W.G. Vogt
M.M. Eisen
G.R. Buis

Nagoya Math. J.
Vol. 34 (1969), 149-151

CONTRACTION GROUPS AND EQUIVALENT NORMS*

WILLIAM G. VOGT MARTIN M. EISEN GABE R. BUIS ${ }^{\dagger}$

Using the notation in [1], the Lumer-Phillips theorem (3.1 of [2]) is refined to single parameter groups in real Banach space and real Hilbert space. The theory can be extended to complex spaces.

Definition 1.

Let X be a B-space with norm $\|\cdot\|_{1}$ and let $[\cdot, \cdot]_{1}$ be a corresponding semi-scalar product on X. Then the semi-scalar product $[\cdot, \cdot]$ is said to be equivalent to $[\cdot, \cdot]_{1}$ on X iff $\|\cdot\|_{1}$ and $\|\cdot\|$ are equivalent norms on X.

Theorem 1.

Let A be a linear operator with $D(A)$ and $R(A)$ both contained in a B-space $\left(X,\|\cdot\|_{1}\right)$ such that $D(A)$ is dense in X. Then A generates a group $\left\{T_{t} ;-\infty<t<\infty\right\}$ in X such that $\left\{T_{t} ; t>0\right\}$ is a negative contractive semi-group with respect to an equivalent norm $\|\cdot\|$ iff

$$
\begin{equation*}
-\delta\|x\|^{2}<[A x, x]<-\gamma\|x\|^{2} \quad(x \in D(A)) \tag{1}
\end{equation*}
$$

where $\infty>\delta>\gamma>0$ and $[\cdot, \cdot]$ is an equivalent scalar product consistent with $\|\cdot\|$, and

$$
\begin{equation*}
R(I(1-\gamma)-A)=X \quad R(I(1+\grave{o})+A)=X \tag{2}
\end{equation*}
$$

Proof.
The sufficiency of conditions (1) and (2) follows immediately from the results in Yosida [1], pp. 250-254.

Conversely suppose that A generates a group such that $\left\|T_{t}\right\|<e^{-\beta t}$ $(t \geqq 0)$ where $\beta>0$. It is known that for a group $\left\|T_{t}^{-1}\right\|<M e^{\alpha t}$, where

[^0]$M>1$ and α can be chosen such that $\alpha>\beta$ [1]. Define $S_{t}=T_{t}^{-1} e^{-\alpha t}$ and define $\|\cdot\|_{2}$ by
$$
\|x\|_{2}=\sup _{t>0}\left\|S_{t} x\right\| .
$$

This yields an equivalent semi-scalar product and the left side of inequality (1) with $\delta=\alpha$. To show the right side is also valid consider

$$
\begin{equation*}
\left[T_{s} e^{\beta s} x-x, x\right]_{2} \leqq\left\|T_{s} e^{\beta s} x\right\|_{2}\|x\|_{2}-\|x\|_{2}^{2} . \tag{3}
\end{equation*}
$$

Next estimate $\left\|T_{s} e^{\beta s} x\right\|_{2}$ as follows

$$
\left\|T_{s} e^{\beta s} x\right\|_{2}=\sup _{t \geq 0}\left\|T_{s-t} e^{\alpha(s-t)} x\right\| \leqq \max \left(\|x\|, e^{(\beta-\alpha) s}\|x\|_{2}\right) \leqq\|x\|_{2} .
$$

Hence, (3) yields $\left[T_{s} e^{\beta s} x-x, x\right]_{2} \leqq 0$ which in turn implies the right side of (1) with $\gamma=\beta$.

Finally (2) follows from theorem 3.1 of [2] applied to the contraction operators $T_{-t} e^{\alpha t}$ (with respect to $\|\cdot\|_{2}$) and $T_{t} e^{\beta t}$ (with respect to $\|\cdot\|_{1}$).

Remark.

Theorem 1 is valid for $\left(H,[\cdot, \cdot]_{1}\right)$ a Hilbert space and $[\cdot, \cdot]$ an equivalent scalar product.

Proof.
Using the results of theorem 1, it need only be shown that there exists a scalar product $[\cdot, \cdot]$ equivalent to the scalar product $[\cdot, \cdot]_{1}$ such that (1) holds. Define $[\cdot, \cdot]$, for any group $\left\{T_{t} ;-\infty<t<\infty\right\}$ which is negative with respect to $\|\cdot\|_{1}$, by

$$
\begin{equation*}
[x, y]=\int_{0}^{\infty}\left[T_{t} x, T_{t} y\right]_{1} d t . \tag{4}
\end{equation*}
$$

By hypothesis, $\left\|T_{t}\right\|_{1} \leqq M e^{-\beta t}(t \geqq 0)$, where $\beta>0$ and $M \geqq 1$; hence

$$
\begin{equation*}
[x, x]=\leqq\left(M^{2} / 2 \beta\right)\|x\|_{1}^{2} . \tag{5}
\end{equation*}
$$

Since $\left\{T_{t}\right\}$ is a group, there exist constants $\alpha \geqq \beta$ and $1 / k \geqq 1$ such that $\left\|T_{t}^{-1}\right\|_{1} \leqq(1 / k) e^{\alpha t}$ for $r \geqq 0$. By using the fact that $\left\|T_{t} x\right\|_{1} \geqq\left\|T_{t}^{-1}\right\|_{1}^{-1}\|x\|_{1}$ it follows from (4) that

$$
\begin{equation*}
[x, x] \geqq\left(k^{2} / 2 \alpha\right)\|x\|_{1}^{2} . \tag{6}
\end{equation*}
$$

We leave it to the reader to verify that $[\cdot, \cdot]$ is a scalar product. The equivalence of the two scalar products follows from (5) and (6).

To show that an equation of the form (1) is valid we consider

$$
\begin{aligned}
{\left[T_{t} x, T_{t} x\right]-[x, x] } & =\lim _{n \rightarrow \infty}\left\{\int_{0}^{n}\left[T_{s} T_{t} x, T_{s} T_{t} x\right]_{1} d s-\int_{0}^{n}\left[T_{s} x, T_{s} x\right]_{1} d s\right\} \\
& =-\int_{0}^{t}\left[T_{s} x, T_{s} x\right]_{1} d s, \quad(t>0) .
\end{aligned}
$$

Since $\lim _{t \rightarrow 0^{+}} t^{-1}\left(\left[T_{t} x, T_{t} x\right]-[x, x]\right)=2[A x, x]$ the last equality implies that

$$
\begin{equation*}
2[A x, x]=-\|x\|_{1}^{2} \quad(x \in D(A)) \tag{7}
\end{equation*}
$$

Equations (5), (6), and (7) yield (1) with $\gamma=\beta / M^{2}$ and $\delta=\alpha / k^{2}$.

References

[1] K. Yosida, Functional Analysis, Springer-Verlag, Berlin (1965).
[2] G. Lumer and R.S. Phillips, "Dissipative operators in a Banach space," Pacific J. Math, 11, (1961) 679-698.
[3] W. Feller, "On the generation of unbounded semi-groups of bounded Linear Operators," Ann. of Math, 58, (1953) 166-174.

University of Pittsburgh
Pittsburgh, Pa., U.S.A.

[^0]: Received June 10, 1968.
 Revised July 15, 1968.

 * This research was supported in part by the National Aeronautics and Space Administration under Grant No. NGR 39-011-039 with the University of Pittsburgh.
 \dagger Presently with TRW Systems Group, Redondo Beach, California, U.S.A.

