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The aim of this paper is to derive two formulae for n(N) that need involve
only a few of the smallest primes. The first is

(1) n(N) = m+b1P1+b2Pi+b11P11+b3P3+bilPil+ • • •

Here w is a small integer, the b's are integers that will be found later, and
Pif...t denotes the number of products f*g' • • • hk 5S N, in which /, g, • • •, h
are unequal integers greater than 1 and prime to the first m primes. The
suffixes run through all partitions of all integers.

It will be proved that

(2) bM = (1/n) 2 [-)*"-*p{d)C(nld) (d\(n)),

where (») denotes a partition ij • • • k of n, d runs through the integers that
divide all of i, / , • • • , k, fi(d) is the Mobius function, and C(n/d) denotes the
multinomial coefficient

(3)

associated with the partition (n)jd. When d — 1 only, (2) is simply

It will also be proved that when the partition is a single integer,

(4) bn = 0 (n ^ 3).

A modification of (1) was suggested by Dr J. C. Butcher. Let

(n) = l a 2 ^ - - -vf.

Then P(n) as defined above denotes the number of products

of integers greater than 1, prime to the first m primes, and all different, i.e.,
257
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258 H. Lindgrcn [2]

(5) /,#&, U*K gi^K'"-

Let Qin) denote the number of products as just defined except that they need

not satisfy (5). The second formula is

(6) n{N) = m + c 1 Q 1 + c a Q a + c n Q n + ••-,

where
(7) cw = (l/») 2 ( - ) " " - V ( i ) ( » M ) ! i ( W (d\(n)),

and ^ , A2, • • • are defined by

(9) ex = ( l + V ^ l + ^ a ^ l + A g a ; 3 ) • • • to oo.

If d — 1 only with (n) = */ • • • A, (7) becomes

Formulae (1) and (6) are believed to have the advantages that a computer
program giving the P's or Q's for n(N) can be devised so as to give them for
n (N/l) also, where I runs through any desired set of integers, and that the
same P's and Q's can be used in formulae similar to (1) and (6) for the
numbers of integers with prime factorizations pq, p2q, pqr, etc. (These for-
mulae have yet to be worked out.) It may also be possible to find the number
of primes in each of a set of residue classes, e.g. + 1 and —1 mod 4.

Proof of (2)

Nst...u will denote the number of integers in a given set whose prime lacto-
rizations are of the form psqf • • • ru. The set can be any that does not include
1, and for the present purpose it consists of the integers greater than 1 but
not greater than N that are prime to the first m primes. Such a set will be
referred to as the set N.

The iV's are connected by the relation

N 1 + N 2 + N 1 1 + ••• = P 1 .

Further relations can be obtained from the number of ways in which an
integer / belonging to the set can be expressed as a product f'g' • • • hk

enumerated by Pw...fc. The number of ways depends only on the exponents
in the prime factorization, p3q* • • • r" say, of I, so it can be denoted by c'J'.'.'.J,
and we have

(10) c]i...kN1+c%...kN2+c]j...kNn+ • • • = Pti...k,
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[3] The calculation of n (N) 259

where */ • • • k can be any partition of any integer.
The first few coefficients in the first few relations (10) are tabulated below.

Eliminating all N's but the first gives

(11) Nx = ft^x+fiaPj+ftuPuH , say,

which is true of any set. In the case of the set N

and, once the coefficients in (11) are determined, we have (1).
In general f,g, • • •, h and p,q, • • • ,r, unlike the product / , need not belong

to the set. But they do belong to the set N, i.e., they too are prime to the
first m primes.

Suffix in
(10) and (11)

1
2
11
3
21
111
4
31
22
211
1111

1

1

Superfix
2 11 3 21

1 1 1 1
1 . . .

1 1 2
1

1

in
111

1

3

1

Coefficients

(10) =
4

1
1
1

1

1

in (10)

31

1

3

1
1

1

22

1
1
3

2
1

1

211

1

5

1
3

1

1111

1

7

6

1

Coeff.
in (11)

1
j

— 1

1
2

— 1
- 1
- 3
- 6

To find all elements in the matrix of (10) and then find the first row of its
reciprocal seems hopeless. A different approach is adopted.

