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Abstract

A crack is assumed to be the union of two smooth plane surfaces of which
various parts may be in contact, while the remainder will not. Such a crack
in an isotropic elastic solid is an obstacle to the propagation of plane pulses
of the scalar and vector velocity potential so that both reflected and diffrac-
ted fields will be set up. In spite of the non-linearity which is present because
the state of the crack, and hence the conditions to be applied at the surfaces,
is a function of the dependent variables, it is possible to separate incident
step-function pulses into either those of a tensile or a compressive nature
and the associated scattered field may then be calculated. One new feature
which arises is that following the arrival of a tensile field which tends to
open up the crack there is necessarily a scattered field which causes the crack
to close itself with the velocity of free surface waves.

In spite of the non-linearity, cases which involve the superimposition of
these step-function results may be considered; it appears that any incident
plane field may be considered as such a superposition except for two classes.
The first class excluded involves incident plane shear fields which are so
skew that they move in the direction of the edge with a phase velocity which
is smaller than the dilatation velocity of the elastic medium. This is because
the assumption of conical motion which is used in the calculation does not
hold. The second class excluded involves any incident tensile field, apart
from a single step-function, when it travels along the crack before arriving
at the edge. This is excluded because any part of the incident field behind
the original front is bound to interact with the change of state of the crack
which, as mentioned, travels with the velocity of Rayleigh waves.

The analysis is also extended to throw light on the possible initiation
of brittle fracture and the subsequent propagation of a smooth crack in the
plane of the existing one. It is shown how the analysis leads to the result
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that since the crack is extended without the application of external forces to
the crack itself, it can only travel freely with the velocity of Rayleigh waves.

1. Introduction

On the assumption that the subsequent velocity field is conical, we exa-
mine the diffraction of plane waves in an isotropic elastic solid by a semi-
infinite plane crack. The edge of the crack being taken for z-axis, we take
the half-plane x > 0, y — 0 to define the position of the crack itself. We
shall consider the incidence both of plane shear waves and of plane dilatation
waves in the analysis: we take the direction of propagation to make angle /5
with the edge of the crack, and angles n\2 — a.x, or n\2 — <x2 with the y-axis
for dilatation waves and shear waves respectively. The elastic solid has
Lame" constants X and /J,, and a density p, and we refer to the dilatation
velocity cx and to the shear velocity c2, where c\ — (A + 2/*)//), c\ = [ijp.

It is only when the incident field is of step function time dependence that
the assumption of subsequent conical motion is valid. Since the scattered
field, together with the incident field, travels steadily in the ̂ -direction with
a velocity ct sec & with the appropriate subscript i = 1 or 2 according as to
whether the incident field is a dilation or a shear wave, then for the former
we can take any flr in the range 0 < & < n/2, and for the latter any /32

in the range arccos (cjcj) < /?2 < n/2, and we have a fully supersonic motion
in the ̂ -direction. The assumption of conical motion means that the analysis
will proceed in very similar fashion to that in a preceding paper [1].
For brevity we shall use the same notation and we shali refer directly to
results in that paper; all equations cited are given the prefix A.

The immediate point of interest involves the manner in which a plane crack
may initiate the scattering of plane waves when they arrive at the crack.
It is possible to consider various models for the behaviour of a crack in a
dynamic situation, but in this paper we take the crack to be the union of
two smooth plane surfaces. There are two possible states to be considered:
when the crack is open there are two distinct surfaces at which the stresses
must vanish, but when it is closed the normal velocity, displacement, and
stress components must be continuous, leaving, in the absence of friction,
the tangential stresses to vanish. For an incident field of arbitrary time
dependence there is no simple way of deciding whether at a given point
the crack is open or shut. However, we may take the case when the incident
field represents a displacement of step-function type, and we may consider
separately the case when the incident field tends to open the (initially closed)
crack from that when it tends to keep the crack closed. When eventually
we derive the results for any given incident pulse we can superimpose results
in some cases in order to give closed formulae for the scattered stress and
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[3] Diffraction of plane elastic waves by a crack 327

displacement fields, regardless of the absence of knowledge of the state of
the crack.

