Y. Kitaoka Nagoya Math. J. Vol. 107 (1987), 25-47

MODULAR FORMS OF DEGREE *n* AND REPRESENTATION BY QUADRATIC FORMS IV

YOSHIYUKI KITAOKA

Let M be a quadratic lattice with positive definite quadratic form over the ring of rational integers, M' a submodule of finite index, S a finite set of primes containing all prime divisors of 2[M:M'] and such that M_p is unimodular for $p \notin S$. In [2] we showed that there is a constant c such that for every lattice N with positive definite quadratic form and every collection $(f_p)_{p \in S}$ of isometries $f_p: N_p \to M_p$ there is an isometry f: $N \to M$ satisfying

> $f \equiv f_p \mod M'_p$ for every $p \mid [M:M']$, $f(N_p)$ is primitive in M_p for every $p \notin S$,

provided the minimum of $N \ge c$ and rank $M \ge 3 \operatorname{rank} N + 3$.

Our aim is to show that the condition rank $M \ge 3 \operatorname{rank} N + 3$ can be weakened to rank $M \ge 2 \operatorname{rank} N + 3$ if rank N = 2. The argument suggests that it is the case without limit on rank N.

In Section 1 we complete a result of van der Blij [8], in Section 2 we take out the Eisenstein series from the generating theta series, in Section 3 we give an estimate of local densities from below and in Section 4 we give an asymptotic formula for numbers of isometries and show the existence of an isometry in question.

NOTATION. We denote by Z, Q, Z_p and Q_p the ring of rational integers, the field of rational numbers and their *p*-adic completions respectively. If A is a commutative ring, $M_{m,n}(A)$ is the set of $m \times n$ matrices with entries in A. For $X \in M_{m,n}(A)$ 'X means the transposed matrix and we put $Y[X] = {}^{t}XYX$ for $Y \in M_{m,m}(A)$. 1_m is the unit matrix of order m. Let M be a module over A and N a submodule. N is called primitive if M/N is a free module. Similarly $P \in M_{m,n}(A)$ ($m \ge n$) is called primitive

Received January 14, 1986.

if it can be completed to a matrix in $M_{m,m}(A)$ whose determinant is a unit in A. For a quadratic module we denote by B(,), Q() the associated bilinear form, quadratic form with Q(x) = B(x, x) respectively.

§1.

26

Let $S \in M_{m,m}(Z)$, $T \in M_{n,n}(Z)$ $(m \ge n)$ be symmetric positive definite matrices respectively, $P \in M_{m,n}(Z)$ and ν a natural number. They are fixed once and for all in this section. By $\mathfrak{PG}(S,\nu)$ we denote a set of all positive definite matrices S' in $M_{m,m}(Z)$ such that $S' = S[U_p]$ for some $U_p \in$ $GL_m(Z_p)$ with $U_p \equiv 1_m \mod \nu Z_p$ for every prime p. If for $S', S'' \in \mathfrak{PG}(S,\nu)$ there is a unimodular matrix $U \in GL_m(Z)$ such that S' = S''[U], $U \equiv 1_m$ $\mod \nu$, then we say that S' and S'' are equivalent and write $S' \sim S''$. Put

Here S' runs over a complete set of representatives of equivalence classes in $\mathfrak{PG}(S, \nu)$ and $\delta_{m,n}$ is the Kronecker's delta function.

The purpose of this section is to prove the following theorem which is already proved in [8] if P is primitive as an element in $M_{m,n}(Z_p)$ for $p|\nu$.

THEOREM.

$$A_0(S, T; P, \nu) = \varepsilon \delta_{\nu,m,n} \Upsilon_{m,n} |S|^{-n/2} |T|^{(m-n-1)/2} \prod_p \alpha_p(S, T; P, \nu),$$

where

$$\varepsilon = \begin{cases} 1 & \text{if } m > n+1 \text{ or } m = n = 1 \text{,} \\ 1/2 & \text{otherwise,} \end{cases}$$

$$\Upsilon_{m,n} = \pi^{n(2m-n+1)/4} \prod_{k=0}^{n-1} \Gamma((m-k)/2)^{-1} \text{,} \\ 1 & \text{if } m \neq n \text{ or if } \nu = 1, 2 \text{,} \\ 2^{\omega(\nu)-2} & \text{if } m = n \text{ and if } \nu \geq 3 \text{ and } (\nu, 4) = 2 \text{,} \\ 2^{\omega(\nu)-1} & \text{otherwise.} \end{cases}$$

Here $\omega(\nu)$ denotes the number of different prime factors of ν .

The proof is proceeded along the original idea of Siegel [7].

Since Theorem is proved for $\nu = 1$, we may assume $\nu > 1$ and we fix, once and for all a natural number ν_0 of a power of ν such that ν_0 is divided by $|T|\nu^2$ in Z_p for $p|\nu$. Then $\nu_0 \ge 4$ holds. Put

$$G_m(r) = \{G \in GL_m(Z) | G \equiv 1_m \bmod r\}$$

for a natural number r and then it is known that $G_m(r)$ is torsion-free for $r \ge 3$.

LEMMA 1. For $S' \in \mathfrak{PG}(S, \nu)$ we have

$$E(S',\nu)\sharp(\{H\in\mathfrak{PG}(S,\nu)|H\sim S'\}/\sim)=[G_m(\nu)\colon G_m(\nu_0)].$$

Proof. Considering the mapping $S' \mapsto S'[U]$ $(U \in G_m(\nu))$, we have

$$\sharp(\{H\in \mathfrak{PG}(S,\nu)| H \leadsto S'\}/\underset{\nu_0}{\sim}) = \sharp(O(S') \cap G_{\scriptscriptstyle m}(\nu) \backslash G_{\scriptscriptstyle m}(\nu)/G_{\scriptscriptstyle m}(\nu_{\scriptscriptstyle 0}))\,,$$

where O(S') is $\{X \in GL_m(Z) | S'[X] = S'\}$ as usual. For $U \in G_m(\nu)$ the number of $G_m(\nu_0)$ cosets in the double coset $(O(S') \cap G_m(\nu))UG_m(\nu_0)$ is equal to $\#(O(S') \cap G_m(\nu))/\{V \in O(S') \cap G_m(\nu) | VUG_m(\nu_0) = UG_m(\nu_0)\}) = \#(O(S') \cap G_m(\nu)) = E(S', \nu)$, noting that $VUG_m(\nu_0) = UG_m(\nu_0)$ implies $V \in G_m(\nu_0)$ and hence $V = 1_m$ since V is of finite order and $\nu_0 \geq 3$. This completes the proof.

LEMMA 2. For $S' \in \mathfrak{PG}(S, \nu)$, we have

$$A(S', T; P, \nu)/E(S', \nu) = [G_m(\nu): G_m(\nu_0)]^{-1} \sum A(H, T; P, \nu)$$

where H runs over a complete set of equivalence classes

$$\{H \in \mathfrak{PG}(S, \nu) | H \simeq S'\}/\simeq$$
.

Proof. For H = S'[U], $U \in G_m(\nu)$, we have

$$\begin{aligned} A(H, T; P, \nu) &= \#\{X \in M_{m,n}(Z) | H[X] = T, X \equiv P \mod \nu\} \\ &= \#\{X \in M_{m,n}(Z) | S'[UX] = T, UX \equiv P \mod \nu\} \\ &= A(S', T; P, \nu). \end{aligned}$$

Hence Lemma 2 follows from Lemma 1.

Let $\{P_j\}$ be a complete set of representatives of $\{P' \in M_{m,n}(Z) | P' \equiv P \mod \nu\} \mod \nu_0$; then P_j can be chosen so that rank $P_j = n$ and $P_j = U_j \begin{pmatrix} B_j & A_j \\ 0 \end{pmatrix}$ where $U_j \in GL_m(Z)$, A_j , $B_j \in M_{n,n}(Z)$ satisfies $(|B_j|, \nu) = 1$ and $\nu_0 A_j^{-1} \in M_{n,n}(Z)$.

We fix such P_j , A_j once and for all hereafter.

LEMMA 3. Put
$$Q = P_j$$
, $A = A_j$. Then we have for $S' \in \mathfrak{PG}(S, \nu)$
$$A(S', T; Q, \nu_0) = \sum_{G \in M_m, n(Z)/M_m, n(Z)A} A(S', T[A^{-1}]; (Q + \nu_0 G)A^{-1}, \nu_0).$$

Proof. Suppose S'[X] = T, $X \equiv Q \mod \nu_0$ for $X \in M_{m,n}(Z)$. For $F = \nu_0^{-1}(X-Q) \in M_{m,n}(Z)$ we have $S'[XA^{-1}] = T[A^{-1}]$ and

$$X\!A^{-1} = Q\!A^{-1} +
u_0 F\!A^{-1} \in M_{m,n}(Z)$$
 .

If, conversely $S'[Y] = T[A^{-1}]$, $Y \equiv (Q + \nu_0 G)A^{-1} \mod \nu_0$, then S'[YA] = Tand $YA \equiv Q \mod \nu_0$ hold.

LEMMA 4. Let P_j , A_j be those as above. Then we have

$$egin{aligned} &A_0(S,\,T;\,P,
u) = M(S,\,
u_0)M(S,\,
u)^{-1}[G_m(
u)\colon G_m(
u_0)]^{-1}arepsilon_{
u,m,n} && \ imes |S|^{-n/2}|T|^{(m-n-1)/2}\prod_{p
otive{}}lpha_p(S,\,T;\,P,\,
u) && \ imes \sum_{S_i} \{\sum_{P_j}\sum_{G\in\,M_{m,n}(Z)/M_{m,n}(Z)A_j} \|A_j\|^{n+1-m} && \ imes \prod_{p
otive{}}lpha_p(S_i,\,T[A_j^{-1}];\,(P_j+
u_0G)A_j^{-1},
u_0)\}\,, \end{aligned}$$

where P_j runs over a complete set of representatives of $\{P' \in M_{m,n}(\mathbb{Z}) | P' \equiv P \mod \nu\} \mod \nu_0$ given above and $\{S_i\}$ is given so that $\mathfrak{PG}(S, \nu) = \coprod_i \mathfrak{PG}(S_i, \nu_0)$ (disjoint union).

