ON A SYSTEM OF ELLIPTIC MODULAR FORMS ATTACHED TO THE LARGE MATHIEU GROUP

GEOFFREY MASON

§ 1. Introduction and statement of results

This paper is a continuation of two previous papers of the author. In the first [4] we discussed a Thompson series associated with the group M_{24} in which each of the modular forms $\eta_{g}(\tau)$ attached to elements $g \in M_{24}$ are primitive cusp-forms. In the second [5] we showed how, given a rational G-module V for an arbitrary finite group G, it is possible to attach to each pair of commuting elements (g, h) in G a certain q-expansion $f(g, h ; \tau)=\sum_{n \geq 1} a_{n}(g, h) q^{n / D}$ (for $q=\exp (2 \pi i \tau)$, τ in the upper halfplane \mathfrak{h}, and D an integer depending only on ($g, h)$) such that the follow ing hold:

$$
\begin{equation*}
f(g, h ; \tau)=f\left(g^{x}, h^{x} ; \tau\right), \quad x \in G \tag{1.1}
\end{equation*}
$$

(1.2) For each $\gamma \in \Gamma=S L_{2}(Z)$ we have

$$
\left.f(g, h ; \tau)\right|_{k} \gamma=(\text { constant }) f((g, h) \gamma ; \tau)
$$

where $k=\frac{1}{2} \operatorname{dim} C_{V}(\langle g, h\rangle)$. Here the left-side is the usual slash operator on modular forms of weight k and on the right we have

$$
(g, h) \gamma=\left(g^{a} h^{c}, g^{b} h^{d}\right) \quad \text { for } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(1.3) For each $g \in G$ and $n \in N$ the map

$$
h \longmapsto a_{n}(g, h)
$$

is a virtual character of $C_{G}(g)$.
We call an assignment $(g, h) \mapsto f(g, h ; \tau)$ satisfying (1.1)-(1.3) an elliptic system for G, and the purpose of this paper is to study in detail the

[^0]elliptic system for M_{24} corresponding to its usual permutation representation on 24 letters. We will see that this system has remarkable multiplicative properties.

The definition of $f(g, h ; \tau)$ in [6] is quite complicated and will not be repeated here, but in certain cases it can be written as a "Frame shape." For this purpose we make the following definition:
(1.4) The commuting pair (g, h) is called rational if h acts rationally on each of the g-eigenspaces of $V \otimes_{Q} C$.

If (g, h) is a rational pair and g has order r then on the $\exp (2 \pi j i / r)$ eigenspace of g on $V \otimes_{Q} C$, h has a Frame shape, say

$$
\prod_{m \mid s}^{n} m_{J}^{e\left(m_{j)}\right.}
$$

where $s=$ order of h. Then we have

$$
\begin{equation*}
f(g, h ; \tau)=\prod_{j \mid r} \prod_{d \mid j} \prod_{m_{j} \mid s} \eta\left(m_{j} \tau / d\right)^{e(m j)_{\mu}(\tau / d j)} \tag{1.5}
\end{equation*}
$$

where μ is the Möbius function.
If $g=1$ then (1.5) reduces to $f(1, h ; \tau)=\Pi \eta\left(m_{i} \tau\right)^{e\left(m_{j}\right)}$ and is precisely the form $\eta_{h}(\tau)$ discussed in [4]. Thus (1.5) represents the generalization of "Frame shape" to rational pairs.

We use the term "primitive" cusp-form as in [3]. The main result of that paper is that the primitive cusp-forms of the type

$$
\begin{equation*}
p(\tau)=\prod_{i=1}^{s} \eta\left(k_{i} \tau\right)^{e_{i}}, \quad 1 \leq k_{1}<k_{2}<\cdots, e_{i}>0 \tag{1.6}
\end{equation*}
$$

are precisely those for which the corresponding partition ($k_{1}^{e_{1}}, \cdots, k_{s}^{e_{s}}$) is a "balanced" partition of 24 . In other words, we have
(i) $\sum k_{i} e_{i}=24$
(ii) $k_{1} \mid k_{i}, \quad i \geq 1$
(iii) If $N=k_{1} k_{s}$, then $N=k_{i} k_{s+1-i}, i \geq 1$,
(iv) $e_{i}=e_{s+1-i}, \quad i \geq 1$.

We call the integer N in (iii) the balancing number of the partition.
Now each $h \in M_{24}$ has a balanced Frame shape, so that each $\eta_{h}(\tau)$ is a primitive cusp-form of the preceding type. Moreover, of the 28 cuspforms in [3] which satisfy (1.6) and (1.7), 22 appear as $\eta_{h}(\tau)$ for $h \in M_{24}$. One of the main results of the present paper is to extend these observa-
tions to the contex of our elliptic system, and to explain how every form satisfying (1.6) and (1.7) appears. To state these results we need some notation.