The literature in the subject of elastodynamic diffraction is rather meagre.
Previous work has been done by Maue [2], de Hoop [3] and Miles [4], in
the consideration of diffraction by either a perfectly rigid or a perfectly
weak half-plane, while a problem involving the sudden opening of a semi-
infinite crack was discussed by Maue [5]. Other authors are mentioned in
the dissertation of de Hoop. The work of Miles has many similarities to that
of the author, who has made use of the present approach in the solution of
a number of diffraction problems.

Miles's paper is certainly relevant to the present research, because in
considering diffraction of elastic waves by a perfectly weak half plane he is
dealing with what I refer to as a permanently open crack. When it comes
to the examination of the physical consequences of his solution, we have to
realise that there is a tacit requirement that the relative displacement of
the upper and lower surfaces of the crack be non-negative. Miles's formula
4.34b for the normal displacement contains a surface wave term of delta
function profile which is symmetric about the crack. The sign of the surface
displacement is determined according to whether the incident field is tensile
or compressive and for one or other of these cases (in fact for the compressive
case) this singular displacement does not satisfy the tacit physical require-
ment. Even though we are dealing with an idealised problem where the
strains are infinitesimal and the two crack surfaces, whatever their physical
state, have zero separation, the only situation which is covered by the solu-
tion of Miles is that where an open crack is being opened further by a tensile
field. If we are to deal with the case of an incident compressive field, we have
to eliminate contradictions in the solution by ascribing a special behaviour
to the crack, and as a simple case we have the idealised crack described above.

As in my earlier paper [1], the start of the problem involves the introduc-
tion of the scalar velocity potential <f> and the vector velocity potential
tp = Ai -f- Ck. To utilize the notation of part I we keep the quantity 'a'
to represent the uniform velocity in the ^-direction, with the understanding
that a = cx sec /?x for a dilatation field, and a = c2 sec )S2 for a shear field.
We refer directly to equations in the earlier paper by using the prefix A.

The assumption that the component (Bj) of ip, which is perpendicular to
the crack, vanishes, is not unduly restrictive. It is only made because B
must satisfy the condition dBjdy = 0 at the crack, and it can then play no
part in the surface coupling effects. This situation arises from the simulta-
neous vanishing of the x- and z-component of stress at the surface of the
crack. A non-zero value for B in the incident field will modify the relative
magnitudes of the other components of the shear potential without greatly
changing their form.
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2. Conditions at the crack

Apart from satisfying the wave equations A. 10 and A. 11, the three poten-
tials <f>, A and C must satisfy certain conditions at the crack. Then after
introducing polar co-ordinates so that the upper surface is 0 = 0 and the
lower surface is 0 = 2n, we have the conditions corresponding to A. 22 which
are valid when the crack is closed. These are that

(1) aA, + sC, = 0, for 0 = 0, 2n,

( i - i ) _ 2] Cs = 0, for 0 = 0, 2n,(2)

and

(3)

2
— <f>6 +

| [Ae]l - £ [Cd]l + [s- ( i - i ) - 2] [*.]•, = 0,

which express respectively the facts that the vector potential is solenoidal,
that the tangential stress vanishes on both sides of the crack and that the
normal stress component is continuous. The further condition that normal
velocity is continuous across the crack takes the form

(4) «[*,]$, + s*[As?2n - as[Ca]l = 0,

and we may note immediately that the three conditions 1, 2 and 4 only hold
simultaneously if the quantities <f>e, Cs and A, are separately continuous
across the crack.

If the crack is open, then the conditions 1 and 2 hold on each surface, but
instead of 3 and 4 we find the condition that

for 0 = 0, 2TT.

For the closed crack the conditions will simplify if we split the potentials
into parts which are symmetric and anti-symmetric about the crack. The
symmetric parts of A and C, and the anti-symmetric part of <f> then satisfy
the simple conditions 1, 2 and 5 on each side of the crack together with the
condition of continuous <f>e, C, and A,. The symmetric part of <f> needs only
to satisfy the condition of vanishing normal derivative, while the anti-
symmetric parts of A and C, already linked through equation 1 must each
satisfy the condition of vanishing tangential derivative at the crack.