Proof. By definition we have

$$\begin{split} A_{\scriptscriptstyle 0}(S,\,T;\,P,\nu) &= M(S,\nu)^{-1} \sum_{\mathfrak{P} \oplus \langle S,\nu \rangle / \widetilde{\nu} \, \ni \, S'} A(S',\,T;\,P,\nu) / E(S',\nu) \\ &= M(S,\nu)^{-1} [G_{\scriptscriptstyle m}(\nu)\colon G_{\scriptscriptstyle m}(\nu_0)]^{-1} \sum_{\mathfrak{P} \oplus \langle S,\nu \rangle / \widetilde{\nu} \, \ni \, S'} \sum A(H,\,T;\,P,\nu) \,, \end{split}$$

by Lemma 2, where H runs over $\{H \in \mathfrak{PG}(S, \nu) | H \simeq S'\}/\simeq$

$$\begin{split} &= M(S,\nu)^{-1}[G_m(\nu)\colon G_m(\nu_0)]^{-1}\sum_{\substack{\mathfrak{N}\otimes(S,\nu)/\nu_0\ni H}}A(H,\,T;\,P,\nu)\\ &= M(S,\nu)^{-1}[G_m(\nu)\colon G_m(\nu_0)]^{-1}\sum_{S_i}\sum_{\substack{\mathfrak{N}\otimes(S_i,\nu_0)/\nu_0\ni H}}A(H,\,T;\,P,\nu)\\ &= M(S,\nu)^{-1}[G_m(\nu)\colon G_m(\nu_0)]^{-1}\sum_{\substack{P_j,S_i}}\sum_{\substack{\mathfrak{N}\otimes(S_i,\nu_0)/\nu_0\ni H}}A(H,\,T;\,P_j,\nu_0)\\ &\leq M(S,\nu)^{-1}[G_m(\nu)\colon G_m(\nu_0)]^{-1}\sum_{\substack{P_j,S_i}}\sum_{\substack{\mathfrak{N}\otimes(S_i,\nu_0)/\nu_0\ni H}}A(\mu,\,P_j,\nu_0)\\ &\leq M(S,\nu)^{-1}[G_m(\nu)\colon G_m(\nu,\nu_0)]^{-1}\sum_{\substack{P_j,S_i}}\sum_{\substack{\mathcal{N}\bigotimes\{\mathcal{N}\otimes\{\mathcal$$

by Lemma 3.

For $H \in \mathfrak{PG}(S, \nu)$ we have $M(H, \nu_0)^{-1} = A_0(H, H; 1_m, \nu_0) = A_0(S, S; 1_m, \nu_0)$

QUADRATIC FORMS

 $= M(S, \nu_0)^{-1}$, noting that the definition implies the first and third equality and the second follows from $\alpha_p(H, H; \mathbf{1}_m, \nu_0) = \alpha_p(S, S; \mathbf{1}_m, \nu_0)$ in the proved case. If $T[A_j^{-1}]$ is integral, then $|A_j|^2$ divides |T| and hence ν_0/ν is divided by $|A_j|$; then $(P_j + \nu_0 G)A_j^{-1} \equiv P_jA_j^{-1} \mod \nu$. By virtue of definition of A_j , $P_jA_j^{-1} \in M_{m,n}(\mathbb{Z}_p)$ is primitive for $p|\nu$ and hence $(P_j + \nu_0 G)A_j^{-1}$ is also primitive for $p|\nu$. Using Theorem which is proved for a primitive P for $p|\nu$, we have

$$egin{aligned} &A_0(S,\,T;\,P,
u) = M(S,\,
u_0)M(S,\,
u)^{-1}[G_m(
u)\colon G_m(
u_0)]^{-1}arepsilon_{oldsymbol{\nu},m,n}arepsilon_{m,n}|S|^{-n/2}\ & imes |T|^{(m-n-1)/2} \prod_{p
otag
u} lpha_p(S,\,T;\,P,\,
u) \{\sum_{P_j,S_i} \sum_{G\in M_{m,n}(Z)/M_{m,n}(Z)A_j} \|A_j\|^{n+1-m}\ & imes \prod_{p
otag
u} lpha_p(S,\,T[A_j^{-1}];\,(P_j\,+\,
u_0G)A_j^{-1},\,
u_0)\}\,, \end{aligned}$$

since for $p \nmid \nu \alpha_p(S, T[A_j^{-1}]; (P_j + \nu_0 G)A_j^{-1}, \nu_0) = \alpha_p(S, T) = \alpha_p(S, T; P, \nu).$

Let q be a sufficiently large power of ν_0 and put $\Lambda = \{F \in M_{n,n}(Z) | F = {}^tF \}.$

LEMMA 5. Put $Q = P_j$, $A = A_j$ and denote by $\mathscr{R} \{qR[A^{-1}] | R \in A\}$. Then the mapping $Y \mapsto YA$ is bijective from

$$\lim_{R\,\in\,\mathscr{R}/qA} egin{cases} Y\in M_{m,n}(\mathbf{Z}/q\mathbf{Z}) & S[Y]\equiv T[A^{-1}]+R \ \mathrm{mod}\ q,\ Y\equiv (Q+
u_0G)A^{-1} \ \mathrm{mod}\
u_0\ for \ some \ G\in M_{m,n}(\mathbf{Z}) \end{cases} \end{cases}$$

to

 $\left\{X \in M_{m,n}(oldsymbol{Z}) mmod q M_{m,n}(oldsymbol{Z}) A ert S[X] \equiv T mmod q, X \equiv Q mmod
u_0
ight\}.$

Proof. The mapping is clearly well-defined and injective. Suppose, conversely that $X \in M_{m,n}(Z)$ satisfies $S[X] \equiv T \mod q$ and $X \equiv Q \mod \nu_0$. Defining $G \in M_{m,n}(Z)$ by $X = Q + \nu_0 G$, $XA^{-1} = QA^{-1} + \nu_0 GA^{-1}$ is integral. For $R = q^{-1}(S[X] - T) \in M_{n,n}(Z)$ and $Y = XA^{-1}$ we have $S[Y] = T[A^{-1}] + qR[A^{-1}]$. This shows the surjectiveness of the mapping.

LEMMA 6. Let V, W be regular quadratic spaces over Q_p and M, N lattices on V, W respectively (dim $V = \operatorname{rank} M$, dim $W = \operatorname{rank} N$). Let h be an integer such that

 $p^{\hbar}Q(x)\in 2Z_{p}$ for all $x\in M^{*}$,

where $M^* = \{x \in V | B(x, M) \subset \mathbb{Z}_p\}$. If $u \in \text{Hom}(M, N)$ satisfies

$$Q(x) \equiv Q(u(x)) \mod 2p^{h+1}Z_p$$
 for $x \in M$,

then there is an isometry u' from M to N such that

$$u'(M) = u(M),$$

 $u'(x) \equiv u(x) \mod p^{n+1}u(M^*) \quad for \ x \in M.$

Especially we have $u': M \cong u(M)$.

Proof. Since for $y, z \in M^*$ $2B(y, z) = Q(y + z) - Q(y) - Q(z) \in 2p^{-\hbar}Z_p$ holds, we have $B(p^\hbar y, z) \in Z_p$ and hence $p^\hbar M^* \subset (M^*)^* = M$. Next we claim that for $G = u(M^*)$ the three conditions

$$egin{aligned} &\operatorname{Hom}\left(M, \boldsymbol{Z}_p
ight) = \{x\mapsto B(u(x),\,w) | \, w\in G\} + \operatorname{Hom}\left(M,\,p\boldsymbol{Z}_p
ight), \ &p^{\hbar}Q(x)\in 2\boldsymbol{Z}_p \quad ext{ for } x\in G, \ &Q(u(x))\equiv Q(x) \ &\operatorname{mod} 2p^{\hbar+1}\boldsymbol{Z}_p \quad ext{ for } x\in M \end{aligned}$$

are satisfied. Let φ be an element of Hom (M, \mathbb{Z}_p) ; then there is $z \in M^*$ such that $\varphi(x) = B(x, z)$ for $x \in M$. For $x \in M$ we have

$$p^{\hbar}\varphi(x) = B(x, p^{\hbar}z) \equiv B(u(x), p^{\hbar}u(z)) \mod p^{\hbar+1}Z_p$$

since $p^{*}z \in M$. Thus $x \mapsto \varphi(x) - B(u(x), u(z))$ is in Hom (M, pZ_p) and the first condition holds. For $x \in M^*$ we have

$$Q(p^h x) \equiv Q(p^h u(x)) ext{ mod } 2p^{h+1} oldsymbol{Z}_p$$

and then $p^{\hbar}Q(x) \equiv p^{\hbar}Q(u(x)) \mod 2pZ_{p}$. From the assumption $p^{\hbar}Q(x) \in 2Z_{p}$ holds and hence $p^{\hbar}Q(u(x)) \in 2Z_{p}$ holds. Thus the second condition holds. The third one is nothing but the assumption. "Satz" in Section 14 in [5] completes the proof.