$$
N_{g}=\text { balancing number of } g \in M_{24}
$$

For a pair (g, h) of commuting elements we set

$$
N_{(g, h)}=N_{g} N_{h},
$$

and for an abelian subgroup $A \leq M_{24}$ with at most 2 generators we set

$$
N_{A}=\min \left\{N_{(g, h)} \mid\langle g, h\rangle=A\right\} .
$$

Finally, let $m(g, h ; \tau)=f\left(g, h ; N_{g} \tau\right)$, We will establish the following:
I. To each $A \leq M_{24}$ is attached a primitive cusp-form $p_{A}(\tau)=p(\tau)$ satisfying (1.6) and (1.7) and the following:
(a) If $\langle g, h\rangle=A$ then $m(g, h, \tau)=p(\tau)$, if and only if, $N_{(g, h)}=N_{A}$.
(b) $p(\tau)$ is a primitive cusp-form of level N_{A} and integral weight $k_{A}=\frac{1}{2} \operatorname{dim} C_{V}(A)$ for some Dirichlet character $\varepsilon_{A}\left(\bmod N_{A}\right)$ which is trivial if, and only if, k_{A} is even.
(c) If $\langle g, h\rangle=A$ then $m(g, h ; \tau)$ can be derived from $p(\tau)$ by applying a succession of operators of the form $\left.\right|_{k} T_{Q^{-1}}$ and $\left.\right|_{k} W_{N}$ where $T_{Q-1}=$ $\left(\begin{array}{cc}1 & Q^{-1} \\ 0 & 1\end{array}\right), W_{N}=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$ and Q, N are suitably chosen integers.
(d) If $p(\tau)=\sum_{n=1}^{\infty} a_{n} q^{n}$ then there is a root of unity λ such that $m(g, h ; \tau)=\sum_{n=1}^{\infty} b_{n} q^{n}$ where either $b_{n}=0$ or $b_{n}=\lambda^{n-1} a_{n}$.
(e) The majority of the forms $m(g, h ; t)$ have multiplicative coefficients, in particular this is true of each rational pair (g, h).
II. Because of (1.3) the forms $m(g, h ; \tau)$ for fixed g form a Thompson series for $C_{M_{24}}(g)$ which we may write either as $\sum_{n \geq 1} \chi_{n}^{g} q^{n}$ for $\chi_{n}^{g} \in R C(g)$, χ_{n}^{g} being the coefficient of q^{n} in $m(g, h ; \tau)$, or as a formal Dirichlet series

$$
L(C(g), s)=\sum_{n=1}^{\infty} \frac{\chi_{n}^{g}}{n^{s}} .
$$

(a) If we take $g=1$ the series $L\left(M_{24}, s\right)$ has an Euler product which is exactly that discussed in [4].
(b) Similarly, several other of the L-series $L(C(g), s)$ also have Euler products (e.g., if g is an involution, because of $I(e)$). They exhibit a "ramified" behavior at the primes dividing the order of g. For example, if g is of type 2A (Frame shape $1^{8} 2^{8}$) then $C=C(g) \cong 2^{1+8} . \quad L_{3}(2)$ and we have

$$
L(C, s)=\prod_{p \text { odd }}\left(1-\frac{\chi_{p}^{g}}{p^{s}}+\frac{\psi_{p}^{g}}{p^{2 s}}\right)^{-1}\left(1+\frac{S}{2^{s}}\right)^{-1}\left(1+\frac{S-T}{2^{s}}\right) .
$$

Here, $T=-\chi_{2}^{g}$ is the character of C of degree 8 realized on the (-1)eigenspace of g on V and S is the permutation character of C on the 8 order orbits of g of length 2. Moreover, on the (+1)-eigenspace of g on V the action of $C /\langle g\rangle=\bar{C}$ induces an embedding $\bar{C} \leq S O(15, R)$ and then ψ_{p} is determined via $p \psi_{p}^{g}=\beta_{p}^{\text {or }}$ where $\beta_{p}^{\text {or }}$ is the oriented Bott cannibalistic class of $S O(16, \boldsymbol{R})$ of degree p^{8}, restricted to \bar{C} and lifted to C. (See [5] for a (general) discussion of this particular virtual character in the present context.)
(c) In general, g acts on the virtual module affording χ_{p}^{g} as a scalar. Thus we may think of χ_{n}^{g} as affording a projective character of $\bar{C}=C /\langle g\rangle$, which we write as $\hat{\chi}_{n}^{g}$. Then in every case the projectivized Dirichlet series has an Euler product, i.e.,

$$
\hat{L}(\bar{C}, s)=\sum_{n \geq 1} \frac{\hat{\chi}_{n}^{g}}{n^{s}}=\prod_{p}\left(1-\frac{\hat{\chi}_{p}^{g}}{p}+\frac{\hat{\psi}_{p}^{g}}{p^{2 s}}\right)^{-1}
$$

where again $\hat{\psi}_{p}^{g}$ is of Bott type arising from the induced embedding $\bar{C} \leq$ $S O\left(C_{V}(g)\right)$.
(d) After (c) we may combine the Euler products together to obtain a bundle version. For the $\hat{\chi}_{n}^{g}$ and $\tilde{\psi}_{p}^{g}$ for fixed n, p and g ranging over $G=M_{24}$ define a virtual projective G-bundle over G, where by a projective G-bundle over G we mean that for each $g \in G$ we have a projective space P_{g} and conjugation by x induces a linear isometry $l(x): P_{g} \rightarrow P_{x g x-1}$ satisfying $l(x)=\mathrm{id}$. on P_{x} and $l(x y)=l(x) \circ l(y)$. If we write C_{n}, B_{p} for the virtual projective bundles corresponding to $\left\{\hat{\chi}_{n}^{g}\right\},\left\{\hat{\psi}_{p}^{g}\right\}$ respectively then we have

$$
\sum_{n \geq 1} \frac{C_{n}}{n^{s}}=\prod_{p}\left(1-\frac{C_{p}}{p^{2 s}}+\frac{B_{p}}{p^{2 s}}\right)^{-1}
$$

an Euler product with coefficients in the Grothendieck ring $K P_{G}(G)$ of such bundles. As in [4], this latter equality may be formulated in terms of the existence of a certain formal group with coefficients in $K P_{G}(G)$.
III. All but 2 of the 28 forms satisfying (1.6) and (1.7) appear as $p_{A}(\tau)$ for some A. Moreover the remaining 2 appear in the elliptic system attached to O, or even to its maximal 2-local $2^{12} \cdot M_{24}$.