3. Pulse reflection and transmission coefficients

We may consider first the steady problem of a pulse system travelling along
an infinite plane crack. If the incident pulse is compressive, there will be
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both reflected and transmitted pulses of shear and dilatation type. If the
incident field is tensile, tending to open the crack, there will be no transmit-
ted field, and only reflected shear and dilatation pulses will be set up.

We shall consider combinations of shear and dilatation waves which have
the same velocity both in the z- and the a;-direction, so that

a = cx sec /Jx = c2 sec /?2; yx sec a.x = y2 sec a2,
with

7l = Cl cosec &, y2 = c2 cosec /32.

Then for an incident tensile field given as an arbitrary combination of a
shear field xp, given (with L = yxja = cot fix) as a multiple of the unit
step-function U by the equation

(6 tp= - (k- L sec <x.xi)U It
\ a

and a dilatation field </> given by the equation

<4= — U (t — — — X °O

\ a

% cos a, 4- y sin a2\

yx

we can derive the amplitude of the reflected waves, and hence the four basic
reflection coefficients TPmn{m, n = 1, 2). The notation here is that the first
subscript m refers to the type of incident pulse, while the second subscript n
refers to the type of scattered pulse. The subscript 1 is still associated with
dilatation fields.

The result of applying the conditions of vanishing stress to this incident
field leads to the values

(9)

R°n = i?°2 = {4tanaitana2(l+Z:2sec2 ax) - [ 2 - sec2 a 2 ( l -

i?;2=4tana1[2-sec2a2(l-Z,2M2)]/ JD(l+I2sec2a1),

i?»1 = -4 tan« 2 [2-sec 2 a 2 ( l -L 2 M 2 ) ] ( l+L 2 sec 2 a 1 ) /A

and

D = [2-sec2a2(l -L 2 M 2 ) ] 2 + 4tana i tana2( l + ^ s e c 2 ^ ) ,

where
M = y^y-L, and L = yja = cot &.

The normal velocity at the plane y = 0 which is associated with these fields
is consistent with the opening of the crack, but only for the incident field
of negative sign.

For an incident field given as in equations 6 and 7, but with a positive
sign, there is no tendency for the crack to open. The appropriate continuity
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conditions may then be used to derive reflection coefficients
with

[6]

?£,„ and trans-
mission coefficients T'mn

(10)

r
21

and

R>22 = «2 = (R°2
22

4. Formulation for the incident tensile field

For a skew plane wave incident at the edge of the plane semi-infinite
crack, there is interest only in the region behind the point of intersection of
the wave front and the edge. There are two cones of discontinuity with
vertex at this point, and in Fig. 1 we represent the field structure in any
transverse section across the cones, for the case when the incident tensile
field is an arbitrary combination of shear and dilatation fields defined in
equations 6 and 7.

Fig. 1. Field structure for the crack under tensile excitation.

We may use the notation of Part I, with the specific constants

a = q sec & = c2 sec /32, yx = q/sin /?1( y% = cjsin /32,
M = y2ly1 = sec ax cos a2, and L = cot /?x.

Then in Figure 1, the point of intersection of the incident pulse system
with the crack is s = yx sec ax = y2 sec a2; the reflection process in the vicin-
ity of this point is exactly that of a pulse system travelling along an in-
finite crack. We therefore know that the reflection coefficients R\n will
define the scattered dilatation field outside the circle s = ylt and the scatter-
ed shear field outside the circle s = y2 with the exception of the two trian-
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gular head wave regions, ABD where

xp = ih(u2 + 0) + kg(u2 + 6), and ABG

where xp = in(u2 — 6) + km(u2 — 0)

The four arbitrary functions h, g, n and m are constant on the characteristic
tangent planes w2 ± 6 = constant. Within s = y1, the potential <£ is har-
monic in the variables vl and 6, and within s — y2 the vector components A
and C are harmonic in the variables v2 and 0. The variables a are defined in
equation A.5.

