequent (5) is unprovable even
in the classical logic which includes P as a predicate constant. This is
a contradiction. Therefore, our assumption (1) does not hold.
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