The paper is arranged as follows: in section 2 we describe all 2generator abelian subgroups of M_{24} and study their action on the 24 letters.

In section 3 we list the forms $m(g, h ; \tau)$ and study their q-expansions, and in particular give the proofs of the preceding assertions.

Thanks are due to A.O.L. Atkin for providing some numerical data and thereby influencing my ideas about the forms $m(g, h ; \tau)$, to S.P. Norton for correspondence which convinced me of the usefulness of introducing projective characters (though its utility is admittedly not quite evident in the foregoing), and to P. Landweber for supplying a list of errata in an earlier version.

§ 2. Hypothesis "Even"

Let G be a finite group with ρ an even-dimensional representation of G by real unimodular matrices

$$
\begin{equation*}
\rho: G \longrightarrow S L(2 d, R) . \tag{2.1}
\end{equation*}
$$

In the following we shall frequently abuse notation by omitting ρ and thereby identifying $\rho(g)$ with g. We let V be the $R G$-module affording the representation ρ, and for a subgroup $H \leq G$ we set $V_{H}=\{v \in V \mid h . v$ $=v$ for all $h \in H\}$.

Lemma 2.1. If H is either cyclic or abelian of odd order then V_{H} has even dimension.

Proof. As V affords a real representation of G, the non-real irreducible constituents of the action of H on $\bar{V}=V \otimes_{R} C$ occur in conjugate pairs. Thus if \bar{U} is the sum of such constituents and \bar{W} the sum of the real constituents then $\bar{V}=\bar{U} \oplus \bar{W}$ and each of \bar{U}, \bar{W} is of even dimension.

If $|H|$ is odd then \bar{W} is a trivial H-module, so $\bar{W}=\bar{V}_{H}$ and we are done in this case. If H is cyclic then a generator h of H has only the eigenvalues ± 1 on \bar{W} and $\bar{W}=\bar{V} \oplus \bar{V}_{-1}$ where V_{-1} is the -1 eigenspace of h on V. Since $\operatorname{det} h=1$ we have $\operatorname{dim} V_{-1}$ even, so also $\operatorname{dim} V_{H}$ is even as required.

Lemma 2.2. Suppose that codim $V_{\langle x\rangle} \equiv 0(\bmod 4)$ for each involution $x \in G$. Then $\operatorname{dim} V_{H}$ is even for each $H \cong Z_{2} \times Z_{2}$.

Proof. If x_{i} and the involutions of $H, 1 \leq i \leq 3$, we have the fixedpoint formula

$$
\operatorname{dim} V=\operatorname{dim} V_{H}+\sum_{i=1}^{3} \operatorname{dim}\left(V_{\left\langle x_{i}\right\rangle} / V_{H}\right) .
$$

The result follows from this.
The following situation is relevant.
Hypothesis Even. ρ is as in (2.1) and we have
(2.2) $\operatorname{dim} V_{H}$ is even for each 2-generator abelian subgroup $H \leq G$.

Lemma 2.3. Hypothesis Even is equivalent to the following condition:
(2.3) $\quad C_{G}(h) \subseteq S L\left(V_{\langle h\rangle}\right)$ for each 2-element h. This means that $C_{G}(h)$ acts on $V_{\langle\hbar\rangle}$ as a group of unimodular matrices.

Proof. Suppose that (2.3) holds. If $H=\langle h, k\rangle$ is abelian with h a 2-element then $\operatorname{dim} V_{\langle x\rangle}$ is even by Lemma 2.1 and $H \subseteq S L\left(V_{\langle x\rangle}\right)$ by hypothesis. Now apply Lemma 2.1 to the action k on $V_{\langle x\rangle}$ to see that $\left(V_{\langle x\rangle}\right)_{\langle k\rangle}=V_{H}$ has even dimension.

This shows that (2.2) holds at least for abelian 2-groups with at most 2 generators. For an arbitrary such abelian group H we may write $H=$ $T \times K$ where T is a 2 -Sylow of H. Then V_{T} is even-dimensional and affords a real representation of K, whence $V_{H}=\left(V_{T}\right)_{K}$ is even dimensional by the argument of Lemma 2.1.

The proof that (2.2) implies (2.3) is left to the reader.
We turn now to the application of these ideas to M_{24}. Specifically we take

$$
\begin{equation*}
\rho: M_{24} \longrightarrow S L(24, R) \tag{2.4}
\end{equation*}
$$

to be the usual permutation representation of M_{24} on 24 letters.
Proposition 2.4. If ρ is as in (2.4) then Hypothesis Even is satisfied.
Proof. We will need a few properties of M_{24} which can be found in [1] or [2], for example. First, the involutions are of shape $1^{8} 2^{8}$ or 2^{12}. They therefore satisfy the hypothesis of Lemma 2.2, so that result tells us that $\operatorname{dim} V_{H}$ is even for $H \cong Z_{2} \times Z_{2}$.

Now these involutions have centralizers of shape $2^{1+6} \cdot L_{3}(2)$ and $2^{6} \cdot \Sigma_{5}$, respectively, so in each case if x is an involution with centralizer C then C is generated by its involutions. Also, by the first paragraph we see that involutions of C lie in $S L\left(V_{\langle x\rangle}\right)$, so in fact $C \subseteq S O\left(V_{\langle x\rangle}\right)$.

Let now h be any 2 -element with centralizer C. If $x \in C$ is an involution then $h \in C(x)$, so $\langle x, h\rangle \subseteq S L\left(V_{\langle x\rangle}\right)$ by the last paragraph, so $V_{\langle x, h\rangle}$ has even dimension by Lemma 2.1, so $x \in S L\left(V_{\langle x\rangle}\right)$. Now as in the last
paragraph we get $C_{1} \subseteq S L\left(V_{\langle x\rangle}\right)$ where C_{1} is generated by $\langle h\rangle$ together with the involutions of C.