We introduce the complex potentials W*, WA and Wc as in equations
A.6 and A.7, and we use the mapping fx = sech^ + id), ?2 = sech(v2 + id),
which transform the interiors of the circles s = y, 0 < 6 < 2n, into the
whole of the complex f-plane, cut on the whole real axis except for the seg-
ment — 1 < C < 0. We note that for points on the crack fi = M£2-

The incident field certainly results in a uniform opening of the crack on
the segment BC, but the question of whether the crack remains open or
shut on the segment OB is not yet determined. The following is a consistency
argument in which the displacement, following assumptions on the state of
the crack on OB is examined.

We may begin with the statement that the very edge of the crack remains
closed. But it is not only the edge which remains closed, since in this case,
that of a fully open crack, we could go directly to Miles's results [4] in
which we find that the calculated normal displacement results in certain
parts of the lower side of the crack being above the upper side. (Miles only
discusses the case of the disturbing fronts parallel to the edge, so that
/? = Tt/2, but the analysis is quite easily extended to the case of skew-
incidence). Therefore we suppose the crack to be closed in a segment
0 < s < P, and to be open on the remaining segments s > P. The quantity
P is the velocity with which the crack will be expected to close itself.

We can examine the consequences of the linkage between the harmonic
functions <j>, A and C at the crack for s <y2.

For the open section of the crack, the conditions of vanishing stress, and
of solenoidal vector potential, lead precisely in the manner of equations
A. 26 to A. 31 to the statements that

1 '

(••) ^

and
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en w
df

with

Equation 13 refers to a uniform relation between the complex potentials WA

and Wc in the whole complex plane, and hence need not be referred to again.
The functions P2 and P 3 are real functions of f in the region Pjy2 < £2 < 1,
which corresponds to the segment P < s < y2 of the crack, and the condi-
tions in the head wave regions, derived as in equations A. 23 to A.25 are
satisfied if the functions P2 and P3 are real for 1 < f2 < 1/Af.

For the closed segment of the crack we can develop similar results for the
change in the complex derivatives across the crack; but to ensure continuity
of normal velocity we are left with the results that

and

where JT3 is a real function of ^ for 0 < £x <
Other conditions on the complex derivatives have been enumerated in the

earlier paper but there are a few points of difference. Thus
i) we expect simple poles of dW^/dd at d = sec ax to account for the

jumps in <j> at the points F and / , while dJFc/df2 must have simple poles
at £2 = sec <x2 to account for the jumps in C at E and / .

ii) the absence of applied load at the edge of the crack provides for
bounded complex derivatives as f -> 0, so that the energy flux near the
edge tends to zero.

iii) the simple pole at £2 = — yRjy2 associated as in section 5 of Part I
with the Rayleigh wave velocity, has no physical justification, and must be
annulled, together with the complex behaviour of R(MC2) in the range
- 1/M < C2 < - 1.

To satisfy the final requirement both P2 and P 3 must contain a factor

(17).
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This singular integral provides, through a simple application of the Plemelj
formula, an exact annulment of the complex behaviour of R(M£2) when
- 1/Af < f, < - 1.

All conditions are satisfied if we write

dW* 0(ft)fj(l+ !«£)(._ [Cl „
dft (ft-secotOflfftn *IM*

(18)

and

dC2 (C2-sec«2)i?(MC2)

where Sx and S2 are real functions of f which, being bounded at infinity and
having no singularities in the finite part of the complex plane, must be
constants. The behaviour of the three complex derivatives, given as in
equations 13, 18 and 19, as £ -*• oo ensures bounded displacements and
velocities at the corresponding points s = y, 6 = + n.