LEMMA 7. For
$$Q = P_j$$
 and $A = A_j$ we have

 $\#\{X \operatorname{mod} q | S[X] \equiv T \operatorname{mod} q, X \equiv Q \operatorname{mod}
u_0\}$

$$= \|A\|^{n+1-m} \sum_{G \in \mathcal{M}_{m,n}(Z)/\mathcal{M}_{m,n}(Z)_A} \# iggl\{ Y \operatorname{mod} q \ iggr| X \equiv T[A^{-1}] \operatorname{mod} q \ Y \equiv (Q +
u_0 G) A^{-1} \operatorname{mod}
u_0 iggr\}.$$

Proof. By Lemma 5 we have

$$rac{1}{2} \{X ext{ mod } q \mid S[X] \equiv T ext{ mod } q, X \equiv Q ext{ mod }
u_0\} \ = \|A\|^{-m} rac{1}{R \in \mathscr{R}/qA} \# igg\{ X \in M_{m,n}(Z)/qM_{m,n}(Z)A \mid S[X] \equiv T ext{ mod } q, X \equiv Q ext{ mod }
u_0\} \ = \|A\|^{-m} \sum_{R \in \mathscr{R}/qA} \# igg\{ Y ext{ mod } q \ igg| S[Y] \equiv T[A^{-1}] + R ext{ mod } q \ Y \equiv (Q +
u_0 G)A^{-1} ext{ mod }
u_0 \ ext{for some } G \in M_{m,n}(Z) \ igg\}.$$

Here for a prime $p|\nu$ we define quadratic lattices $M = Z_p[v_1, \dots, v_n]$ and

 $N = Z_p[u_1, \dots, u_n]$ by $(B(v_i, v_j)) = T[A^{-1}], (B(u_i, u_j)) = T[A^{-1}] + R \ (R \in \mathscr{R})$ respectively. Define a linear mapping $u \in \text{Hom}(M, N)$ by $u(v_i) = u_i$; then $Q(u(x)) \equiv Q(x) \mod qv_0^{-2}$ holds for $x \in M$ since $R \equiv 0 \mod qv_0^{-2}$. From Lemma 6 follows that there is an isometry u' from M to N such that

$$u'(x)\equiv u(x) ext{ mod } 2^{- \imath}q
u_0^{- \imath} u(M^st) \qquad ext{for } x\in M\,.$$

If, hence we define $D_p \in GL_n(\mathbb{Z}_p)$ by

$$(u'(v_1), \cdots, u'(v_n)) = (u_1, \cdots, u_n)D_p,$$

then $T[A^{-1}] = (T[A^{-1}] + R)[D_p]$ and $D_p \equiv 1_n \mod \nu_0 \mathbb{Z}_p$ since q is sufficiently large. Taking $D \in M_n(\mathbb{Z})$ which is close to D_p for $p | \nu$ and considering the mapping $Y \mapsto YD$, we have

$$rac{d}{d} \{X \mod q \,|\, S[X] \equiv T \mod q, X \equiv Q \mod
u_0\} \ = \|A\|^{-m} \sum_{R \in \mathscr{R}/q, 1} \# \left\{ Y \mod q \; \left| egin{array}{c} S[Y] \equiv T[A^{-1}] \mod q \ Y \equiv (Q +
u_0 G) A^{-1} \mod
u_0 \ ext{for some } G \in M_{m,n}(Z) \end{array}
ight\}.$$

Since $#(\mathscr{R}/qA) = ||A||^{n+1}$, we complete the proof.

Now we can prove the theorem. Since

$$rac{1}{2} \{X \mod q \,|\, S[X] \equiv T \mod q, X \equiv P \mod
u\} \ = \sum_{P_j} \#\{X \mod q \,|\, S[X] \equiv T \mod q, X \equiv P_j \mod
u_0\}\,,$$

Lemma 7 implies

$$\prod_{p \mid \nu} \alpha_p(S, T; P, \nu) \\ = \sum_{P_j} \sum_{G \in M_{m,n}(\mathbb{Z}) / M_{m,n}(\mathbb{Z}) A_j} \|A_j\|^{n+1-m} \prod_{p \mid \nu} \alpha_p(S, T[A_j^{-1}]; (P_j + \nu_0 G) A_j^{-1}, \nu_0)$$

and then from Lemma 4 follows

$$egin{aligned} &A_0(S,\,T;\,P,
u) = M\!(S,
u_0)M\!(S,
u)^{-1}\![G_m(
u)\colon G_m(
u_0)]^{-1}arepsilon_{
u,\,m,\,n} && \ imes |S|^{-n/2}|T|^{(m-n-1)/2}\sum_{S_i}\prod_p lpha_p(S_i,\,T;\,P,
u)\,. \end{aligned}$$

Since $S_i \in \mathfrak{PG}(S, \nu)$ implies $\alpha_p(S_i, T; P, \nu) = \alpha_p(S, T; P, \nu)$, we have

$$A_{0}(S, T; P, \nu) = c \varepsilon \delta_{\nu, m, n} \gamma_{m, n} |S|^{-n/2} |T|^{(m-n-1)/2} \prod_{p} \alpha_{p}(S, T; P, \nu)$$

where $c = M(S, \nu_0)M(S, \nu)^{-1}[G_m(\nu): G_m(\nu_0)]^{-1} \sharp \{S_i\}$. Hence c depends only on S for a sufficiently large power of ν . Since Theorem holds for c = 1 in case T = S, we have c = 1 and complete the proof of Theorem.

§ 2.

Let $S \in M_{m,m}(Z)$ be a symmetric positive definite matrix whose diagonals are even integers and q the level of S, that is, qS^{-1} is also integral and diagonal entries of qS^{-1} are even.

Let P be an element of $M_{m,n}(Z)$ and ν a natural number. For $Z = {}^tZ \in M_n(C)$ with $\operatorname{Im} Z > 0$, we put

$$heta(Z,\,S,\,P,\,
u) = \sum\limits_{N\equiv -P egin{array}{c} N \equiv -P egin{array}{c} \min\left(\pi i \ {
m tr} \ (Z \cdot S[N])
ight), \end{array}$$

where N runs over $\{N \in M_{m,n}(Z) | N \equiv -P \mod \nu\}$, and

$$egin{aligned} & heta_{S}^{(n)}(Z;X,Y) \ &= \sum\limits_{N\,\in\,M_{m,n}(Z)} \exp\left(\pi i\,\mathrm{tr}\,(Z\cdot S[N-Y]+2\pi i\,\mathrm{tr}\,(^{\imath}NX)-\pi i\,\mathrm{tr}\,(^{\imath}XY)
ight). \end{aligned}$$

It is easy to see $\theta(Z, S, P, \nu) = \theta_S^{(n)}(\nu^2 Z; 0, \nu^{-1}P)$, and the following lemma is nothing but Theorem 1 in [1].

LEMMA 1. Let $\Gamma_0^{(n)}(q) = \left\{ M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp_n(Z) | C \equiv 0 \mod q \right\}$. Then for any matrix $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ in $\Gamma_0^{(n)}(q)$ the generalized theta series satisfies

where $\chi_{S}^{(n)}(M)$ is some eighth root of unity not depending on X or Y.

For $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp_n(Z)$ with $C \equiv 0 \mod q\nu^2$, $D \equiv 1_n \mod \nu$ we put $M' = \begin{pmatrix} A & B\nu^2 \\ C\nu^{-2} & D \end{pmatrix}$. Then we have $M' \in \Gamma_0^{(n)}(q)$ and putting X = 0, $Y = \nu^{-1}P$ and $Z \to \nu^2 Z$ in the lemma we have

$$egin{aligned} |CZ+D|^{-m/2}& heta_{S}^{(n)}(
u^{2}M\langle Z
angle;
uSP\ {}^{t}B,
u^{-1}P\ {}^{t}D)\ &=\chi_{S}^{(n)}(M') heta_{S}^{(n)}(
u^{2}Z;0,
u^{-1}P)\ &=\chi_{S}^{(n)}(M') heta(Z,S,P,
u)\,. \end{aligned}$$

Since $\nu SP {}^{t}B$ is integral and $\operatorname{tr} {}^{t}(\nu SP {}^{t}B)\nu^{-1}P {}^{t}D = \operatorname{tr} B {}^{t}PSP {}^{t}D = \operatorname{tr} (S[P] \cdot {}^{t}DB) \equiv 0 \mod 2$, we have

$$heta_{S}^{\scriptscriptstyle(n)}(
u^{2}M\langle Z
angle;
uSP~{}^{t}B,
u^{-1}P~{}^{t}D)= heta_{S}^{\scriptscriptstyle(n)}(
u^{2}M\langle Z
angle;0,
u^{-1}P)= heta(M\langle Z
angle,S,P,
u)\,.$$

Thus we have proved

LEMMA 2. For $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp_n(Z)$ with $M \equiv 1_{2n} \mod q\nu^2$ we have $|CZ + D|^{-m/2} \theta(M\langle Z \rangle, S, P, \nu) = \chi(M) \theta(Z, S, P, \nu)$,

where $\mathcal{X}(M)$ is some eighth root of unity not depending on P. Next we prove

LEMMA 3. Let $S' \in \mathfrak{PS}(S, \nu)$ in the sense of Section 1. Then for $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp_n(Z)$ the constant term of the Fourier expansion of

$$|CZ + D|^{-m/2}(heta(M\langle Z
angle, S, P,
u) - heta(M\langle Z
angle, S', P,
u))$$

vanishes.