If h has order 8 then $C(h) \cong Z_{2} \times Z_{8}$ so that $C_{1}=C \subseteq S L\left(V_{\langle x\rangle}\right)$. If h has order 4 then h is conjugate to one of $4 A \sim 2^{4} 4^{4}, 4 B \sim 1^{4} \cdot 2^{2} \cdot 4^{4}$ or $4 C \sim 4^{6}$. The first and third of these satisfy $C(h) \cong\left(Z_{4} * D_{8} * D_{8}\right) \cdot \Sigma_{3}$ resp. $Z_{4} \times \Sigma_{4}$ and hence $C_{1}=C$ in these cases.

From these reductions together with Lemma 2.3 we see that if the proposition is false, with $\operatorname{dim} V_{H}$ odd for a suitable H, then in fact $H \cong$ $Z_{4} \times Z_{4}$ and H contains only elements of order 4 which are of type $4 B$. But here we compute directly that

$$
\operatorname{dim} V_{H}=1 / 16(24+3.8+12.4)=6 .
$$

(Here we used $\operatorname{dim} V_{H}=\left\langle\chi \mid H, 1_{H}\right\rangle_{H}$ where χ is the character afforded by ρ and satisfying $\chi(g)=\#$ of letter s fixed by g.) The proposition is proved.

We wish now to give all 2 -generator abelain subgroups of $M_{24}-$ not up to conjugacy necessarily, but by listing the number of elements of each cycle shape that they contain. Table 1 names the elements (cycle shapes) following [2]; table 2 names the non-cyclic 2 -generator abelian subgroups together with the elements they contain.

Table 1

Elt.	Shape	Elt.	Shape
1A	1^{24}	7 A	$1^{3} \cdot 7^{3}$
2A	$1^{8} \cdot 2^{8}$	8 A	$1^{2} \cdot 2 \cdot 4 \cdot 8^{2}$
2B	2^{12}	10 A	$2^{2} \cdot 10^{2}$
3A	$1^{6} \cdot 3^{6}$	11 A	$1^{2} \cdot 11^{2}$
3B	3^{8}	12 A	$2 \cdot 4 \cdot 6 \cdot 12$
4A	$2^{4} \cdot 4^{4}$	12 B	12^{2}
4B	$1^{4} \cdot 2^{2} \cdot 4^{4}$	14 A	$1 \cdot 2 \cdot 7 \cdot 14$
4C	4^{6}	15 A	$1 \cdot 3 \cdot 5 \cdot 15$
5A	$1^{4} \cdot 5^{4}$	21 A	$3 \cdot 21$
6A	$1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 6^{2}$	23 A	$1 \cdot 23$
6B	6^{4}		

Table 2 I. $Z_{2} \times Z_{2}$

Name	\# Elts	
	2 A	2 B
A	3	0
B	0	3
C	2	1
D	1	2

II. $Z_{2} \times Z_{4}$

	2 A	2 B	4 A	4 B	4 C
A	3	0	4	0	0
B	2	1	2	2	0
C	1	2	4	0	0
D	1	2	0	0	4
E	3	0	0	4	0
F	1	2	0	4	0

III. $Z_{4} \times Z_{4}$

	2 A	2 B	4 A	4 B	4 C
A	1	2	4	0	8
B	3	0	8	4	0
C	3	0	0	12	0

IV. $Z_{2} \times Z_{8}$

	2 A	2 B	4 A	4 B	4 C	8 A
A	1	2	0	4	0	8

V. $Z_{2} \times Z_{6}$

	2 A	2 B	3 A	3 B	6 A	6 B
A	3	0	2	0	6	0
B	0	3	0	2	0	6

VI. $Z_{2} \times Z_{10}$

	2 A	2 B	5 A	10 A
A	0	3	4	12

VII. $Z_{3} \times Z_{3}$

	3 A	3 B
A	8	0
B	2	6

As to the correctness of the tables, IV-VIII are readily deduced from the relevant information in [2], so that only I-III need be considered further. Let us therefore take $H \leq M_{24}$ with $H \cong Z_{2 a} \times Z_{2 b}, 1 \leq a \leq b \leq 2$, and first show that H is necessarily one of the types in I-III. The condition imposed by Proposition 2.4 is sufficient to show that only one possibility not listed might occur, namely $a=b=2$ with H containing $22 \mathrm{~A}, 12 \mathrm{~B}, 24 \mathrm{~A}, 64 \mathrm{~B}$ and 44 C .

To eliminate this, take $x \in M_{24}$ of type 4 C with $F=C(x)$. Then $F \cong Z_{4} \times \Sigma_{4}$, so that certainly there is only one type of $Z_{4} \times Z_{4}$ containing x. We assert that F is transitive on the 24 letters. If not then F has two orbits, each of length 12 , and if X is one of them then a pointstabilizer in F is $D \cong D_{8}$. Let $D_{0}=D \cap O_{2}(F) \cong Z_{2} \times Z_{2}$. Clearly each involution of D_{0} is of type 2 A , and if they are the only such involutions in $O_{2}(F)$ then $D_{0} \unlhd F$ and D_{0} fixes each letter in X. This being impossible, $O_{2}(F)$ must contain 6 involutions of type 2 A and 1 of type 2B. As all elements of order 4 in $O_{2}(F)$ have square equal to x^{2} they are of type 4^{6}. Now we see that $O_{2}(F)$ has $1 / 16(24+6.8)=4 \frac{1}{2}$ orbits, an absurdity. So indeed F is transitive.