The values of the constants S2 and 5 3 may now be found. The form of the
complex derivatives is only correct on a certain segment of the crack, but
the expressions may be continued round the various branch points to give
the appropriate results elsewhere. In particular, the residue of the complex
derivatives at simple poles depends on whether we approach the singularity
from above or below the real f-axis. There is no need to use the results of
equation 9 in order to determine the constants, since the residues at Ci =
sec a2 and at f2 = sec a2 provide enough information to define the coeffi-
cients /?£,„ as well as the constants S2 and 53 . However, prior knowledge of
these reflection coefficients saves work.

When the incident dilatation field is a step function of amplitude — Ax,
travelling with a shear field whose z-component is a step-function of ampli-
tude — A2, the residue of dJFc/dfa at f2 = sec a2 is AJni or (^4xi??2 +
A2Rli)[ni according as the pole is approached from above or below. The
results

[1 + L* sec* «,] S2 = (2ri)^osa1/2cos^«1jg(seca1)
n(y1-Pcosa1)iQ{seccc1)

lcos1a1(l+.L«sec««1)
and
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2^M cos a2/2 cos2a12?(sec ax)
Ji = - ~ - ;

2tana, (L2M2 + cos 2x2)A2)
c2

a
 x

cos2 a2 j

The equations 18 and 19 may be used to calculate the normal displace-
ments at the crack. For 0 < s < P we have already imposed and satisfied
the condition of continuous normal velocity, but if the velocity P with
which the crack closes is greater than the transverse Rayleigh velocity yR,
the complex potentials still have a simple pole at Ci = YRIYI

 o r f 2 = YRIYZ •
This pole results in a step discontinuity in normal displacement, Y, travelling
with the Rayleigh velocity. The expression for the normal velocity dyjdt
is given by the formula

BY I
r— = Rl *?i(l —Ci)

which reduces to the form

a y = f &Qi&) r-s,tff»-c?)*rf,vi--P"i*
7 dt~ u

for all values of Ci in the range 0 < d < 1. To find the jump in Y at s = yR,
we evaluate the residue of the right-hand side of this equation; we see that
when P > yR the part of the discontinuity in Y which depends on S3 is
continuous across the crack, whereas the part of this discontinuity which
depends on S2 is antisymmetric across the crack when yR < s < P < y2.
The sign of S2 ensures the opening of the crack for s < yR, contrary to hypo-
thesis. If yx > P > y2, the same formula for the normal velocity may be
derived, and again the hypothesis of a closed crack is shown wrong in the
range yR < s < y2. Thus P jS yR. But if with P <yR, we now consider
the neighbourhood of the Rayleigh pole which now corresponds to a point
on the open section of crack, the term in S2 contributes an inward logarith-
mic singularity in displacement, travelling with the Rayleigh velocity. And
although the crack is open in this region, the singularity ensures that the
surfaces must perform the feat of passing through each other. The only
possibility which remains is that the Rayleigh singularity s — yR is the
point which separates the closed from the open section of crack, and this is
the only self-consistent hypothesis available.

Thus the opened crack closes itself with the transverse velocity of Ray-
leigh waves, and the complex potentials associated with the incident pulses

https://doi.org/10.1017/S1446788700028354 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028354


[11] Diffraction of plane elastic waves by a crack 335

a Yx

A i, ir \TTlt z a;cosa2 + ysina2\xp = — A2(k — iL sec x^U It — - ) ,
\ a Yt I

are given by equations 13, and 18 through 21, with the specific value

P = YR.
The velocity potentials in the head wave still remain to be determined,

but their derivatives follow easily from the continuity of dip/dd across the
circle s = y2, and from the known functional behaviour in these regions.

5. Formulation for the incident compressive field

The case when we have the incident field

a Yx
, A i, -r , „ / , * a;cosa2 + «/sina2\

tp = +AJk —iL sec oLAUlt — - ) ,
\ a Yt I

is more straightforward than that considered in the previous section. In the
first place the incident field is now compressive, the crack stays closed outside
the circle s = yt, and there is no reason to have it open within this circle.
Secondly, with the crack uniformly closed we can separately examine the
combinations of the symmetric part of xp with the antisymmetric part of <$>,
and then the alternate combination. With the aid of the known reflection
and transmission coefficients R'mn and T'mn we can check the form of the
potentials on the circles s = y; we see that on s = ylt the potential <f> is
antisymmetric about 6 = n, so that d<f>/ds must vanish on 6 = n when
s <yt. Likewise the vector potential xp is symmetric about 8 = n on the
circle s = y2, so that dtp/86 vanishes for 6 = n, s < y2.

