A NOTE ON EXTENDED AMBIGUOUS POINTS

J.L. STEBBINS

Let f be an arbitrary function from the open unit disk D of the complex plane into the Riemann sphere S. If p is any point on the unit circle C, C(f, p) is the set of all points w such that there exists in D a sequence of points $\{z_j\}$ such that $z_j \rightarrow p$ and $f(z_j) \rightarrow w$. $C_d(f, p)$ is defined in the same way, but the sequence $\{z_j\}$ is restricted to $\Delta \subset D$. If α and β are two arcs in D terminating at p and $C_{\alpha}(f, p) \cap C_{\beta}(f, p) = \Phi$, p is called an ambiguous point for f.

Mathews (3, p. 138) defined an extended ambiguous point for f in the following way: Let α be an arc in $\overline{D} - \{p\}$ terminating at p. $EC_{\alpha}(f, p) = \bigcap \overline{UC(f, q)}$ where the intersection is taken over all neighborhoods N of p and the union over all q on $\alpha \cap N$, $q \neq p$, and $C(f, q) = \{f(q)\}$ if $q \in D$.

Bagemihl (1) proved that an arbitrary function from D into S can have at most countably many ambiguous points. Mathews (3, p. 138, proof of Theorem 1) has proved that a countinuous function from D into S can have at most countably many extended ambiguous points. This proof does not hold if f is not continuous (the statement that $C_{BL}(g, 1)$ is contained in either $EC_a(f, p)$ or $EC_{\beta}(f, p)$ only holds if f is continuous). The theorem, however, does hold.

THEOREM (Mathews): If f is an arbitrary function from D into S and if a point p on C is an extended ambiguous point for f, then p is an ambiguous point for f.

Proof. Let α be any arc in $\overline{D} - \{p\}$ such that α tends to p. As Mathews' indicates, it is sufficient to find an arc $\alpha' \subset D$ and tending to p such that $C_{\alpha'}(f, p) \subset EC_{\alpha}(f, p)$. Use the points $q \in \alpha \cap C$ and the method of Gross (2, p. 249) to construct a "wedge" Z_1 in D such that for every sequence of points $\{z_k\}$ in Z_1 tending to p, $\{f(z_k)\}$ has limit points only in $\cap \overline{UC(f,q)}$

Received September 4. 1970.

where $q \in \alpha \cap C$, $q \neq p$, and the intersection is taken over all neighborhoods of p.

In general the set Z_1 will not be connected since $\alpha \cap C$ will not always contain a terminal part of α . However, $\alpha \cap D$ may be used to join the components of Z_1 so that $(\alpha \cap D) \cup Z_1$ will contain an arc α' tending to p. It is clear that $C_{\alpha'}(f, p) \subset EC_{\alpha}(f, p)$, and the theorem follows.

References

- Bagemihl, F., Curvilinear cluster sets of arbitrary functions. Proc. Nat. Acad. Sci. U.S.A. 41, 379–382 (1955).
- [2] Gross, W., Zum Verhalten analytischer Funktionen in der Umgebung singulärer Stellen. Math.
 Z. 2, 243–294 (1918).
- [3] Mathews, H.T., A note on Bagemihl's ambiguous point theorem. Math. Z. 90, 138-139 (1965).

University of Wisconsin-Milwaukee

168