W.G. Vogt M.M. Eisen G.R. Buis Nagoya Math. J. Vol. 34 (1969), 149–151

CONTRACTION GROUPS AND EQUIVALENT NORMS*

WILLIAM G. VOGT MARTIN M. EISEN GABE R. BUISt

Using the notation in [1], the Lumer-Phillips theorem (3.1 of [2]) is refined to single parameter groups in real Banach space and real Hilbert space. The theory can be extended to complex spaces.

DEFINITION 1.

Let X be a B-space with norm $\|\cdot\|_1$ and let $[\cdot, \cdot]_1$ be a corresponding semi-scalar product on X. Then the semi-scalar product $[\cdot, \cdot]$ is said to be equivalent to $[\cdot, \cdot]_1$ on X iff $\|\cdot\|_1$ and $\|\cdot\|$ are equivalent norms on X.

THEOREM 1.

Let A be a linear operator with D(A) and R(A) both contained in a B-space $(X, \|\cdot\|_1)$ such that D(A) is dense in X. Then A generates a group $\{T_t; -\infty < t < \infty\}$ in X such that $\{T_t; t > 0\}$ is a negative contractive semi-group with respect to an equivalent norm $\|\cdot\|$ iff

(1)
$$-\delta \|x\|^2 < [Ax, x] < -\gamma \|x\|^2 \qquad (x \in D(A))$$

where $\infty > \delta > r > 0$ and $[\cdot, \cdot]$ is an equivalent scalar product consistent with $\|\cdot\|$, and

(2)
$$R(I(1-\tau) - A) = X$$
 $R(I(1+\delta) + A) = X$.

Proof.

The sufficiency of conditions (1) and (2) follows immediately from the results in Yosida [1], pp. 250-254.

Conversely suppose that A generates a group such that $||T_t|| < e^{-\beta t}$ $(t \ge 0)$ where $\beta > 0$. It is known that for a group $||T_t^{-1}|| < Me^{\alpha t}$, where

Received June 10, 1968.

Revised July 15, 1968.

^{*} This research was supported in part by the National Aeronautics and Space Administration under Grant No. NGR 39-011-039 with the University of Pittsburgh.

[†] Presently with TRW Systems Group, Redondo Beach, California, U.S.A.

M > 1 and α can be chosen such that $\alpha > \beta$ [1]. Define $S_t = T_t^{-1} e^{-\alpha t}$ and define $\|\cdot\|_2$ by

$$||x||_2 = \sup_{t>0} ||S_t x||.$$

This yields an equivalent semi-scalar product and the left side of inequality (1) with $\delta = \alpha$. To show the right side is also valid consider

(3)
$$[T_s e^{\beta s} x - x, x]_2 \leq ||T_s e^{\beta s} x||_2 ||x||_2 - ||x||_2^2$$

Next estimate $||T_s e^{\beta s} x||_2$ as follows

$$\|T_s e^{\beta s} x\|_2 = \sup_{t \ge 0} \|T_{s-t} e^{\alpha(s-t)} x\| \le \max \left(\|x\|, e^{(\beta-\alpha)s} \|x\|_2 \right) \le \|x\|_2.$$

Hence, (3) yields $[T_s e^{\beta s} x - x, x]_2 \leq 0$ which in turn implies the right side of (1) with $\gamma = \beta$.

Finally (2) follows from theorem 3.1 of [2] applied to the contraction operators $T_{-t}e^{\alpha t}$ (with respect to $\|\cdot\|_2$) and $T_te^{\beta t}$ (with respect to $\|\cdot\|_1$).

Remark.

Theorem 1 is valid for $(H, [\cdot, \cdot]_1)$ a Hilbert space and $[\cdot, \cdot]$ an equivalent scalar product.

Proof.

Using the results of theorem 1, it need only be shown that there exists a scalar product $[\cdot, \cdot]$ equivalent to the scalar product $[\cdot, \cdot]_1$ such that (1) holds. Define $[\cdot, \cdot]$, for any group $\{T_t; -\infty < t < \infty\}$ which is negative with respect to $\|\cdot\|_1$, by

(4)
$$[x,y] = \int_0^\infty [T_t x, T_t y]_1 dt.$$

By hypothesis, $||T_t||_1 \leq Me^{-\beta t}$ $(t \geq 0)$, where $\beta > 0$ and $M \geq 1$; hence

(5)
$$[x, x] = \leq (M^2/2\beta) ||x||_1^2.$$

Since $\{T_t\}$ is a group, there exist constants $\alpha \ge \beta$ and $1/k \ge 1$ such that $\|T_t^{-1}\|_1 \le (1/k)e^{\alpha t}$ for $r \ge 0$. By using the fact that $\|T_tx\|_1 \ge \|T_t^{-1}\|_1^{-1}\|x\|_1$ it follows from (4) that

(6)
$$[x, x] \ge (k^2/2\alpha) ||x||_1^2$$

We leave it to the reader to verify that $[\cdot, \cdot]$ is a scalar product. The equivalence of the two scalar products follows from (5) and (6).

150

To show that an equation of the form (1) is valid we consider

$$[T_tx, T_tx] - [x, x] = \lim_{n \to \infty} \left\{ \int_0^n [T_sT_tx, T_sT_tx]_1 ds - \int_0^n [T_sx, T_sx]_1 ds \right\}$$
$$= -\int_0^t [T_sx, T_sx]_1 ds, \qquad (t > 0).$$

Since $\lim_{t\to 0^+} t^{-1}([T_tx, T_tx] - [x, x]) = 2[Ax, x]$ the last equality implies that

(7)
$$2[Ax, x] = - ||x||_1^2 \qquad (x \in D(A)).$$

Equations (5), (6), and (7) yield (1) with $\tau = \beta/M^2$ and $\delta = \alpha/k^2$.

References

- [1] K. Yosida, Functional Analysis, Springer-Verlag, Berlin (1965).
- [2] G. Lumer and R.S. Phillips, "Dissipative operators in a Banach space," Pacific J. Math, 11, (1961) 679-698.
- [3] W. Feller, "On the generation of unbounded semi-groups of bounded Linear Operators," Ann. of Math, 58, (1953) 166-174.

University of Pittsburgh Pittsburgh, Pa., U.S.A.