Proof. For
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp_n(Z)$$
 we put
 $\theta(Z, S, P, \nu) \left| \begin{pmatrix} A & B \\ C & D \end{pmatrix} \right| = |CZ + D|^{-m/2} \theta(M\langle Z \rangle, S, P, \nu).$

First suppose $|C| \neq 0$; then noting $M\langle Z \rangle = (AZ + B)(CZ + D)^{-1} = AC^{-1} - (Z + C^{-1}D)^{-1}[C^{-1}]$, we have

$$egin{aligned} & heta(Z,\,S,\,P,\,
u) \left| egin{pmatrix} A & B \ C & D \end{pmatrix} \ &= |CZ+D|^{-m/2} heta_S^{(n)} (
u^2 M \langle Z
angle; 0,
u^{-1}P) \ &= |CZ+D|^{-m/2} heta_S^{(n)} (
u^2 A C^{-1} -
u^2 (Z+C^{-1}D)^{-1} [C^{-1}]; 0,
u^{-1}P) \ &= |CZ+D|^{-m/2} \sum_{N \in M_{m,n}(Z)} \exp{(\pi i \operatorname{tr}{(
u^2 A C^{-1} -
u^2 (Z+C^{-1}D)^{-1} [C^{-1}])} \ & imes S[N-
u^{-1}P]) \,. \end{aligned}$$

Decomposing N as $N = N_1 + |C|N_2$, we have

$${
m tr}\,(
u^2 A C^{-1} \cdot S[N-
u^{-1}P]) \equiv {
m tr}\,(A C^{-1} \cdot S[
u N_1 - P]) \,{
m mod}\, 2\,.$$

Thus $\theta(Z, S, P, \nu) \left| \begin{pmatrix} A & B \\ C & D \end{pmatrix} \right|$ is equal to $|CZ + D|^{-m/2} \sum_{N_1 \mod |C|} \exp(\pi i \operatorname{tr} (AC^{-1} \cdot S[\nu N_1 - P])) \\ \times \sum_{N_2 \in M_{m,n}(Z)} \exp(-\pi i \operatorname{tr} ((Z + C^{-1}D)^{-1}[C^{-1}]) \cdot S[\nu N_1 + \nu |C|N_2 - P])) \\ = |CZ + D|^{-m/2} \sum_{N_1 \mod |C|} \exp(\pi i \operatorname{tr} (AC^{-1} \cdot S[\nu N_1 - P]) \\ \times \theta_S^{(n)}(-\nu^2 |C|^2 (Z + C^{-1}D)^{-1}[C^{-1}]; 0, \nu^{-1} |C|^{-1}P - |C|^{-1}N_1) \\ = |CZ + D|^{-m/2} \sum_{N_1 \mod |C|} \exp(\pi i \operatorname{tr} AC^{-1} \cdot S[\nu N_1 - P])$

$$imes |S|^{-n/2} |i
u^2| C|^2 (Z+C^{-1}D)^{-1} [C^{-1}]|^{-m/2} heta_{S^{-1}}^{(n)} (
u^{-2}|C|^{-2} (Z+C^{-1}D)[^tC])
onumber \
u^{-1} |C|^{-1}P - |C|^{-1}N_1, 0)$$

by Lemma 2 in [1]. Here

$$|CZ + D|^{-m/2} |i\nu^2| C|^2 (Z + C^{-1}D)^{-1} [C^{-1}]|^{-m/2}$$

is a constant $\kappa(M)$ depending only on M. Hence the constant term of $\theta(Z, S, P, \nu)|M$ is equal to

$$\kappa(M)|S|^{-\pi/2}\sum_{N_1 ext{ mod }|C|} \exp\left(\pi i ext{ tr } AC^{-1} \cdot S[
u N_1 - P]
ight).$$

Since $S' \in \mathfrak{PG}(S, \nu)$, we have |S'| = |S| and there is some $U \in M_m(Z)$ such that $(|U|, \nu|C|) = 1$, $S \equiv S'[U] \mod 2|C|$ and $U \equiv 1 \mod \nu$. Hence it is clear that the constant term of $\theta(Z, S, P, \nu)|M$ depends only on $\mathfrak{PG}(S, \nu)$.

If the determinant of the *C*-part of *M* vanishes, then there is an integral symmetric matrix *F* such that $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & F \end{pmatrix}$ with $|C| \neq 0$. Putting $M' = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, from the above follows

$$egin{aligned} & heta(Z,\,S,\,P,\,
u)|M'\ &=\kappa(M')|S|^{-n/2}\sum\limits_{N_1 ext{ mod } |C|} \exp{(\pi i ext{ tr } AC^{-1} \cdot S[
uN_1-P])}\ & imes heta_{S^{-1}}^{(n)}(
u^{-2}|C|^{-2}(Z+C^{-1}D)[{}^tC];
u^{-1}|C|^{-1}P-|C|^{-1}N_1, 0)\,. \end{aligned}$$

Hence we have

$$egin{aligned} & heta(Z,\,S,\,P,\,
u)|M\ &=\kappa(M')|S|^{-\,\pi/2}\sum\limits_{N\,\,\mathrm{mod}\,\,|\,C|}\,\exp\left(\pi i\,\mathrm{tr}\,AC^{-1}\!\cdot\!S[
uN-P]
ight)\ & imes\, heta_{S^{-1}}^{(n)}(
u^{-2}|C|^{-2}\!(Z+\,C^{-1}D)[^tC];\,
u^{-1}|C|^{-1}P-|C|^{-1}N,\,0)igg|igg(egin{aligned} 0&1\ -1&F\end{pmatrix}. \end{aligned}$$

Here we don't care for the choice of the branch of $|*|^{-m/2}$ since it is independent of S.

$$\theta_{S^{-1}}^{(n)}(\nu^{-2}|C|^{-2}(Z+C^{-1}D)[{}^{t}C];\nu^{-1}|C|^{-1}P-|C|^{-1}N,0)\left|\begin{pmatrix} 0&1\\-1&F \end{pmatrix}\right|$$

is equal to

$$egin{aligned} &|-Z+F|^{-m/2} heta_{S^{-1}}^{(n)}(
u^{-2}|C|^{-2}((-Z+F)^{-1}+C^{-1}D)[{}^tC];\,
u^{-1}|C|^{-1}P-|C|^{-1}N,\,0)\ &=|-Z+F|^{-m/2}\sum_{G\in\mathcal{M}_{m,n}(Z)}\exp\left(\pi i\operatorname{tr}\left(
u^{-2}|C|^{-2}((-Z+F)^{-1}+C^{-1}D)[{}^tC]
ight)\ & imes\,S^{-1}[G]
ight)+2\pi i\operatorname{tr}{}^tG(
u^{-1}|C|^{-1}P-|C|^{-1}N)
ight). \end{aligned}$$

Putting $G = q \nu^2 |C|^2 G_1 + G_2$, we have

$$egin{aligned} &\mathrm{tr}\; (
u^{-2}|\,C|^{-2}((-Z+F)^{-1}+\,C^{-1}D)[^tC]\cdot S^{-1}[G]+2\,\mathrm{tr}\;^tG(
u^{-1}|\,C|^{-1}P-|\,C|^{-1}N)\ &\equiv \mathrm{tr}\; (
u^{-2}|\,C|^{-2}(-Z+F)^{-1}[^tC]\cdot S^{-1}[q
u^2|\,C|^2G_1+G_2]\ &+
u^{-2}|\,C|^{-2}D^tC\cdot S^{-1}[G_2])+2\,\mathrm{tr}\;^tG_2(
u^{-1}|\,C|^{-1}P-|\,C|^{-1}N) \ \mathrm{mod}\; 2\,. \end{aligned}$$

Hence

$$\begin{split} \theta_{S^{-1}}^{(n)}(\nu^{-2}|C|^{-2}(Z+C^{-1}D)[{}^{t}C];\nu^{-1}|C|^{-1}P-|C|^{-1}N,0) \left| \begin{pmatrix} 0 & 1 \\ -1 & F \end{pmatrix} \\ &= |-Z+F|^{-n/2} \sum_{G_{2} \mod q,\nu^{2}|C|^{2}} \exp\left(\pi i\nu^{-2}|C|^{-2}\operatorname{tr} D^{t}C\cdot S^{-1}[G_{2}] \\ &+ 2\pi i \operatorname{tr}{}^{t}G_{2}(\nu^{-1}|C|^{-1}P-|C|^{-1}N)) \\ &\times \sum_{G_{1}} \exp\left(\pi iq^{2}\nu^{2}|C|^{2}\operatorname{tr}\left(-Z+F\right)^{-1}[{}^{t}C]S^{-1}[G_{1}+q^{-1}\nu^{-2}|C|^{-2}G_{2}] \right) \\ &= |-Z+F|^{-n/2} \sum_{G_{2} \mod q,\nu^{2}|C|^{2}} \exp\left(\pi i\nu^{-2}|C|^{-2}\operatorname{tr} D^{t}C\cdot S^{-1}[G_{2}] \\ &+ 2\pi i \operatorname{tr}{}^{t}G_{2}(\nu^{-1}|C|^{-1}P-|C|^{-1}N) \right) \\ &\times \theta_{S^{-1}}^{(n)}(q^{2}\nu^{2}|C|^{2}(-Z+F)^{-1}[{}^{t}C];0,-q^{-1}\nu^{-2}|C|^{-2}G_{2}) \\ &= |-Z+F|^{-n/2} \sum_{G \mod q,\nu^{2}|C|^{2}} \exp\left(\pi i\nu^{-2}|C|^{-2}\operatorname{tr} D^{t}C\cdot S^{-1}[G] \\ &+ 2\pi i \operatorname{tr}{}^{t}G(\nu^{-1}|C|^{-1}P-|C|^{-1}N) \right) |S^{-1}|^{-n/2} \\ &\times |-iq^{2}\nu^{2}|C|^{2}(-Z+F)^{-1}[{}^{t}C]|^{-m/2} \\ &\times |\theta_{S}^{(n)}(-q^{-2}\nu^{-2}|C|^{-2}(-Z+F)[C^{-1}];-q^{-1}\nu^{-2}|C|^{-2}G,0) \,, \end{split}$$

where $|-Z + F|^{-m/2} |-iq^2 \nu^2 |C|^2 (-Z + F)^{-1} [{}^tC]|^{-m/2}$ is independent of Z and

denoting it by $\kappa'(M)$

$$egin{aligned} &=\kappa'(M)|S|^{n/2}\sum\limits_{G ext{ mod } q
u^2|C|^2}\exp{(\pi i
u^{-2}|C|^{-2}\operatorname{tr}{D^tC}\cdot S^{-1}[G]}\ &+2\pi i\operatorname{tr}{^tG}(
u^{-1}|C|^{-1}P-|C|^{-1}N))\ & imes heta_S^{(n)}(q^{-2}
u^{-2}|C|^{-2}(Z-F)[C^{-1}];\,-q^{-1}
u^{-2}|C|^{-2}G,0)\,. \end{aligned}$$

