K. Sakai Nagoya Math. J. Vol. 111 (1988), 111-114

QUASI-ANOSOV DIFFEOMORPHISMS AND PSEUDO-ORBIT TRACING PROPERTY

KAZUHIRO SAKAI

Let M be a compact boundaryless C° -manifold, and let Diff(M) be the space of C^1 -diffeomorphisms of M endowed with the C^1 -topology. An Axiom A diffeomorphism is said to satisfy the strong transversality condition if for every $x \in M$, $T_x M = T_x W^s(x) + T_x W^u(x)$. For an Axiom Adiffeomorphism, the strong transversality is a sufficient condition to be structurally stable (i.e. there is a neighbourhood $\mathscr{U} \subset \text{Diff}(M)$ of f such that for every $g \in \mathscr{U}$, there is a homeomorphism h on M satisfying $f \circ h =$ $h \circ g$). We say that $f \in \text{Diff}(M)$ is topologically stable if for every $\varepsilon > 0$, there is a neighbourhood $\mathscr{U}_{\varepsilon}$ of f in the set of homeomorphisms of Mwith the C^0 -topology such that for every $g \in \mathscr{U}_{\varepsilon}$, there is a continuous surjection h on M satisfying $f \circ h = h \circ g$ and $d(h(x), x) < \varepsilon$ for $x \in M$ (here d denotes a metric compatible with the topology of M).

Let $g: X \to X$ be a homeomorphism of a compact metric space (X, d). A sequence of points $\{x_i\}_{i=a}^{b}(-\infty \leq a < b \leq \infty)$ in X is called a δ -pseudoorbit of g if $d(g(x_i), x_{i+1}) < \delta$ for $a \leq i \leq b - 1$. A sequence $\{x_i\}$ is called to be ε -traced by $x \in X$ if $d(g^i(x), x_i) < \varepsilon$ holds for $a \leq i \leq b$. We say that g has pseudo-orbit tracing property (abbrev. POTP) if for every $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit of g can be ε -traced by some point in X. We say that g is expansive if there exists c > 0 such that $d(g^n(x), g^n(y)) \leq c$ for every $n \in Z$ implies x = y. Such a number c is called an expansive constant for g. For the materials of topological dynamics on compact manifolds, see Morimoto [4].

It is well known that every homeomorphism on M with expansivity and POTP is topologically stable, and that every topologically stable homeomorphism on M of dimension ≥ 2 has POTP (see [4]). Every Axiom A diffeomorphism f satisfying the strong transversality condition is topologically stable (thus every Anosov diffeomorphism is topologically

Received November 15, 1986.

stable) and so f has POTP.

We say that $f \in \text{Diff}(M)$ is quasi-Anosov if for every $0 \neq v \in TM$, the set $\{||(Tf)^n(v)||: n \in \mathbb{Z}\}$ is unbounded. A quasi-Anosov diffeomorphism is equivalent to an Axiom A diffeomorphism satisfying $T_x W^s(x) \cap T_x W^u(x)$ $= \{0_x\}$ for every $x \in M$ ([3]). Obviously every Anosov diffeomorphism is quasi-Anosov and its converse is true if dim M = 2 ([3]). But it is known ([1]) that the converse is not true on a 3-dimensional manifold. Mañé proved the following

THEOREM ([3]). For $f \in \text{Diff}(M)$ the following conditions are mutually equivalent;

(i) f is Anosov,

(ii) f is quasi-Anosov and satisfies the strong transversality condition,

(iii) f is quasi-Anosov and structurally stable.

The aim of this note is to prove the following theorem related to the above results.

THEOREM. Every quasi-Anosov diffeomorphism with POTP must be an Anosov diffeomorphism.

First of all we prepare a lemma that we need.

LEMMA. Let M be as before and let $f \in \text{Diff}(M)$ be quasi-Anosov. Then there are an integer m > 0 and a neighbourhood $\mathscr{V} \subset \text{Diff}(M)$ of f such that for every $g \in \mathscr{V}$ and every $0 \neq v \in TM$, $||(Tg)^n(v)|| \ge 2 ||v||$ for some n with |n| = m.

Proof. Since f is quasi-Anosov, it is easy to see that there is N > 0 such that for every $0 \neq v \in TM$, $||(Tf)^n(v)|| \geq 3||v||$ for some n with |n| < N. Thus following the proof of Lemma 2.3 of [2] we see that there is m > 0 such that for every $0 \neq v \in TM$, $||(Tf)^n(v)|| \geq 3||v||$ for some n with |n| = m. Thus if we choose a neighbourhood $\mathscr{V} \subset \text{Diff}(M)$ of f such that for every $g \in \mathscr{V}$, $||(Tg)^n - (Tf)^n|| < 1$ for |n| = m, then the conclusion of this lemma is obtained.