Let F_{0} be a point stabilizer in F, a group of order 4. We must show that $F_{0} \cong Z_{2} \times Z_{2}$. Indeed if $Z_{3} \cong R \leq F$ then $N=N(R) \cong \Sigma_{3} \times L_{2}(7)$ and $x \in O^{\infty}(N)$. Then an involution $t \in O_{\infty}(N)$ lies in $F \backslash O_{2}(F)$ and is of type 2A as it centralizes an element of order 7 in N. Thus we may take $t \in F_{0} \backslash F$, whence $F_{0} \cong Z_{2} \times Z_{2}$ as required.

As explained above, it is now sufficient to show that each of the types listed in I-III above actually occur in M_{24}. First, type $Z_{4} \times Z_{4} A$
exists by the foregoing argument. Also, the stabilizer of 3 points in M_{24} is $M_{21} \cong L_{3}(4)$ and contains a $Z_{4} \times Z_{4}$ necessarily of type C.

Consider next the centralizer $B=C(f)$ of an element of type 4 A . We have $B \cong\left(Z_{4} * D_{8} * D_{8}\right) \cdot \Sigma_{3}$, and the 8 fixed letters of f^{2} and their complement are the 2 orbits of B. So a point-stabilizer of the longer orbit (in B) is isomorphic to Σ_{4} and hence contains an element g of type 4B. So $\langle f, g\rangle$ must be of type $Z_{4} \times Z_{4} B$.

As for $Z_{2} \times Z_{4}$ subgroups, type C and D can be found in a $Z_{4} \times Z_{4} A$, type E in $Z_{4} \times Z_{4} C$, and type A in $Z_{4} \times Z_{4} B . \quad A Z_{2} \times Z_{4} F$ lies in $Z_{2} \times Z_{8} A$, so only $Z_{2} \times Z_{4} B$ remains to be accounted for. But from the structure of $B=C(f)$ in the last paragraph we see that if y is an involution in $B \backslash O_{2}(B)$ then $Z_{2} \times Z_{4} \cong\langle f, y\rangle$ and is not contained in $a Z_{4} \times Z_{4}$ or $Z_{2} \times Z_{8}$ subgroup. Thus from the preceding $\langle f, y\rangle$ must be of type $Z_{2} \times Z_{4} B$ as required. We leave verification of table 2 I to the reader.

Finally we remark that because of Proposition 2.4, each of the forms $f(g, h ; \tau)$ (or $m(g, h ; \tau)$) attached to M_{24} has integral weight $1 / 2$ $\operatorname{dim} C_{V}(\langle g, h\rangle)$.

$\S 3$. The associated forms

We begin by listing the forms $m(g, h ; \tau)=f\left(g, h ; N_{g} \tau\right)$ as discussed in section 1. To make the computations one uses tables 1 and 2 of section 2 in order to compute the characteristic polynomial of h on each g-eigenspace. If (g, h) is a rational pair then (1.5) yields $f(g, h ; \tau)$, and in any case one can use the original definition [6, equation (3.7)]. One can also make use of Lemmas 3.1 and 3.2 below. We remark that in [6, equation (3.7)] the form $f(g, h ; \tau)$ is seen to have the shape $q^{d} \sum_{n \geq 0} a_{n} q^{n}$ for a certain rational number d [6, equation (3.3)], but one readily verifies that $d=1 / N_{g}$ in the present situation, so that $m(g, h ; \tau)=q+\cdots$.

One caveat to the foregoing is that only for those pairs (g, h) which are rational do we explicitly record $m(g, h ; \tau)$, as a Frame shape. Moreover we do not repeat $m(1, h ; \tau)$, which is given in Table 1 of section 2; and of the pairs $(g, h),(h, g)$ we often list only one (cf. Lemma 3.1).