These results make necessary the imposing of the extra conditions that
dWcldd be imaginary for — 1 = Ci < 0, and that dWc/dC2 be real for
— 1 < £2 < 0. These conditions are satisfied directly by the equations 18 and
19 with P = 0, provided that S2 is also zero, this in order to satisfy the new
symmetry conditions.

The remaining constant S3 is found by evaluating the residue of the
complex derivatives at d = sec ax; it takes precisely the open crack
value given in equation 21. This equality is a direct consequence of the
simple relations (equation 10) between the open and the closed crack
scattering coefficients.
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6. Results for the field incident along the crack

In this section the initial situation is that of a combination of plane shear
and dilatation fronts travelling in a general direction away from the crack
and satisfying the appropriate boundary and continuity conditions at the
crack. The formulation of the problem is the same as that already given,
except that the incident field combination is travelling in the negative
instead of the positive a;-direction.

The transverse field structure behind the point of intersection of the pulse
fronts and the edge of the crack is shown in figure 2. One restriction is
necessary as long as we restrict attention to conical motions. To avoid the
nonconical situation associated with totally reflected dilatation waves the
angle a2 is restricted to the range 0 < a2 < arcsec \\m sec ax. With this
proviso we turn directly to the equations 18 and 19 for general results to be
satisfied by the complex derivatives. The only change required in these
equations is a sign change in the quantities sec a.x and sec oc2, so that the
simple pole of the complex potentials is on the negative £-axis.

For the incident tensile field with

Yi

{ / z x cos a» — y sin «.\
AMlt -\ — - 2)

- i +
72

we fix constants S2 and S3 by evaluating the residues at f2
 = s e c a2 °

derivative dJFc/dC2; the residue approaching the pole from above is — AJni
while that approaching the pole from below is — (^42i?22 + ^41i?J2)/s«'.
We have results very similar to those of equations 20 and 21; taking note
that i?(sec ax) = R(— sec o^), that Q(— sec ax) as defined from equation 17
is negative, the quantity S2 retains its positive definite form and this plays
an important part in the argument for putting P = yR. Thus

sec*

& «.2{1 + L2 sec2 a.,)
and
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—2iM cos aj cos2 ax R (sec ax)

2 tan ax {L*M2+cos 2a2

(24)
 3 ~

are the constants to be used in equation 18 and 19 with P.
When the incident field is compressive, the arguments of section 5 hold,

with again the result that equations 18 and 19 with P = 0, S2 = 0 and with
S3 given exactly as in equation 24, define the complex derivatives.

7. Extention of results

The problem discussed in this paper is a non-linear one, since the state of
the crack, and therefore the form of the continuity conditions to be applied,
is a function of the dependent variables themselves. The solution for incident
step-function fields is only possible because we can make self-consistent
assumptions about the state of the crack which depend only on the nature,
compressive or tensile, of the incident field. The most important remaining
point is to discuss whether the solutions derived in previous sections of this
paper may be utilized in cases of more general incident field.

The case of an incident compressive field may be disposed of most easily.
Since, by applying Duhamel's principle, we may regard any function as the
superposition of a sequence of step-functions, and since there is no evidence
that a compressive pulse is capable of opening the crack, the linear super-
position of scattered fields is justifiable.

The same is true for an incident tensile field if it does not meet the crack
before arrival at the edge. The point here is that whatever the previous histo-
ry of the crack, the edge is always closed, and each step-function component
has to contend with the same conditions on arrival at the edge. Nor does it
matter what the previous history of the crack is along its line of intersection
with a particular pulse; a change of state at any part of the crack does not
involve a finite separation of surfaces as long as we are concerned with first
order deformation theory, so that a given incident field determines for itself
what the local state of the crack shall be.

