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A NOTE ON GALOIS COHOMOLOGY GROUPS
OF ALGEBRAIC TORI
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§1. Introduction

Let £ be a complete field of characteristic 0 whose topology is defined
by a discrete valuation and let T be an algebraic torus of dimension d
defined over k.  As is well known, T has a splitting field K which is a
finite Galois extension of k¥ with Galois group ®. For a ring R, denote
by Tr the subgroup of R-rational points of 7. Then Ty and T, , ox being
a valuation ring of K, become ®-modules in the usual manner.

In the present paper, we shall show some properties of &-modules Ty
and 7,,. Namely, in Section 2, we shall obtain Theorem 1 as an analogy
to the results as is well known in the local fields. In Section 3, we shall
consider the Galois cohomology groups of Tx and T, as &-modules [Theo-
rem 2]. Analogous results in the case of number fields were obtained in
[11] and [15]. In Section 4, we shall obtain the explicit structure of the
Galois cohomology groups of T, for the totally ramified extension of prime
degree.

The auther wishes to express his heartfelt thanks to Prof. T. Kubota
for his kind leading.

§2. Unramified extension
In this section, we suppose that the splitting field K is always an un-
ramified extension of k. We denote by ux (resp. 1) the group of units of
K (resp. k). For a unique prime divisor $ (resp. p) of K, we set for the
integer 7 =0
g’ = {a € ug, a=1mod. P}, uP =ug,

P ={ac1y, a=1mod. p"}, u® =u,,

and define 75 by
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T = Hom (T ) = {x € T, &) euy for all e T}

where 7' is the character module of 7.
As is well known, T is the G-invariant subgroup of Tk, Hence, for
the valuation ring o, of k, we set

T = Homg(T, u%) =T N T

Lemma 1. For all » =0, we have

TO ={x €Ty Ex)€u for al &< (1)}

Proof. Take x T, with &)< ul’ for all ¢e (). Then, for any
7 € T, we have Niilp(2)) € uf” and hence y(z) € uf from the theory of
local fields. The converse is trivial.

We denote by N the norm mapping Tx —> T, in the usual sense.
Then, it is clear that N maps 7% into T§ for any r. Hence, passing to

the quotient, we can define a mapping N,

N'r: Tl()‘;'{)/Tj(;I'{'Fl) > Tl(:l7;‘+1)/TI():+l)°

LemMA 2. For all » =1, N, is surjective.

Proof. By a well known property of local fields, we have the exact
sequence
0—uf* —>up —>K—0 (r=1),

where K is the residue field of K.
Since 7' is a Z-free module, we obtain the exact sequence

0 —> Hom (T, 14*") —> Hom (T, 1$°) —> Hom (T, K) —> 0.

On the other hand, we have Hom (T,K) = (T)*® K, (T)* being the dual
module of 7. Since K is a cohomologically trivial &-module, Hom (T, K)

is also cohomologically trivial.» Hence,
Tf)r)/Tr(’r-i-l) — (T‘()’I‘)/T;’r-l-l))(sj — NT(TO‘)/T(T-"I) .

ox I+ 0g

ProrosiTioN 1. TS = N(TS), for all r =1.

ox

1) Cf. [8], Theorem 2.
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Proof. Since T¢? = lim. proj. T$2/T5Y and T%) = lim. proj. T$/Ts’, our

Ox D

proposition follows from lemma 2 and [Bourbaki, Alg. comm. §2].

COROLLARY 1.  The O-dimensional Galois cohomology groups H(G,TS) are
trivial for all r=1.

COROLLARY 2.  For every dimension n, the Galois cohomology groups H(G, TS
are trivial.

Progf. Since u$® is cohomologically trivial by virtue of unramifiedness,
T = Hom (T, 1) = (M*@uy is also cohomologically trivial.