Table 3

$\langle g, h\rangle$	(g, h)	$m(g, h ; \tau)$	$N=N_{g} N_{h}$	multiplicative
$Z_{2} \times Z_{2} A$	$(2 A, 2 A)$	2^{12}	4	yes
$Z_{2} \times Z_{2} B$	$(2 B, 2 B)$	4^{6}	16	yes
$Z_{2} \times Z_{2} C$	$\begin{aligned} & (2 A, 2 A) \\ & (2 A, 2 B) \\ & (2 B, 2 A) \end{aligned}$	$\begin{gathered} 1^{4} \cdot 2^{2} \cdot 4^{4} \\ 2^{14} / 1^{4} \\ 4^{14} / 8^{4} \end{gathered}$	$\begin{aligned} & 4 \\ & 8 \\ & 8 \end{aligned}$	yes yes yes
$Z_{2} \times Z_{2} D$	$\begin{aligned} & (2 B, 2 A) \\ & (2 B, 2 B) \end{aligned}$	$\begin{gathered} 2^{4} 4^{4} \\ 4^{16} / 2^{4} 8^{4} \end{gathered}$	$\begin{gathered} 8 \\ 16 \end{gathered}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
$Z_{2} \times Z_{4} A$	$\begin{aligned} & (4 A, 2 A) \\ & (4 A, 4 A) \end{aligned}$	$\begin{gathered} 4^{6} \\ 8^{18} / 4^{6} \cdot 16^{6} \end{gathered}$	$\begin{aligned} & 16 \\ & 64 \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} B$	$\begin{aligned} & (2 A, 4 B) \\ & (2 A, 4 A) \\ & (2 B, 2 B) \\ & (2 B, 4 A) \\ & (4 B, 4 B) \end{aligned}$	$\begin{gathered} 1^{2} \cdot 2 \cdot 4 \cdot 8^{2} \\ 2^{7} 8^{2} / 1^{2} \cdot 4 \\ 2^{2} 8^{7} / 4 \cdot 16^{2} \\ 4^{5} 8^{5} / 2^{2} \cdot 16^{2} \\ \text { irrational } \end{gathered}$	$\begin{gathered} 8 \\ 16 \\ 16 \\ 32 \\ 32 \end{gathered}$	yes yes yes yes no
$Z_{2} \times Z_{4} C$	$\begin{aligned} & (4 A, 2 B) \\ & (4 A, 4 A) \end{aligned}$	$\begin{gathered} 4^{2} \cdot 8^{2} \\ 8^{8} / 4^{2} \cdot 16^{2} \end{gathered}$	$\begin{aligned} & 32 \\ & 64 \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
$Z_{2} \times Z_{4} D$	$\begin{aligned} & (4 C, 2 A) \\ & (4 C, 2 B) \\ & (4 C, 4 C) \end{aligned}$	$\begin{gathered} 4^{2} \cdot 8^{2} \\ 8^{8} / 4^{2} 16^{2} \\ \text { irrational } \end{gathered}$	$\begin{gathered} 32 \\ 64 \\ 256 \end{gathered}$	yes yes yes
$Z_{2} \times Z_{4} E$	$\begin{aligned} & (4 B, 2 A) \\ & (4 B, 4 B) \end{aligned}$	$\begin{gathered} 2^{4} \cdot 4^{4} \\ 4^{16} / 2^{4} \cdot 8^{4} \end{gathered}$	$\begin{gathered} 8 \\ 16 \end{gathered}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
$Z_{2} \times Z_{4} F$	$\begin{aligned} & (4 B, 2 B) \\ & (4 B, 4 B) \end{aligned}$	$\begin{aligned} & 4^{6} \\ & 4^{6} \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
$Z_{4} \times Z_{4} A$	$\begin{aligned} & (4 C, 4 A) \\ & (4 C, 4 C) \end{aligned}$	$\begin{gathered} 8 \cdot 16 \\ 16^{4} / 8 \cdot 32 \end{gathered}$	$\begin{aligned} & 128 \\ & 256 \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$

$\langle g, h\rangle$	(g, h)	$m(g, h ; \tau)$	$N=N_{g} N_{h}$	multiplicative
$Z_{4} \times Z_{4} B$	$(4 A, 4 B)$			yes
	($4 A, 4 A$)	$8^{8} / 4^{2} \cdot 16^{2}$	64	yes
$Z_{4} \times Z_{4} C$	$(4 B, 4 B)$	4^{6}	16	yes
$Z_{2} \times Z_{8} A$	$(8 A, 2 B)$			yes
	$(8 A, 4 B)$	$4^{2} \cdot 8^{2}$	32	yes
	$(8 A, 8 A)$	$8^{2} / 4^{2} \cdot 16^{2}$	64	yes
$Z_{2} \times Z_{8} A$	$(6 A, 2 A)$	$2^{3} \cdot 6^{3}$	12	yes
	($6 A, 6 A$)	irrational	36	no
$Z_{2} \times Z_{6} B$	$(6 B, 2 B)$	12^{2}	144	yes
	$(6 B, 6 B)$	irrational	1269	yes
$Z_{2} \times Z_{10} A$	$(10 A, 2 B)$	$4 \cdot 20$	80	yes
	(10A, 20A)	irrational	400	no
$Z_{3} \times Z_{3} A$	$(3 A, 3 A)$	3^{8}	9	yes
$Z_{3} \times Z_{3} B$	$(3 B, 3 A)$	$3^{2} \cdot 9^{2}$	27	yes
	$(3 B, 3 B)$	irrational	81	yes
$Z_{2} A$	(2A, 2A)	$2^{32} / 1^{8} \cdot 4^{8}$	4	yes
$Z_{2} B$	$(2 B, 2 B)$	$4^{38} / 2^{12} \cdot 8^{12}$	16	yes
$Z_{3} A$	(3A, 3A)	irrational	9	no
$Z_{2} B$	$(3 B, 3 B)$	irrational	81	yes
$Z_{4} A$	$(4 A, 2 A)$	$4^{16} / 2^{4} \cdot 8^{4}$	16	yes
	$(4 A, 4 A)$	irrational	64	no
$Z_{4} B$	$(2 A, 4 B)$	$4^{14} / 8^{4}$	8	yes
	$(4 B, 2 A)$	$2^{14} / 1^{4}$	8	yes
	$(4 B, 4 B)$	irrational	16	no
$Z_{4} C$	$(4 C, 2 B)$	$8^{18} / 4^{6} \cdot 16^{6}$	64	yes
	(4C, 4C)	irrational	256	