The number of ways of expressing an integer whose prime factorization is
p»qt. . . ru a s a p r o ( i u c t of a factors that need not be unequal, unity being
an admissible factor and permutations of factors being counted separately,
depends only on a and s, t, • • •, u, so it can be denoted by d'J"". Similarly
to (10) there is a set of relations

where Ua denotes the number of products of a factors as just defined that
belong to the set N, and n is made so large that Nu) is zero if s > n. We shall
derive (2) from the solution of (12), the coefficients in which are easily
found, while the U's are simple combinations of the P's.

The coefficients are multiplicative, for d*a, d*a, • • •, d
u
a are just the respec-

tive numbers of ways of putting s things p, t things q, • • • ,u things r into a
numbered boxes, whence

Jit • • • U JS / / * . . . J U
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The formula

(13) d'o = a(a+l) • • • (a+s-l) /s! = C{a+s-l, s) = C(a+s~l, a - l )

is true for any superfix when the suffix is 1 (only one box). So it will be
assumed true for any superfix with suffixes l(l)a and proved by induction.
On this assumption d'a+1 enumerates distributions of which

C(a+s— I, a—1) have 0 things in the first box,

C(a+s—2, a-l) have 1, • • •,
C[a—1, a— 1) have s.

The sum of the binomial coefficients is the coefficient of xa~l in

This is the coefficient of xa in

and so, as required for the induction,
dU\ = c(a+s> «)•

The n equations (12) cannot be solved for the individual iV's, but only for
n linear combinations v, v2, • • •, vn of them. One possible set of combinations
is obtained by using (13) to rearrange the equations as polynomials in a:

(14) av+aH2-j \-anvn = Ua (a

It will be seen later that only v need be investigated. By (14)

(15) v = M I - H M ^ - M ^ - f • • • + ( - ) « - 1 MnUn),

where \A\ is the nxn alternant \i*\, and Mt is the minor of \A\ obtained by
dele dng its ith row and first column. By easy algebra

\A | = 1! 2 ! • • • » ! , \A l̂ ifcf, = C{n, i)/i,

and substituting in (15) gives

(16) v = 2 (-Y-iCin, i)UJi (i =

The Uf are now replaced by numbers Vit defined as for Ui except that
unity is not an admissible factor. The factors in each product enumerated
by Ut are those in one enumerated by Vt (j =1(1)*), in the same order but
distributed in / positions out of *, the vacant positions being filled by l's.
The number of ways of choosing the / positions is C(i, j), whence

and (16) becomes
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[5] The calculation of n(N) 261

Since

we have

(17)

The cofactor

which is the

i

n

» = 1

of (-)'-1!

2C{n,i)-

coefficient

i

2
3 - 1

( - :

of ;

;

( -

is

•)-cK,-)c(

' C ( * - l , . - ; • )

x*~' or a:* in

i-nvji.

The coefficient is 1, so (17) becomes

(18) v = 2 ( -)^F,/ / = 1 (-)'"%//.
J = l 3 = 1

The limit n, which can be as large as we please, is replaced by oo.
We now extract the value of Nx from (18). By (13) and the multiplicative

property d'* and all more complex forms have the factor a2, and d'a has the
factor a but not a2. Therefore N,t and all more complex forms are absent
from v, and the coefficient in v of Na is that of a in (13). This is 1/s, whence

(19) v = ^.Ndld (<* = l ( l ) o o ) .

Now the number Nd of dth prime-powers in the set N is the number of primes
in the set N1/d, i.e. (N1'4)^ Hence (19) and similar formulae for v(NVx) can
be written

*, v(NV*)/x = 2 {NW^dx (d = 1(1)oo),

a relation between two functions of *. Inverting, making x = 1, and using
(18), we get in turn

(WPyz = 2 (t(dMNUdx)ldx {d=l(l)co),

(20) Nt f l
d=l d -1 3=1

The next step is to substitute

(21) Vi(N^')=2C(j)P(a(N
v')

where the summations are over all partitions (/), C(j) denotes a multinomial
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coefficient as in (3), and d(j) denotes the partition of dj obtained by multi-
plying each element of (/) by d. The second member includes C(j) because
permutations of factors are counted separately in Vt but not in P(f), and
the second step follows from the definition of the P's (just as (N1/d)l = Nd).
Substituting in (20) gives

OO 00

(22) ^i = 2 2 2 (-Y-XWWPwW.