The situation for which we do not have available information involves the
superposition of incident tensile pulses which travel along the crack before
arriving at the edge. Although we have a clear solution for a single pulse any
subsequent pulse will be scattered not only at the edge of the crack, but also
at the line, moving with the velocity of Rayleigh waves where there is
a definite change of state in the crack. To superimpose results for the
individual pulses is not enough, we need to know the scattering effect of a
moving change of state on an incident field and we also need to know the
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scattering effect of the crack edge on this scattered field. The method of this
paper is not adequate to produce this information, but one based on the
study of singular waves is available and may give information.

Coda: Application to the brittle fracture problem

One way in which the analysis described in this paper may be extended
economically lies in the discussion of a brittle fracture problem. An already
existing, stress-free semi-infinite plane crack is, as before, an obstacle to an
incident tensile step-function field. The field singularities which are to be
expected in the normal elasticity theory at the edge of the crack are taken
to cause brittle fracture, and the resulting crack is taken to be smooth,
and to be extending itself in the plane of the original crack with a constant
transverse velocity y. This final condition is one which implies that the mean
strain-energy density at the moving edge is zero.

The first statement to be made is that the same conditions hold which led
to the earlier conclusion that the original crack closes itself with the velocity
of Rayleigh waves.

As far as the new crack is concerned we have two practical possibilities
which affect the analysis. The constant velocity of propagation y lies either
in the range 0 < y < yR or y 5: yR.

If it is in the former range, there is no possibility for the new crack to be
anything but closed (otherwise we have to introduce branch points into the
expressions for potential, and this results in contradictions). Then in equa-
tion 18 we have to replace, in the product containing S3, the factor (£x)i
by the factor (d -f- W/i)^- This leaves a corresponding change to be made in
equation 19, and eventually in the expression for S3 itself [in equation 21,
the right-hand side of the equation must be multiplied by (1+y/yx cos a)*].

The reason for rejecting this possibility follows the calculation of the strain
energy density near the edge of the crack. If the crack were being extended
by the application of a singular load, e.g. by pulling an infinite wire through
the material we could accept a non-zero energy density, but the problem here
is one with the source of energy at infinity. Likewise if the velocity of the
crack were not constant we could expect the energy of deformation in the
vicinity of the crack edge to be non-zero. For a given value of y the strain
energy density reduces to the form

where D3(y) is a function of y defined in conformity with equation 11 by
the ratio P3(d)/i?(Ci) for the value Zx = ylyx.
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This can only vanish if y — 0. (The equation C(y) = 0 appears to have
two other pairs of roots besides a double root at the origin, but these are
introduced in the process of squaring.)

When y2 > y > YR there is not the need in equation 17 to introduce the
factor (C2 + YRIYZ)' but to preserve the form of the solutions 18 and 19 as
C2 ->- oo we must replace this factor by £2; and again we must have the radi-
cal (Cx + y/yi)^ present in the S3 terms of both equations 18 and 19. A
local examination of displacements in the neighbourhood of the £i = yR/y1

gives contradictory results. In fact to show that y = yR is the only self-
consistent non-zero possibility involves precisely the same stages of argu-
ment as those used in Section 4 to show that the existing crack closes itself
with the velocity of Rayleigh waves.

Without any further analysis therefore we are able to say that the only
possible unforced velocity of brittle fracture is itself equal to the velocity
of free surface waves.

Previous work on the dynamics of crack propagation is restricted to the
papers of Yoffe [6] and Craggs [7], and in both these papers the motion
concerned is forced by the application of a load to the surfaces of an exist-
ing crack. In such a system a given load is linked with a steady velocity of
extension which is less than the Rayleigh velocity. The limiting case in the
situation escribed by Craggs, is also associated with the Rayleigh velocity,
but this case, one in which the external forces do no work because their
limiting value is zero, is one which tells nothing about the transient nature of
crack propagation. The point of the discussion here is both that a crack is
eventually propagating in an unforced manner and that a reasonable excuse
for the initiation of this process has been provided.
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