$\langle g, h\rangle$	(g, h)	$m(g, h ; \tau)$	$N=N_{g} N_{h}$	multiplicative
$Z_{5} A$	$(5 A, 5 A)$	irrational	25	no
$Z_{6} A$	$\begin{aligned} & (3 A, 2 A) \\ & (6 A, 2 A) \\ & (6 A, 3 A) \\ & (6 A, 6 A) \end{aligned}$	$\begin{gathered} 1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 6^{2} \\ 2^{8} \cdot 6^{8} / 1^{2} \cdot 3^{2} \cdot 4^{2} \cdot 12^{2} \\ \text { irrational } \\ \quad \text { irrational } \end{gathered}$	$\begin{aligned} & 12 \\ & 12 \\ & 18 \\ & 36 \end{aligned}$	yes yes no no
$Z_{6} B$	$\begin{aligned} & (3 B, 2 B) \\ & (6 B, 2 B) \\ & (6 B, 3 B) \\ & (6 B, 6 B) \end{aligned}$	$\begin{gathered} 6^{4} \\ 12^{2} / 6^{4} \cdot 24^{4} \end{gathered}$ irrational irrational	$\begin{gathered} 34 \\ 144 \\ 324 \\ 1296 \end{gathered}$	yes yes yes yes
$Z_{7} A$	(7A, 7A)	irrational	49	no
$Z_{8} A$	$\begin{aligned} & (8 A, 2 A) \\ & (2 A, 8 A) \\ & (8 A, 4 A) \\ & (8 A, 8 A) \end{aligned}$	$\begin{gathered} 2^{2} 8^{2} / 1^{2} \cdot 4 \\ 2^{2} 8^{2} / 4 \cdot 16^{2} \\ \text { irrational } \\ \text { irrational } \end{gathered}$	$\begin{aligned} & 16 \\ & 16 \\ & 64 \\ & 64 \end{aligned}$	yes yes no no
$Z_{10} A$	$\begin{gathered} (5 A, 2 B) \\ (10 A, 2 B) \\ (10 A, 5 A) \\ (10 A, 10 A) \end{gathered}$	$\begin{gathered} 2^{2} \cdot 10^{2} \\ 4^{6} \cdot 20^{6} / 2^{2} \cdot 8^{2} \cdot 10^{2} \cdot 40^{2} \\ \text { irrational } \\ \text { irrational } \end{gathered}$	$\begin{gathered} 20 \\ 40 \\ 100 \\ 400 \end{gathered}$	yes yes no no
$Z_{11} A$	($10 A, 10 A$)	irrational	121	no
$Z_{12} A$	$\begin{gathered} (4 A, 3 A) \\ (4 A, 6 A) \\ (12 A, 2 A) \\ (12 A, 4 A) \\ (12 A, 3 A) \\ (12 A, 6 A) \\ (12 A, 12 A) \end{gathered}$	$\begin{gathered} 2 \cdot 4 \cdot 6 \cdot 12 \\ 4^{4} \cdot 12^{4} / 2 \cdot 6 \cdot 8 \cdot 24 \\ 4^{4} 12^{4} / 2 \cdot 6 \cdot 8 \cdot 24 \\ \text { irrational } \end{gathered}$	$\begin{array}{r} 24 \\ 48 \\ 48 \\ 96 \\ 72 \\ 144 \\ 576 \end{array}$	yes yes yes no no no no

$\langle g, h\rangle$	(g, h)	$m(g, h ; \tau)$	$N=N_{g} N_{h}$	multiplicative
$Z_{12} B$	$(4 C, 3 B)$	12^{2}	144	yes
	$(4 C, 6 B)$	$24^{6} / 12^{2} \cdot 48^{2}$	576	yes
	$(12 B, 2 B)$	$24^{6} / 12^{2} \cdot 48^{2}$	576	yes
	$(12 B, 4 C)$	irrational	2304	yes
	$(12 B, 3 B)$	irrational	1296	yes
	$(12 B, 6 B)$	irrational	5184	yes
	$(12 B, 12 B)$	irrational	20736	yes
$Z_{14} A$	$(7 A, 2 A)$	$1 \cdot 2 \cdot 7 \cdot 1 \cdot 4$	14	yes
	$(14 A, 2 A)$	$2^{4} \cdot 14^{4} / 1 \cdot 4 \cdot 7 \cdot 28$	28	yes
	$(14 A, 7 A)$	irrational	98	no
	$(14 A, 14 A)$	irrational	196	no
$Z_{15} A$	$(5 A, 3 A)$	$1 \cdot 3 \cdot 5 \cdot 15$	15	yes
	$(15 A, 3 A)$	irrational	45	no
	$(15 A, 5 A)$	irrational	75	no
	$(15 A, 15 A)$	irrational	225	no
$Z_{21} A$	$(7 A, 3 B)$	$3 \cdot 21$	63	yes
	$(21 A, 3 B)$	irrational	567	yes
	$(21 A, 7 A)$	irrational	441	no
	$(21 A, 21 A)$	irrational	3969	no
$Z_{23} A$	$(23 A, 23 A)$	irrational	529	no

We interpolate some easy lemmas.
Lemma 3.1. Let (g, h) be a commuting pair with $N=N_{g} N_{h}$ and $W_{N}=$ $\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$. Then

$$
\left.m(g, h ; \tau)\right|_{k} W_{N} \sim m\left(h^{-1}, g ; \tau\right) .
$$

Proof. We remark that the notation ~ means that the ratio of the two functions in question is constant. As for the proof, if $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ then

$$
\begin{aligned}
m(g, & h ; \tau)\left.\right|_{k} W_{N} \sim \tau^{-k} m(g, h ;-1 / N \tau) \\
& \sim\left(N_{h} \tau\right)^{-k} f\left(g, h ;-1 / N_{h} \tau\right) \\
& =\left.f\left(g, h ; N_{h} \tau\right)\right|_{k} S \\
& \left.\sim f(g, h) S^{-1} ; N_{h} \tau\right) \quad \text { (by eqn. (1.2)) } \\
& =m\left(h^{-1}, g ; \tau\right) \quad \text { as required. }
\end{aligned}
$$

A similar argument yields
Lemma 3.2. Let Q be a divisor of N_{g}. Then

$$
\left.m(g, h ; \tau)\right|_{k}\left(\begin{array}{cc}
1 & Q^{-1} \\
0 & 1
\end{array}\right) \sim m\left(g, g^{N_{g} / Q} \cdot h: \tau\right)
$$

Concerning the level of these forms, one easily proves using Lemma 3.2 the following:

Lemma 3.3. Let Q be a divisor of D, set $D^{\prime}=$ l.c.m. $\left(Q^{2}, D\right)$, and assume that $m(g, h ; \tau)$ is on $\Gamma_{0}(D)$. Then
(i) $m\left(g, g^{N_{g} / Q} \cdot h ; \tau\right)$ is on $\Gamma_{1}\left(D^{\prime}\right)$.
(ii) If $Q \mid 24$ then $m\left(g, g^{N_{g} / Q} \cdot h, \tau\right)$ is on $\Gamma_{0}\left(D^{\prime}\right)$.