Thus the constant term of $\theta(Z, S, P, \nu)|M$ is

$$egin{aligned} &\kappa(M')|S|^{-n/2}\sum\limits_{N mod \mid C|} \exp{(\pi i \ {
m tr} \ AC^{-1} \cdot S[
u N-P]} \ & imes \kappa'(M)|S|^{n/2}\sum\limits_{G mod \mid q
u^2|C|^2} \exp{(\pi i
u^{-2}|C|^{-2} \ {
m tr} \ D \ {}^tC \cdot S^{-1}[G]} \ &+ 2\pi i \ {
m tr} \ {}^tG(
u^{-1}|C|^{-1}P - |C|^{-1}N)) \ &= \kappa(M')\kappa'(M)\sum\limits_{\substack{N mod \mid u \mid C| \ N \ m \mid d \ u \mid C| \ m \mid d \ u \mid d \ u \ m \mid d \ u \mid C|}} \exp{(\pi i \ {
m tr} \ AC^{-1} \cdot S[N]) \ &+ \pi i
u^{-2}|C|^{-2} \ {
m tr} \ D \ {}^tC \cdot S^{-1}[G] - 2\pi i
u^{-1}|C|^{-1} \ {
m tr} \ {}^tGN) \,. \end{aligned}$$

Since $S' \in \mathfrak{PG}(S, \nu)$, there is some $U \in M_m(Z)$ such that

$$egin{aligned} S &\equiv S'[U] \ {
m mod} \ 2q
u^2 |C|^2 |S|^2 \,, \ (|U|, 2q
u |C||S|) &= 1 \,, \ U &\equiv 1 \ {
m mod} \
u. \end{aligned}$$

Taking an integral matrix V such that $UV \equiv 1 \mod 2q\nu^2 |C|^2 |S|^2$ and multiplying integral matrices $|S|S^{-1}, |S|VS'^{-1}$ to $S \equiv {}^{t}US'U \mod 2q\nu^2 |C|^2 |S|^2$ from the left, the right respectively, we have

$$|S|^2 V S'^{-1} \equiv |S|^2 S^{-1\,t} U \, {
m mod} \, 2q
u^2 |C|^2 |S|^2$$

and hence we have

$$S^{_{-1}}\equiv S'^{_{-1}}[{}^tV] ext{ mod } 2q
u^2|C|^2$$
 .

Hence the above constant term is

Thus we have proved Lemma 3.

Put $E(Z, S, P, \nu) = M(S, \nu)^{-1} \sum_{S' \in \mathfrak{PO}(S, \nu)/\overline{\nu}} E(S', \nu)^{-1} \theta(Z, S', P, \nu)$. Then $g(Z) = \theta(Z, S, P, \nu) - E(Z, S, P, \nu)$ is a Siegel modular form of level $q\nu^2$, weight m/2 such that the constant term of g|M vanishes for every M in $Sp_n(Z)$.

The Fourier coefficient of $E(Z, S, P, \nu)$ is

$$A_0(S, T; -P, \nu)$$
 for $T > 0$,

and for Fourier coefficients a(T) of g(Z) we have ([3] or [4])

$$a(T) = O\left((\min T)^{(3-m/2)/2} |T|^{(m-3)/2}
ight) \quad ext{ for } T > 0$$

if n = 2 and $m \ge 2n + 3$.

Clearly we have, for every integral positive definite matrix T

$$A(S, T; -P, \nu) = A_0(S, T; -P, \nu) + a(T)$$

§ 3.

Let p be a prime and fix an integer a.

Let $S \in M_{m,m}(Z_p)$, $T \in M_{n,n}(Z_p)$ be regular symmetric matrices with $m \ge 2n + 3$ respectively and $P \in M_{m,n}(Z_p)$. An aim in this section is to prove

PROPOSITION. There is a positive number $\kappa(S, P, a)$ such that $\alpha_p(S, T; P, p^a) > \kappa(S, P, a)$ if $\alpha_p(S, T; P, p^a) \neq 0$.

We need several lemmas.

LEMMA 1. Let M be a regular quadratic lattice over \mathbb{Z}_p with $\operatorname{rk} M = m$ and N a submodule of M with $\operatorname{rk} N = n$. If $m \geq 2n$, then there is a constant $\kappa(M)$ independent of N such that there is a regular submodule $\tilde{N} \supset N$ of M with $\operatorname{rk} \tilde{N} = 2n$ and $\operatorname{ord}_p d\tilde{N} \leq \kappa(M)$.

Proof. We use the induction on *n*. We may suppose that $B(x, y) \in \mathbb{Z}_p$ for all $x, y \in M$ without loss of generality. Suppose that n = 1 and $M \cap \mathbb{Q}_p N = \mathbb{Z}_p v$. Suppose $B(v, M) = B(v, w)\mathbb{Z}_p = p^k \mathbb{Z}_p$ for $w \in M$; then p^k divides dM since v is primitive. If $p^{2k+1}|Q(v)$, then we put $\tilde{N} = \mathbb{Z}_p[v, w]$. It is clear that $\operatorname{ord}_p d\tilde{N} = 2k \leq 2 \operatorname{ord}_p dM$. If $p^{2k+1} \not\models Q(v)$, then we consider a set

$$S = \{ \boldsymbol{Z}_{\boldsymbol{\nu}} \boldsymbol{\nu}' \subset \boldsymbol{M} | \operatorname{ord}_{\boldsymbol{\nu}} \boldsymbol{Q}(\boldsymbol{\nu}') \leq 2 \operatorname{ord}_{\boldsymbol{\nu}} \boldsymbol{d} \boldsymbol{M} \} \qquad (\exists \boldsymbol{Z}_{\boldsymbol{\nu}} \boldsymbol{\nu}) \,.$$

We can take a finite set $\{Z_p u_i\} \subset S$ such that $S = \bigcup_i O(M)Z_p u_i$. For each u_i we take $w_i \in u_i^{\perp}$ such that $\operatorname{ord}_p Q(w_i) = \min_{w \in u_i^{\perp}} \operatorname{ord}_p Q(w)$, and put $N_i = Z_p[u_i, w_i]$. Then for v there is $w \in M$ such that $\tilde{N} = Z_p[v, w]$ is regular and $\operatorname{ord}_p d\tilde{N} \leq \max_i \operatorname{ord}_p dN_i$. Thus we can take $\max(2 \operatorname{ord}_p dM, \max_i \operatorname{ord}_p dN_i)$ as $\kappa(M)$ for n = 1. Let $N = Z_p[v_1, \dots, v_n]$ be a submodule of M and $2n \leq m$. Take $N_1 \subset M$ such that $N_1 \ni v_1$, $\operatorname{ord}_p dN_1 \leq \kappa_1(M)$ and $\operatorname{rank} N_1 = 2$, where $\kappa_1(M)$ is a constant depending only on M. Consider a set

$$S' = \{N' \subset M | \operatorname{rank} N' = 2, \operatorname{ord}_p dN' \leq \kappa_1(M)\} \ni N_1.$$

Since we can take a finite number of binary submodules N'_i of M such that $S' = \bigcup_i O(M)N'_i$, the set $\{N'^{\perp}|N' \in S'\}$ is a finite set up to O(M) and it depends only on M. Decompose $[M: N_1 \perp N_1^{\perp}]v_i$ as $[M: N_1 \perp N_1^{\perp}]v_i = x_i + y_i, x_i \in N_1, y_i \in N_1^{\perp}$. Since rank $N_1^{\perp} = m - 2$ and dim $Q_p[y_2, \dots, y_n] \leq n - 1 \leq (m - 2)/2$, applying the assumption of the induction, there is a submodule $N_2 \subset N_1^{\perp}$ such that rank $N_2 = 2(n - 1), N_2 \ni y_i$ $(i = 2, \dots, n)$ and $\operatorname{ord}_p dN_2 \leq \kappa(N_1^{\perp}) \leq \max_{N' \in S'} \kappa(N'^{\perp}) (= \kappa_2(M) \operatorname{say})$. Put $N' = N_1 \perp N_2$; then

 $\operatorname{rank} N' = 2n \text{ and } \operatorname{ord}_p dN' \leq \kappa_1(M) + \kappa_2(M). \quad \operatorname{Since} N' \ni v_1, [M: N_1 \perp N_1^{\perp}]v_i$ $(i \geq 2), \tilde{N} = M \cap \boldsymbol{Q}_p N' \text{ contains } N, \operatorname{rank} \tilde{N} = 2n \text{ and } \operatorname{ord}_p d\tilde{N} \leq \operatorname{ord}_p dN' \leq \kappa_1(M) + \kappa_2(M). \quad \text{Thus we have completed the proof.}$