Finally, the coefficient of P(n) is obtained from the terms in (22) with (j)
equal to {n)jd. It is

(1/n) 2 (-)n/d-lfi(d)C(nld) (d\(n)),

as announced in (2). And when («) = n, the coefficient is

(d\n),

which vanishes if n is odd and greater than 1, for the signs affecting the
Mobius functions are then all the same. If n is even and greater than 2, let
n = 2vz where z is odd and either y or z is greater than 1. Then the 2 can be
split up into

2 (-)n/d-W)+ 2 (-)"/2d-V(2^)+ • • • (d\z).
the unwritten sums vanishing because fi(i) = 0. The first two sums cancel
if z = 1 (whence 4|«), and vanish separately if z > 1. Therefore

(23) 2 (-)" / d

and (4) follows.
Although 1/M appears in (2), b(n) is integral. For the matrix of (10) has

unit determinant, as will be seen from the table.
If the maximum value of n is set at v, the formula is valid if

For instance if m = 3 and v = 13, it is valid if

N < 713- 11 «a 1.06 X1012.

The calculation of the PM's for the larger values of n consists in the elabo-
rate computation of many small numbers. This can be avoided by calcula-
ting V's instead. Replacing dj in (20) by n, we get

(24) «, = h (-)""-v(^rtn/«.
n=l d\n

For values of n up to a suitable intermediate value n = i, making dj ̂  i
in (20) leads via (22) to (1) as far as bu) Pu). For n = i + l(l)v, (24) can be

https://doi.org/10.1017/S1446788700028287 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028287


[7] The calculation of ji(iV) 263

used. Thus foriV = 1012 with m = 3 the numerous 5(13) P<13)'s can be replaced
by

Every product contributing to the F13 contains at least eight 7's since
V • II6 > 1012, so only F5(1012/78) need be found. This and indeed the few
non-zero P<13)'s can easily be calculated by hand.

One can similarly use (24) to shorten (6).

Proof of (7)

With j = n,d = 1, (21) becomes

(n)

V P P , ,
(25) - 7 = ^ 7 + / ";' , , , + ••••

n\ n\ (n—1)!1!

Now expanding (9) and using (8) gives

At denoting the sum of all A's whose suffixes are partitions of i into unequal
integers. Hence

(26)

and substituting in (25) gives

(27) VJ
(»)

where
Aii...k = AiAi---Ak.

It will now be shown how VJnl is expressed in terms of (?'s.
A Q can be expressed in terms of P's. For instance a product fg*h3,

contributing 1 to P(n) with («) = 133, can be dissected into fgg2hz and
fhh2gs, contributing 2 to QM with (v) = 1123; neither of these is obtained by
dissecting any other product that contributes to any P(7); and every
contribution to Qnz? comes thus from some P( 7 ) . Therefore

the 2 reflecting the fact that either of the 3's in 133 can be partitioned into
12 to give 1123. In general, the contribution of P(n, to Q(v) is equal to P(n)

multiplied by the number of ways in which elements of (n) can be parti-
tioned, each element into unequal integers, so as to give (y). Every such
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partition of any element / of («) is the suffix of a A in the At forming part of
the coefficient of P( n ) , as in the first line of

* 133 n = -"1 - 133

The number of partitions of («) into (v) is the number of ways in which
XM can be formed from products of individual A's in the first line, and this is
the coefficient of XM in the expansion of Ain), as in the second line. Therefore
the contribution of P(n) to QM is the cofactor of Xiv) in the expansion of
Ain) P ( n ) , as in the third line. This applies to every P(n) that contributes to
(?<„), and every P(n) appears in (27). Hence the sum of all the cofactors of
XM in the expansion of (27) is equal to Q(v). This applies to every Q(v),
and so

(28) ^>!=2*<,>e<. .>= 2 *<»>&„).
(") (")

the sets of partitions (r) and (») being the same.
By (28), and similarly to (21),

with summations over all partitions (/). Substituting in (20) gives

#1 = 2 ! K-Y-WWIIOQMW-
d-1 i-1 V)

The coefficient of (?(„>, obtained from the terms with (/) equal to (n)/d,
is as in (7). This completes the proof.