Tueorem 1. For an unramified extension Kjk, the group T, |N T, 1is iso-
morphic to the group TIN T, where T™ (resp. T™) is the reduction modulo P

(resp. p) of T2

Proof. By a well known property of local fields, we have the exact
sequence

0—‘—‘>11(1%)—_)u1{ > K* >0,

where K* is the multiplicative group of non-zero elements of the residue
field. Since 7 is a Z-free module, we obtain the exact sequence

0 —> Hom (T, u$*) —> Hom (T, 1x) —> Hom (T, K*) —>0 .
Passing to cohomology groups, we have the exact sequence
0 —> Homg(T, u$) —> Homg(T, ux) —> Homg (T, K*)
— H{(®, Hom (T,u)) —> « « « «

on the other hand, we have Hom (T, K*) = T%EB), and, by virtue of the un-
ramifiedness, Homy(7T, K*) = Tﬂk"). Hence our theorem follows from the com-

mutative diagram

1—> T T, —> T —1

Nl Nl Nl
1— TP~ Ty, —> T —>1,

from proposition 1, and corollary 2.

2) Cf. [12], Chap. V. §2. Proposition 3. and [1], Chap. 11.
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CororrarY. If k is a locally compact field, we have T,, = N T,,.

Proof. By virtue of the Lang’s theorem [7], 1-dimensional Galois co-
homology groups of a connected algebraic group defined over a finite field
is trivial. Hence our corollary follows from Theorem 2 in the next section.

Remark. If we take a 1-dimensional torus 7 = G,, our theorem is a
familiar result for the unit group of a local field.

§3. Cyclic extension
In this section, we suppose that & is a locally compact and the splitting
field K is a cyclic extension of degree = of k.

Lemma 3. (7. Springer®)  For an arbitrary extension K of k, the 1-dimen-
stonal Galots cohomology group H'®,Tx) of Tx is finite.

Proof. Let (K:k)=mn. Then we have the exact sequence

l—> F—>T—5>T—>1 (F: finite),
where # is n-th. power mapping from 7 to 7. Passing to cohomology
groups, we have the exact sequence
c oo = HY(ky F) —> HM(l, T) —> H'(b, T) —> + + -

In H'(,T) = H(®,Tx), the order of each elements divides n» and hence i*
is surjective.

LemMa 4. For sufficiently large integers m, the Herbrand quotients h(TSP) of

TS$w are trivial.

Progf. We denote by e the ramification index in K/k and take m=em'.
Then we have uf® = $™ = p» px = 0x as &-modules and hence Hom (T, u§) =
Hom (T,05). Denote by {»°},cq the normal basis of K/k and set M= Z@okw"

(direct). Then we have the exact sequence
0—>M—>pxg—>0x/M—>0  (0g/M: finite).
Since T is Z-free, we obtain the exact sequence
0 —> Hom (T, M) —> Hom (T, 0x) —> Hom (7', 0x/M) —> 0.

3) Cf. [14], Proof of Theorem 3.2,
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On the other hand, M is a ®-regular module and hence h(Hom (T, M))=1.
Since Hom (T,0x/M) = (0x/M)? is finite, our lemma follows from the pro-
perties of Herbrand quotient.

TuEOREM 2. For a cyclic extension Kk, the Galois cohomology groups H™®, T, )
of T,, have the same order for all dimensions n®.

Proof. Our theorem follows from lemma 4, the exact sequence
0 —> Hom (7, 1) —> Hom (T, ux) —> Hom (T, ux/u$”) —> 0,
and the properties of Herbrand quotient.

CoROLLARY 1. The Herbrand quotient h(Tx) of Tk is n®, where d =dim.T.
Proof. Let 7, 1=<1i=<d, be a basis of T and let ¢ be the map Tx—>2"*
defined by

$(x) = (r(m()y «+ -+ » vx(14(2), for o € Ty
where vk is the discrete valuation. Then we have the exact sequence
0—>T,, —>Tx—>Z*—>0.
Our corollary follows from lemma 4 and the properties of Herbrand quotient.
CororrarY 2. If KJk is an unramified extension, we have H'®,Tg) = 0.
Proof. This follows from corollary 1 and corollary of theorem 1.

§4. Totally ramified extension.

In this section, we suppose that K is a totally ramified extension of
prime degree ¢ of a p-adic field k. From the theory of local fields, there
exists an integer ¢#=0 such that the Hasse map ¢ is given by

2 , for x <1,
¢(x)={

x + qle —t), for x =1.

As is well known, Ng/u%™) = u®, (n > 0), and Ng(ul™*) =y, (n =0).

Hence we have
TSP = {x €Ty, &) €l for all &e (1))

in the same way as in lemma 1.