LEMMA 2. Let M be a regular quadratic lattice over Z_p with rank M = m and N a regular submodule of M with rank N = n, and suppose that $m \ge 2n + 3$. Then there is a constant $\kappa(M)$ dependent only on M satisfying the following condition. Suppose that for a basis $\{v_i\}$ of $N Z_p[v_1, \dots, v_r]$ is primitive in M. Then there are vectors $w_i \in M$ such that

$$egin{aligned} &w_i = v_i & ext{for} \ 1 \leq i \leq r \ , \ &B(w_i,w_j) = B(v_i,v_j) & ext{for} \ 1 \leq i,j \leq n \ , \ &[m{Q}_p[w_1,\cdots,w_n] \cap M:m{Z}_p[w_1,\cdots,w_n]] < \kappa(M) \ . \end{aligned}$$

Proof. We use the induction on n-r. Suppose n-r=1. By virtue of the previous lemma, there are vectors $v'_1, \dots, v'_{n-1} \in M$ such that for $N' = Z_p[v_1, \dots, v_{n-1}, v'_1, \dots, v'_{n-1}]$ rank $N'^{\perp} = 2(n-1)$ and $\operatorname{ord}_p dN' < \kappa(M)$ hold for some constant $\kappa(M)$. Since rank $N'^{\perp} = m - 2(n-1) \ge 5$, N'^{\perp} is isotropic. We fix a maximal lattice $K \subset N'^{\perp}$ and decompose K as

$$K=oldsymbol{Z}_p[e_{\scriptscriptstyle 1},e_{\scriptscriptstyle 2}]ot K_{\scriptscriptstyle 0}$$
 ,

where $Q(e_1) = Q(e_2) = 0$, $B(e_1, e_2) = p^t$.

Put $v_n = u + a_1e_1 + a_2e_2 + z$, where $u \in \mathbf{Q}_p N'$, $a_1, a_2, \in \mathbf{Q}_p, z \in \mathbf{Q}_p K_0$. We claim that there are $x_1, x_2 \in \mathbf{Z}_p$ such that

$$x_1x_2 + x_1a_2 + x_2a_1 = 0, (x_1 + a_1, x_2 + a_2) \not\subset pZ_p$$

If $a_1 = 0$, then we put $x_1 = 0$ and for some $x_2 \in Z_p$ both conditions are clearly satisfied. The case $a_2 = 0$ is similar. Suppose $a_1a_2 \neq 0$ and ord_p $a_1 \leq \operatorname{ord}_p a_2$. If $a_1 \in Z_p$, then we choose $x_2 \in Z_p$ so that $x_2 + a_2 \in Z_p^{\times}$. Then we have only to put $x_1 = -x_2a_1(x_2 + a_2)^{-1}$. If $a_1 \notin Z_p$, $a_2 \in Z_p$, then we have only to put $x_2 = a_2/a_1 \in Z_p$, $x_1 = -x_2a_1(x_2 + a_2)^{-1}$, since $x_1 = -(1 + a_1^{-1})^{-1} \in Z_p^{\times}$ and $x_1 + a_1 \notin pZ_p$. If $a_1, a_2 \notin Z_p$, then putting $x_2 = a_1^{-1} \in Z_p$, $x_1 = -(a_1^{-1} + a_2)^{-1} \in Z_p$, we have $x_1x_2 + x_1a_2 + x_2a_1 = 0$ and $x_2 + a_2 \notin Z_p$. Thus we have showed our claim.

Put $w_i = v_i$ for $1 \leq i \leq n-1$ and $w_n = v_n + x_1e_1 + x_2e_2$; then we have

$$egin{aligned} B(v_i, w_n) &= B(v_i, v_n) & ext{ for } i \leq n-1 \ , \ Q(w_n) &= Q(v_n) + B(x_1e_1 + x_2e_2, x_1e_1 + x_2e_2 + 2v_n) \ &= Q(v_n) \ . \end{aligned}$$

Thus $B(w_i, w_j) = B(v_i, v_j)$ follows for $1 \leq i, j \leq n$. Suppose that for $y \in M$, $p^s y \in \mathbb{Z}_p[w_1, \dots, w_n], p^{s-1}y \notin \mathbb{Z}_p[w_1, \dots, w_n]$ $(s \geq 1)$; then $p^s y = \sum_{i=1}^{n-1} b_i v_i + b_n w_n = \sum_{i=1}^{n-1} b_i v_i + b_n (x_1 + a_1)e_1 + b_n (x_2 + a_2)e_2 + b_n z$ holds. From the assumption $(b_1, \dots, b_n) = 1$ follows. Since $\mathbb{Z}_p[v_1, \dots, v_{n-1}]$ is primitive in M, b_n is in \mathbb{Z}_p^{\times} . Since $y \in M$, $[M: N' \perp N'^{\perp}] y \in N' \perp N'^{\perp}$ and hence [M: $N' \perp N'^{\perp}]$ $(p^{-s}b_n(x_1 + a_1)e_1 + p^{-s}b_n(x_2 + a_2)e_2 + p^{-s}b_nz) \in N'^{\perp}$; then $[N'^{\perp}:K]$ $[M: N' \perp N'^{\perp}]$ $(p^{-s}b_n(x_1 + a_1)e_1 + p^{-s}b_n(x_2 + a_2)e_2) \in \mathbb{Z}_p[e_1, e_2]$. Here we note that $\operatorname{ord}_p dN' < \kappa(M)$ and K is a fixed maximal lattice in N'^{\perp} , and the number of sumbodule \tilde{N} of M with $\operatorname{ord}_p d\tilde{N} < \kappa(M)$ is finite up to O(M)equivalence. Thus $[N'^{\perp}:K]$ $[M: N' \perp N'^{\perp}] < \kappa_1(M)$ holds for some constant $\kappa_1(M)$ depending only on M. From $[N'^{\perp}:K]$ $[M: N' \perp N'^{\perp}]p^{-s}b_n(x_i + a_i)$ $\in \mathbb{Z}_p$ for i = 1 and 2 follows

$$s \leq \operatorname{ord}_p\left([N'^{\perp} \colon K][M \colon N' \perp N'^{\perp}](x_i + a_i)
ight),$$

since $b_n \in Z_p^{\times}$.

By the choice of x_i , $\operatorname{ord}_p(x_i + a_i) \leq 0$ for i = 1 or 2. Thus there is a constant $\kappa_2(M)$ such that $s \leq \kappa_2(M)$. Therefore the index $[Q_p[w_1, \dots, w_n] \cap M: Z_p[w_1, \dots, w_n]]$ is bounded from above by a constant depending only on M.

Suppose $n-r \ge 2$ and put $N' = Q_p[v_1, \cdots, v_{n-1}] \cap M = Z_p[u_1, \cdots, u_{n-1}].$ We may suppose

(1)
$$u_i = v_i$$
 for $1 \leq i \leq r$,

since $Z_p[v_1, \dots, v_r]$ ($\subset N'$) is primitive in M.

Applying the assumption of the induction to $N' \oplus \mathbb{Z}_p v_n$, there are vectors $u'_i \in M$ such that

(2)
$$u'_i = u_i$$
 for $1 \leq i \leq n-1$,

$$(3) \quad B(u'_i, u'_j) = B(u_i, u_j) \text{ for } 1 \leq i, j \leq n$$

where $u_n = v_n$,

$$(4) \quad [\boldsymbol{Q}_p[u_1', \cdots, u_n'] \cap M: \boldsymbol{Z}_p[u_1', \cdots, u_n']] < \kappa_1(M),$$

where $\kappa_1(M)$ is a constant depending only on M. From (4) follows

$$(\,5\,) \quad [m{Q}_{p}[u_{1}',\,\cdots,\,u_{r}',\,u_{n}']\cap M {:} \, m{Z}_{p}[u_{1}',\,\cdots,\,u_{r}',\,u_{n}']] < \kappa_{1}(M).$$

We choose $v'_n \in M$ so that

(6) $Q_{p}[u'_{1}, \cdots, u'_{r}, u'_{n}] \cap M = Z_{p}[v_{1}, \cdots, v_{r}, v'_{n}],$

noting $u'_i = u_i = v_i$ for $i \leq r$ by (2), (1) and the primitiveness of $Z_p[v_1, \dots, v_r]$. Putting

$$(7) \quad v'_{i} = v_{i} \text{ for } i \leq n - 1,$$

$$Z_{p}[v'_{1}, \dots, v'_{n}] = Z_{p}[v_{r+1}, \dots, v_{n-1}] + Z_{p}[v_{1}, \dots, v_{r}, v'_{n}]$$

$$\Box Z_{p}[v_{r+1}, \dots, v_{n-1}] + Z_{p}[u'_{1}, \dots, u'_{r}, u'_{n}] \text{ by (6)}$$

$$= Z_{p}[v_{1}, \dots, v_{n-1}, u'_{n}] \text{ by (2), (1)}$$

and

$$(8) \quad [\mathbf{Z}_{p}[v'_{1}, \cdots, v'_{n}]: \mathbf{Z}_{p}[v_{1}, \cdots, v_{n-1}, u'_{n}]] < \kappa_{1}(M)$$

follows from (5).