The property corresponding to (4) is

2 c(n) = 0 (» ̂  3),

the sign 9̂  indicating summation over partitions of n into unequal integers.
For by (7)

The cof actor of (—)nli-x[i(d)(nld)! is the sum of the A's whose suffixes are
partitions of njd into unequal integers. Therefore, using (26) in the third
step and (23) in the last, we have

2 *<»> = 2 (-)

= 2 (-)
d|n
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[9] The calculation of n(N) 265

Although all A's but Ax are fractional, as will soon be seen, c(n) is integral.
For the matrix of the equations between N's and Q's, like that of (10), has
unit determinant.

Calculation of the coefficients. The A's are given by Xx = 1 and

(29) nXn = (-1)"+ 2d(-*a)n/* (d\n; l<d<n),

obtained by taking logarithms of (9) and equating coefficients. To justify
this, the first « factors are multiplied out:

= 1+aH +xnln\+an+1x"+l-i +awaf, say (w = $»(*+!)).

where X is a convergent power series in x. If x is so small that

\Xtx
{\ < 1 (t = 1(1)«) and \xn+1X\ < 1,

we can use the formula for log (1+y) with — 1 < y ^ 1, getting

d-l i~l

The terms with dj — 1, n show that ^ = 1 and

2 ( - ) " Z " - 1 ^ = 0 (n>l;d]n).

Here the terms with d = 1, n are (—I)"-1, »An. Writing them separately,
we get (29).

It can be proved that the 2 in (29) is Ofo-1), so that (9) converges if

Values of some A's follow.

« = 2 3 4 5 6 7 8 9 10 11 12
/ _ \ » 3 — 1 1 3 1 13 1 27 8 91 1 1213

\ ) *n — ? ? ? J T2 7 TITS' 8T ¥TO IT I3d2"¥

From these were calculated the values of c(n) below. Coefficients with

(«) = 2'l»-2< (« ̂  3; »-2» ^ 1)

are omitted to save space. They are
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&<»

1
2
I2

3
4
31
2'
5
41
32
312

6

1
-1
-1
0
0

— 1
-1
0
1
2
4
0

1
-1
-1
-1
-2
2

-1
-5
9

—4
Q

-21

51
42
41*
3s

321
31s

23

7
61
52
51s

43

-1
-3
-5
-3
-10
-20
-16

0
1
3
6
5

24
-23
-45
-13
20
40

-16
-103
130
-72
-144
-90

421
413

3H
32*
321*
314

8
71
62
61*
53
521

15
30
20
30
60
120
0

-1
-3
-7
-7
-21

135
270
80

-60
-120
-240

-1062
720

—456
-910
-336
504

513
4*
431
42*
421*
41*
3*2
3*1»
32*1
321»
31"
2«

-42
-8
-35
-51
-105
-210
-70
-140
-210
-420
-840
-312

1008
-708
630

-471
-945
-1890
-280
-560
420
840
1680
-312

I thank the referee for a helpful report.

References

The earliest practical formula for n(N) is Meissel's of 1870, described ia Uspensky and
Heaslet's Elementary Number Theory, pp. 120 — 2. More recent is D. H. Lehmer's formula
described in his paper "On the exact number of primes less than a given limit", Illinois J.
Math., 3 (1959) 381-8.

The expansion similar to (9) of e~x forms the subject of contributions (in English) to Nordisk
Matematisk Tidskrift by O. Kolberg, L. Carlitz, and F. Herzog (8 (1960) 33-4 , 9 (1961)
117-22, and 10 (1962) 78—9 respectively).

Patent Office, Canberra.

https://doi.org/10.1017/S1446788700028287 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028287