Proof of Theorem

Let $f: M \to M$ be a quasi-Anosov diffeomorphism with POTP. If we establish that there is a neighbourhood $\mathscr{U} \subset \text{Diff}(M)$ of f such that every $g \in \mathscr{U}$ has a common expansive constant, then the conclusion of our theorem is easily obtained as follows.

https://doi.org/10.1017/S0027763000001021 Published online by Cambridge University Press

112

Since f is expansive and has POTP, f is topologically stable. Thus if we choose a small (C¹-) neighbourhood $\mathscr{U}' \subset \mathscr{U}$ of f, then for every $g \in \mathscr{U}'$, there is a continuous surjection $h: M \to M$ with $f \circ h = h \circ g$ and d(h(x), x) < c/3 for all $x \in M$. Since an expansive constant for g is the same as that of f, we see that h is injective. This implies that f is structurally stable, and so f is Anosov.

We denote by exp the exponential map from TM to M determined by a Riemannian metric $\|\cdot\|$ on TM. Let m > 0 and \mathscr{V} be as in the lemma and put $K = \sup \{\|(Tg)_x\|: x \in M, g \in \mathscr{V}\}$. Take and fix $\varepsilon > 0$ such that $\varepsilon(1 + K + \cdots + K^{m-1}) < 1/2$. Then there are $c = c(\varepsilon, f) > 0$ and a neighbourhood $\mathscr{U}(\subset \mathscr{V})$ of f such that for every $g \in \mathscr{U}$,

$$\|\exp_{g^{\sigma}(x)}^{-1}\circ g^{\sigma}\circ \exp_{x}v-(Tg)_{x}^{\sigma}(v)\|\leq \|v\|\varepsilon\qquad(x\in M)$$

if $||v|| \leq c$ $(\sigma = \pm 1)$. To get the conclusion, it is enough to see that c is a common expansive constant for all $g \in \mathscr{U}$. If this is false, then there exist $x, y \in M$ $(x \neq y)$ and $g \in \mathscr{U}$ such that $d(g^n(x), g^n(y)) \leq c$ for $n \in \mathbb{Z}$ (here d is the metric induced by the Riemannian metric). Let $c_1 = \sup \{d(g^n(x), g^n(y)) : n \in \mathbb{Z}\}$ and take δ with $0 < \delta \leq c_1/4$. Obviously $c_1 - \delta < d(g^k(x), g^k(y)) \leq c_1$ for some $k \in \mathbb{Z}$. Let $z = g^k(x), w = g^k(y)$ and $v = \exp_z^{-1}w$. Then $c_1 - \delta < ||v|| = d(z, w)$ and $||(Tg)^n(v)|| \geq 2||v||$ for some n with |n| = m. We deal with only the case $||(Tg)^m(v)|| \geq 2||v||$ (since the case $||(Tg)^{-m}(v)|| \geq 2||v||$ follows in a similar way). Since $||v|| = d(z, w) \leq c$ we have

$$\|\exp_{g^{(z)}}^{-1}\circ g\circ \exp_{z}v-(Tg)_{z}(v)\|\leq \|v\|arepsilon$$
 ,

and so $||(Tg)_z(v)|| \leq c_1(1+\varepsilon)$ (since $||\exp_{g(z)}^{-1} \circ g \circ \exp_z v|| = d(g(z), g(w)) \leq c_1$). Moreover

$$\begin{split} \| \exp_{g^{2}(z)}^{-1} \circ g^{2} \circ \exp_{z} v - (Tg)_{z}^{2}(v) \| \\ & \leq \| \exp_{g^{2}(z)}^{-1} \circ g^{2} \circ \exp_{z} v - (Tg)_{g(z)} (\exp_{g^{-1}(z)}^{-1} \circ g \circ \exp_{z} v) \| \\ & + \| (Tg)_{g(z)} (\exp_{g^{-1}(z)}^{-1} \circ g \circ \exp_{z} v) - (Tg)_{z}^{2}(v) \| \\ & \leq c_{1}\varepsilon + Kc_{1}\varepsilon = c_{1}\varepsilon(1+K) \end{split}$$

and hence

$$\|\exp_{g^2(z)}^{-1}\circ g^2\circ \exp_z v\|=d(g^2(z),g^2(w))\leq c_1$$

implies

$$||(Tg)_{z}^{2}(v)|| \leq c_{1}\{1 + \varepsilon(1 + K)\}.$$

By induction we have

KAZUHIRO SAKAI

$$\|2\|v\| \leq \|(Tg)_z^m(v)\| \leq c_1\{1 + \epsilon(1 + K + \cdots + K^{m-1})\}$$

Thus $c_1 - \delta < ||v|| \leq 3c_1/4$ and we have $c_1/4 < \delta$. This is a contradiction.

References

- J. Franks and C. Robinson, A quasi-Anosov diffeomorphism that is not Anosov, Trans. Amer. Math. Soc., 223 (1976), 267-278.
- [2] J. Lewowicz, Lyapunov functions and topological stability, J. Differential Equations, 38 (1980), 192-209.
- [3] R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc., 229 (1977), 351-370.
- [4] A. Morimoto, The method of pseudo-orbit tracing property and stability, Tokyo Univ. Seminary Notes 39, 1979. (In Japanese.)

Department of Mathematics Tokyo Metropolitan University Tokyo, Japan

Current address: Kisarazu National College of Technology 2-11-1, Kiyomidai-higashi Kisarazu-shi Chiba-ken 292, Japan