Put $u = u'_n - u_n$; then for $i \leq n - 1$ we have

$$B(u_i, u_n) = B(u'_i, u'_n)$$
 by (3)
= $B(u_i, u'_n)$ by (2)

and then $B(u_i, u) = 0$ for $i \leq n - 1$. Since $Q_p[v_1, \dots, v_{n-1}] = Q_p[u_1, \dots, u_{n-1}]$, we have $B(v_i, u) = 0$ for $i \leq n - 1$ and hence

$$B(v_i, u'_n) = B(v_i, u_n) = B(v_i, v_n),$$

where the second equality follows from the definition of $u_n = v_n$. Thus we can define an isometry σ from N to $Z_p[v_1, \dots, v_{n-1}, u'_n]$ by

$$(9) \quad \begin{cases} \sigma(v_i) = v_i \text{ for } 1 \leq i \leq n-1, \\ \sigma(v_n) = u'_n, \end{cases}$$

since $Q(u'_n) = Q(u_n) = Q(v_n)$ by (3).

Hence dim $Q_p[v'_1, \dots, v'_n] = \dim Q_p[v_1, \dots, v_{n-1}, u'_n] = n$ follows. By (6), (7) $Z_p[v'_1, \dots, v'_r, v'_n]$ is primitive in M and $Q_p[v'_1, \dots, v'_n] = Q_p[v_1, \dots, v_{n-1}, u'_n]$ $= Q_p\sigma(N)$ is regular. Applying the assumption of the induction to $Z_p[v'_1, \dots, v'_n]$, there are vectors $w'_i \in M$ such that

(10) $w'_i = v'_i$ for $i = 1, \dots, r$ and n.

$$B(w'_i,w'_j)=B(v'_i,v'_j) ext{ for } 1 \leq i,j \leq n.$$

(11)
$$[\boldsymbol{Q}_p[w_1', \cdots, w_n'] \cap M: \boldsymbol{Z}_p[w_1', \cdots, w_n']] < \kappa_1(M).$$

Defining an isometry η by $\eta(v'_i) = w'_i$ for $1 \leq i \leq n$, we have a submodule $\eta \sigma(N)$ of M since

https://doi.org/10.1017/S002776300000252X Published online by Cambridge University Press

$$oldsymbol{Z}_p[oldsymbol{v}_1,\,\cdots,\,oldsymbol{v}_{n-1},\,oldsymbol{u}'_n]\subsetoldsymbol{Z}_p[oldsymbol{v}'_1,\,\cdots,\,oldsymbol{v}'_n]$$
 .

Moreover we have, by (9), (7), (10)

 $\eta \sigma(v_i) = v_i \quad \text{for } i \leq r.$

Now we put $w_i = \eta \sigma(v_i)$ for $1 \leq i \leq n$; then

$$egin{aligned} &w_i = v_i & ext{for} \ i \leq r\,, \ &B(w_i,w_j) = B(v_i,v_j) & ext{for} \ 1 \leq i \ j \leq n \end{aligned}$$

hold.

Finally we have

$$\begin{split} [\boldsymbol{Q}_p[w_1, \cdots, w_n] &\cap M: \boldsymbol{Z}_p[w_1, \cdots, w_n]] \\ &= [\boldsymbol{Q}_p[w_1', \cdots, w_n'] \cap M: \eta \sigma(N)] \\ &= [\boldsymbol{Q}_p[w_1', \cdots, w_n'] \cap M: \boldsymbol{Z}_p[w_1', \cdots, w_n']] [\boldsymbol{Z}_p[w_1', \cdots, w_n']: \eta \sigma(N)] \\ &< \kappa_1(M) [\boldsymbol{Z}_p[v_1', \cdots, v_n']: \sigma(N)] \text{ by (11)} \\ &= \kappa_1(M) [\boldsymbol{Z}_p[v_1', \cdots, v_n']: \boldsymbol{Z}_p[v_1, \cdots, v_{n-1}, u_n']] \text{ by (9)} \\ &< \kappa_1(M)^2 \text{ by (8)} . \end{split}$$

Thus we have completed the proof.

LEMMA 3. Let M be a regular quadratic lattice over Z_p and N a regular submodule of M with rank $M \ge 2$ rank N + 3. For a natural number a there is a constant $\kappa(M, a)$ dependent only on M and a satisfying the following condition. There is an isometry σ from N to M such that

$$\sigma(x) \equiv x \mod p^a M \quad for \ x \in N \,, \ [oldsymbol{Q}_p \sigma(N) \cap M : \sigma(N)] < \kappa(M, a) \,.$$

Proof. We take a basis $\{v_i\}$ of N such that

$$\boldsymbol{Q}_p N \cap \boldsymbol{M} = \boldsymbol{Z}_p[p^{-a_1}v_1, \cdots, p^{-a_n}v_n]$$

with $0 \leq a_1 \leq \cdots \leq a_r < a \leq a_{r+1} \leq \cdots \leq a_n$. Define u_i by

$$u_i = egin{cases} p^{-a_1} v_i ext{ for } i \leq r \,, \ p^{-a} v_i ext{ for } i > r \,. \end{cases}$$

By virtue of the previous lemma, there are vectors $w_i \in M$ such that

$$egin{aligned} &w_i = u_i = p^{-a_i} v_i & ext{for } i \leq r \ &B(w_i,w_j) = B(u_i,u_j) \ &[oldsymbol{Q}_p[w_1,\cdots,w_n] \cap M \colon oldsymbol{Z}_p[w_1,\cdots,w_n]] < \kappa(M) \end{aligned}$$

,

where $\kappa(M)$ is a constant dependent only of M.

Put $z_i = p^{a_i}w_i$ for $i \leq r$ and $z_i = p^aw_i$ for i > r; then we have $B(v_i, v_j) = B(z_i, z_j)$,

$$egin{aligned} oldsymbol{z}_i &= v_i & ext{ for } i \leq r\,, \ oldsymbol{z}_i &\equiv v_i \equiv 0 ext{ mod } p^a M & ext{ for } i > r\,. \end{aligned}$$

Moreover

$$egin{aligned} & [oldsymbol{Q}_p[oldsymbol{z}_1,\,\cdots,oldsymbol{z}_n]] & = [oldsymbol{Q}_p[oldsymbol{w}_1,\,\cdots,oldsymbol{w}_n]\cap M\colon oldsymbol{Z}_p[oldsymbol{w}_1,\,\cdots,oldsymbol{w}_n]] \ & imes [oldsymbol{Z}_p[oldsymbol{w}_1,\,\cdots,oldsymbol{w}_n]\colon oldsymbol{Z}_p[oldsymbol{z}_1,\,\cdots,oldsymbol{z}_n]] \ & = p^{\sum_{i=1}^r a_i+(n-r)a} \left[oldsymbol{Q}_p[oldsymbol{w}_1,\,\cdots,oldsymbol{w}_n]\cap M\colon oldsymbol{Z}_p[oldsymbol{w}_1,\,\cdots,oldsymbol{w}_n]] \ & \leq p^{n\,a}\kappa(M)\,. \end{aligned}$$

We have only to put $\sigma(v_i) = z_i$ and $\kappa(M, a) = p^{na}\kappa(M)$.

Now we can prove Proposition. Let S, T, P, a be those at the beginning of this section, and suppose $\alpha_p(S, T; P, p^a) \neq 0$; then there is $X \in M_{m,n}(\mathbb{Z}_p)$ such that $S[X] = T, X \equiv P \mod p^a$. By virtue of Lemma 3 there is $Y \in M_{m,n}(\mathbb{Z}_p)$ such that $Y \equiv P \mod p^a$, S[Y] = T and for elementary divisors p^{a_1}, \dots, p^{a_n} of $Y \sum_{i=1}^n a_i < \kappa(S, a)$ holds where $\kappa(S, a)$ is a constant independent of T. Take a natural number b larger than a, a_i $(1 \leq i \leq n)$. Clearly $\alpha_p(S, T; P, p^a) \geq \alpha_p(S, T; Y, p^b) \neq 0$ holds. Let

$$Y = U egin{pmatrix} p^{a_1} & & \ & \ddots & \ & p^{a_n} \end{pmatrix} V, \ U \in GL_{\scriptscriptstyle m}(Z_{\scriptscriptstyle p}), \ V \in GL_{\scriptscriptstyle n}(Z_{\scriptscriptstyle p})$$

and put $U^{-1}Y = \begin{pmatrix} A \\ 0 \end{pmatrix}$, $A = \text{diag}(p^{a_1}, \dots, p^{a_n})V \in M_{n,n}(Z_p)$. S[Y] = T implies $S[YA^{-1}] = T[A^{-1}]$ and hence $T[A^{-1}]$ is integral since $YA^{-1} = U\begin{pmatrix} 1_n \\ 0 \end{pmatrix}$. We consider the mapping $X \mapsto XA$ from

$$egin{cases} X \in M_{m,n}(oldsymbol{Z}_p) mod p^t \ X \equiv T[A^{-1}] mod p^t \ X \equiv Uinom{1}{0} mod p^b \ X \equiv Uinom{1}{0} mod p^b \end{cases}$$

to

$$egin{cases} Z \in M_{m,n}(oldsymbol{Z}_p) mmod p^\iota M_{m,n}(oldsymbol{Z}_p) A ig| oldsymbol{S}[oldsymbol{Z}] \equiv T mmod p^\iota \ oldsymbol{Z} \equiv Y mmod p^b \end{pmatrix} egin{array}{c} S[oldsymbol{Z}] \equiv T mmod p^\iota \ oldsymbol{Z} \equiv Y mmod p^b \end{pmatrix} \end{array}$$

https://doi.org/10.1017/S002776300000252X Published online by Cambridge University Press

It is obviously well-defined and injective. Hence we have

$$lpha_p(S,\,T;\,\,Y,p^{\,b}) \geqq |A|^{-\,m} lpha_p \Bigl(S,\,T[A^{-1}];\,Uinom{1}{0},p^{\,b}\Bigr)
eq 0\,.$$