4 Cf.[11], Theorem 2, and [15], Theorem 3.
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Now, let 7, 1=<i=<d, be a basis of T such that 5, 1=<i<s, is a
basis of (7, where s = rank (7),. Let 0% (resp. ¢x) be the map Tx—>(K*)%,
(resp. Tp—> (k*)°), defined by

Ox(@) = (y(2)y « + + » - - s 1a(w)), for x € T,
pul@) = (y(w), -« - - , 75(2)), for x € T,

Then @ is an isomorphism and ¢, an injection.
LemMa 5. The norm map N: TSP —> T2 is surjective.

Proof. 'This follows from Ng;(u¥) = ui® and the above property of ¢.
Let N, be the mapping T, [TY —> T, /TS? induced by the norm map

N. Since
Su(N(x)) = (0 (N(x)), «+ - » To(N(2)))
= (N(yll(x))’ """ s N(ﬂs(x)))y for z € TK’
the image of N, is isomorphic to K** X« ... x K*®, where K*’ is the

group of the n-th. powers of elements of K*. Since the group T, /TS is a

proper subgroup of (u,/uP)* = (K*)°, we have the following

ProposiTION 2. If the characteristic p of the residue field k is not equal to
g, the cokernel of N, is trivial.

Let now N, be the mapping T[T — TPITEFY induced by the

norm map N. Then the image of N, is isomorphic to P (K)X + « + + x P (K),
where Zis Artin-Schreier map, i.e. & (x) = 2 — z for x € K. Since T$/T5

is a proper subgroup of (K)’, we have
ProrosiTioN 3, If p = gq, the cokernel of N, is trivial.

TrEOREM 3. Let K be a totally ramified extension of prime degree q of k.
Then, for every dimension n € Z, the Galois cohomology groups H"(®,T,.) of To,

are trivial.

Proof. Our theorem follows from the commutative diagram

1— TP —T,, —> T, [T —>1

SR

1—> T —> Ty, —> T, [T —>1

https://doi.org/10.1017/5002776300002448X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002448X

GALOIS COHOMOLOGY GROUPS OF ALGEBRAIC TORI 127

lemma 5, proposition 2 and proposition 3.

REFERENCES

[1] E. Artin and J. Tate, Class field theory. Harvard (1961).

[27] A. Borel, Groupes linéaires algébriques. Ann. of Math. 64 (1956), 20-82.

[ 3] Séminaire C. Chevalley, Classification des groupes de Lie algébriques. Ecole Norm.
Sup. Paris (1958).

[4] G. Harder, Uber die Galoiskohomologie halbeinfachen Matrizengruppen. I. Math. Z.
90 (1965), 404-428; II. Math. Z. 92 (1966).

[ 5] Y. Kawada, Algebraic number theory. Publ. Kyoritu Japan (1957).

[ 6] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen iiber p-adischen
Kérpern. I. Math. Z. 88 (1965), 40-47; II. Math. Z. 89 (1965), 250-272.

[ 7] S. Lang, Algebraic groups over finite fields. Amer. J. Math. 78 (1956), 555-563.

[8] T. Nakayama, Cohomology of class field theory and tensor product modules. I. Ann.
of Math. 65 (1957), 255-267.

[9]7 T. Ono, On some arithmetic properties of linear algebraic groups. Ann. of Math. 70
(1959), 266-290.

[10] T. Ono, Arithmetic of algebraic tori. Ann. of Math. 74 (1961), 101-139.

[11] M.Rosen, Two theorem on Galois cohomology. Proc. Amer. Math. Soc. 17 (1966),
1183-1185.

[12] J-P. Serre, Corps locaux. Paris Hermann (1962).

[13] J-P. Serre, Cohomologie galoisienne. Springer Verlag Berlin (1964).

[14] T.A. Springer, Galois cohomology of linear algebraic groups. Proc. Sympos. Pure Math.
Vol. 9 Amer. Math. Soc. (1966) 149-158.

[15] H. Yokoi, A note on the Galois cohomology group of the ring of integers in an algebraic
number field. Proc. Japan Akad. 40 (1964), 245-246.

Mathematical Institute,
Nagoya University.

https://doi.org/10.1017/5002776300002448X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002448X