One can use Lemmas 3.1 and 3.2 to establish assertion $I(c)$ of section 1. We illustrate this with a diagram corresponding to the group $Z_{2} \times Z_{4} B$ (cf. Tables 2 and 3):

As for $I(d)$, (e) we use the following:
Lemma 3.4. Suppose that $m(g, h ; \tau)=q \Sigma a_{n} q^{n-1}$, that there is an integer D such that $a_{n}=0$ unless $n \equiv 1(\bmod D)$ and that $Q \mid N_{g}$. Then the following hold:
(i) $m\left(g, g^{N g / Q} \cdot h ; \tau\right)=q \Sigma b_{n} q^{n-1}$ where $b_{n}=\exp (2 \pi i(n-1) / Q)$.
(ii) If $\left\{a_{n}\right\}$ is multiplicative then $\left\{b_{n}\right\}$ is also multiplicative if $D \mid Q$, say $Q=m D$, and either
(a) $m \mid D$, or
(b) $\quad m=2, D$ odd.

Part (i) follows from Lemma 3.2, and (ii) is left to the reader.
One starts with the primitive form $p_{A}(\tau)=p(\tau)$, which has multiplicative coefficients, and then applies Lemma 3.4 with D being the minimal integer which occurs with non-zero exponent in the Frame shape corresponding to $p(\tau)$. Again, successive applications of this principle together with the action of W_{N} yields what we need, including the third column of Table 3.

One can also easily write down the Euler p-factors of $q \Sigma b_{n} q^{n-1}$ from those of $q \Sigma a_{n} q^{n-1}$. Specifically, if the p-factor of the latter is

$$
\left(1-\frac{a_{p}}{p^{s}}+\frac{c_{p}}{p^{2 s}}\right)^{-1}
$$

then that of the former in case (ii) (a) of Lemma 3.4 is

$$
\left(1-\frac{\sigma a_{p}}{p^{2}}+\frac{\sigma^{2} c_{p}}{p^{2 s}}\right)^{-1} \quad(\sigma=\exp 2 \pi i(p-1) / Q)
$$

in case (ii) (b) the odd p-factors remain the same while the 2 -factor becomes

$$
\left(1-\frac{2^{s}}{a_{2}}\right)^{-1}\left(1-\frac{2 a_{2}}{2^{s}}\right)
$$

(in this case we always have $c_{2}=0$). Again we illustrate with the group $Z_{2} \times Z_{4} B$:
$(2 \mathrm{~A}, 4 \mathrm{~B}): \quad \prod_{p}\left(1-\frac{a_{p}}{p^{s}}+\frac{c_{p}}{p^{s}}\right)^{-1}$
$(2 \mathrm{~A}, 4 \mathrm{~A}): \quad \prod_{p}\left(1-\frac{a_{p}}{p^{s}}+\frac{c_{p}}{p^{2 s}}\right)^{-1}\left(1-\frac{2 a_{2}}{2^{s}}\right)$
(2B, 4B): $\quad \operatorname{II}_{p \text { odd }}\left(1-\frac{a_{p}}{p^{s}}+\frac{c_{p}}{p^{2 s}}\right)^{-1}$
$(2 \mathrm{~B}, 4 \mathrm{~A}): \quad \prod_{p=1(4)}\left(1-\frac{a_{p}}{p^{s}}+\frac{c_{p}}{p^{2 s}}\right) \prod_{p \equiv 3(4)}\left(1+\frac{a_{p}}{p^{3}}+\frac{c_{p}}{p^{2 s}}\right)^{-1}$
$(4 \mathrm{~B}, 4 \mathrm{~A}): \quad \sum_{n \geq 1} \frac{\exp (2 \pi i(n-1) / 4)}{n^{s}}$.
All of the assertions in of section 1 can be deduced in a like manner from these assertions. Concerning III, the two "missing" primitive
forms not listed in Table 3 but satisfying (1.16) and (1.7) correspond to the Frame shapes $2 \cdot 22$ and $6 \cdot 18$. Now in the maximal 2 -local $2^{12} \cdot M_{24}$ of O there is an element with Frame shape 2.22 in its action on the Leech lattice. Also we find commuting elements with Frame shape $2^{3} \cdot 6^{3}$ and 3^{8}, and a quick calculation yields that the corresponding form $m(g, h ; \tau)$ $=\eta(6 \tau) \eta(18 \tau)$.

References

[1] J. Conway, Three lectures on exceptional groups, in Finite Simple Groups, PowellHigman, eds., Academic Press, London, 1971.
[2] J. Conway et al., Atlas of simple groups, C.U.P., 1983.
[3] M. Koike, On McKay's Conjecture, Nagoya Math. J., 95 (1984), 85-89.
[4] G. Mason, M_{24} and certain automorphic forms, in Contemp. Math. vol. 45, A.M.S., Providence, R.I. (1985), 223-244.
[5] G. Mason, Finite groups and Hecke operators, Math. Ann., 283 (1989), 381-409.
[6] --, Elliptic system and the eta-function, to appear in Notas d. l. Soc. d. Matemática d. Chilé, 1990.

Department of Mathematics
U. C. Santa Cruz

Santa Cruz, CA 95064
U.S.A.

[^0]: Received March 20, 1989.

 * Research supported by the National Science Foundation and the S.E.R.C. of Great Britain.