The last inequality follows from $S[YA^{-1}] = T[A^{-1}], YA^{-1} = U\begin{pmatrix} 1_n \\ 0 \end{pmatrix}$. Next we have

$$\# \Big\{ X \in M_{m,n}(oldsymbol{Z}_p) mod p^t | S[X] \equiv T[A^{-1}] mod p^t, X \equiv Uinom{1}{0} mod p^b \Big\} \ \ge p^{-mn} \# inom{\{}{X \in M_{m,n}(oldsymbol{Z}_p) mod p^{t+1} inom{\{}{P^{t+1} \ for every \ x \in M_{n,1}(oldsymbol{Z}_p), \ X \equiv Uinom{1}{0} mod p^b inom{\}} } inom{\{}{X \in M_{m,n}(oldsymbol{Z}_p) mod p^{t+1} \ for every \ x \in M_{n,1}(oldsymbol{Z}_p), \ X \equiv Uinom{1}{0} mod p^b inom{\}} } inom{\{}{X \in M_{m,n}(oldsymbol{Z}_p) mod p^{t+1} \ for every \ x \in M_{n,1}(oldsymbol{Z}_p), \ x \equiv Uinom{1}{0} mod p^b inom{\}} } inom{\}}$$

by considering the canonical mapping from the latter set to the former set,

$$=p^{-mn+n ext{ ord}_p|S|}
onumber \ imes \left\{X \in M_{m,n}(oldsymbol{Z}_p) ext{ mod } p^{t+1}S^{-1}M_{m,n}(oldsymbol{Z}_p) egin{array}{l} S[Xx] \equiv T[oldsymbol{A}^{-1}][x] ext{ mod } p^{t+1} \ imes oldsymbol{M}_{n,1}(oldsymbol{Z}_p), \ X \equiv Uinom{1}{0} ext{ mod } p^b \end{array}
ight\}$$

for a sufficiently large t.

By virtue of "Satz" in Section 14 in [5]

is constant if t is larger than some constant t_0 which depends only on S and b. Thus we have

$$lpha_p\!\left(S,\,T[A^{-1}];\,U\!\begin{pmatrix}1_n\0\end{pmatrix},p^b
ight) \geqq p^{-mn+n\; ext{ord}_p\;|S|+t_0(n(n+1)/2-mn)}$$
 ,

since $S[YA^{-1}] = T[A^{-1}]$ and $YA^{-1} = U\begin{pmatrix} 1_n \\ 0 \end{pmatrix}$. Noting that $|A|^{-m} = p^{-m(S a_i)} \ge p^{-m_{\mathfrak{c}}(S,a)}$, we complete the proof.

§4.

Let S be an integral symmetric positive definite matrix of degree mwhose diagonals are even integers and n a natural number with $m \ge 2n$ + 3, and we take $P \in M_{m,n}(Z)$ and a natural number ν . Let $\theta(Z, S, -P, \nu)$, $E(Z, S, -P, \nu)$ be Siegel modular forms of level $q\nu^2$, weight m/2 and degree n defined in Section 2, where q is the level of S, and put

$$egin{aligned} & heta(Z,\,S,\,-P,\,
u) = \sum\limits_{T \geq 0} A(S,\,T;\,P,\,
u) \exp\left(\pi i \, {
m tr} \, TZ
ight), \ & E(Z,\,S,\,-P,\,
u) = \sum\limits_{T \geq 0} A_0(S,\,T;\,P,\,
u) \exp\left(\pi i \, {
m tr} \, TZ
ight), \end{aligned}$$

where $A(S, T; P, \nu)$ and $A_0(S, T; P, \nu)$ are the same as those defined in Section 1 for every positive definite matrix T. As pointed out in Section 2 for $a(T) = A(S, T; P, \nu) - A_0(S, T; P, \nu) \sum a(T) \exp(\pi i \operatorname{tr} TZ)$ is a Siegel modular form of weight m/2, degree n such that the constant term at every cusp vanishes.

Denote by $A_{pr}(S, T; P, \nu)$ the number of $X \in M_{m,n}(Z)$ such that $S[X] = T, X \equiv P \mod \nu$ and X is primitive in $M_{m,n}(Z_p)$ for $p \nmid \nu$ and put $A_{0,pr}(S, T; P, \nu) = M(S, \nu)^{-1} \sum_{\mathfrak{P} \otimes (S, \nu)/_{\widetilde{\nu}} \ni S'} (A_{pr}(S', T; P, \nu)/E(S', \nu))$, and $a_{pr}(T) = A_{pr}(S, T; p, \nu) - A_{0,pr}(S, T; P, \nu)$. Our aim is to get an asymptotic formula for $A_{pr}(S, T; P, \nu)$. Let $V = \mathbf{Q}[v_1, \dots, v_m]$, $W = \mathbf{Q}[w_1, \dots, w_n]$ be quadratic space with bilinear forms defined by $(B(v_i, v_j)) = S, (B(w_i, w_j)) = T$ respectively, and σ_0 a linear mapping from W to V defined by

$$(\sigma_0(w_1), \cdots, \sigma_0(w_n)) = (v_1, \cdots, v_m)P.$$

It is clear, then, that $A(S, T; P, \nu)$ is the number of isometries σ from W to V such that $\sigma N \subset M$ and $\sigma(x) \equiv \sigma_0(x) \mod \nu Z_p M$ for all x in $Z_p N$ for every prime p where we put $M = Z[v_1, \dots, v_m]$, $N = Z[w_1, \dots, w_n]$. $A_{pr}(S, T; P, \nu)$ is the number of isometries σ with an additional condition that $\sigma(Z_p N)$ is primitive in $Z_p M$ for $p \not\mid \nu$. We write $A(M, N; \sigma_0, \nu), A_{pr}(M, N; \sigma_0, \nu)$ for $A(S, T; P, \nu)$, $A_{pr}(S, T; P, \nu)$ respectively. Obviously we have

$$A(M,N;\sigma_{\scriptscriptstyle 0},
u) = \sum\limits_{L\supset N} A_{\scriptscriptstyle \mathrm{pr}}(M,L;\sigma_{\scriptscriptstyle 0},
u)\,,$$

where L runs over submodules of W such that $L \supset N$ and $Z_p L = Z_p N$ for $p|\nu$. Similarly putting

$$egin{aligned} &A_{0}(M,\,N;\,\sigma_{0},\,
u) = A_{0}(S,\,T;\,P,\,
u)\,, \ &A_{0\,,\,\mathrm{pr}}(M,\,N;\,\sigma_{0},\,
u) = A_{0\,,\,\mathrm{pr}}(S,\,T;\,P,\,
u)\,, \end{aligned}$$

we have

(#)
$$A_0(M, N; \sigma_0, \nu) = \sum_{L \supset N} A_{0, pr}(M, L; \sigma_0, \nu)$$

where L runs over the same set as above. Using the theory of Hecke algebra of GL as in [4], we have

$$egin{aligned} &A_{ ext{pr}}(M,N;\sigma_{ ext{\tiny 0}},
u) = \sum\limits_{L\supset N} \pi(L,N) A(M,L;\sigma_{ ext{\tiny 0}},
u)\,, \ &A_{ ext{\tiny 0,pr}}(M,N;\sigma_{ ext{\tiny 0}},
u) = \sum\limits_{L\supset N} \pi(L,N) A_{ ext{\tiny 0}}(M,L;\sigma_{ ext{\tiny 0}},
u)\,, \end{aligned}$$

where L runs over lattices of QN containing N such that $Z_pL = Z_pN$ for $p|\nu$, and $\pi(L, N)$ is defined as follows: Suppose that Z_pL/Z_pN is isomorphic to h_p copies of Z_p/pZ_p as Z_p modules for every prime p; then we put

$$\pi(L, N) = \prod_{p} (-1)^{h_{p}} p^{h_{p}(h_{p}-1)/2}.$$

Otherwise we put $\pi(L, N) = 0$. For a lattice L in QN such that

$$L \supset N \text{ and } Z_p L = Z_p N \text{ for } p | \nu$$
,

we take a basis $\{w'_i\}$ such that $w'_i \equiv w_i \mod \nu Z_p N$ for $p|\nu$ and put $T_L = (B(w'_i, w'_j))$. It is clear that $A(S, T_L; P, \nu) = A(M, L; \sigma_0, \nu)$, and hence we have

$$a_{\mathrm{pr}}(T) = \sum_{L\supset N} \pi(L, N) a(T_L)$$

where L runs over the same set as above.

Suppose that

(*)
$$a(T) = O((\min T)^{-\epsilon} |T|^{(m-n-1)/2})$$

for every positive definite matrix $T \in M_{n,n}(Z)$, where min $T = \min_{0 \neq x \in Z^n} T[x]$ and ε is a sufficiently small positive number. This is the case for n = 2. We have, then as in [4]

$$a_{
m pr}(T) = O((\min T)^{-\epsilon} |T|^{(m-n-1)/2})$$

Thus we have

$$(\#\#) \qquad A_{\rm pr}(S,\,T;\,P,\,\nu) = A_{0,\,{\rm pr}}(S,\,T;\,P,\,\nu) + O((\min\,T)^{-\varepsilon}|\,T|^{(m-n-1)/2})$$

for every positive definite integral matrix T under the assumption (*) which is true for n = 2.

We denote by $A'_{0,pr}(S, T; P, \nu)$ the right side of the formula for $A_0(S, T; P, \nu)$ in Theorem of Section 1 in which $\alpha_p(S, T; P, \nu)$ is replaced by

$$2^{-\delta_{m,n}} \lim_{a o\infty} (p^a)^{n(n+1)/2-mn} \# iggl\{ X \in M_{m,n}(oldsymbol{Z}_p/p^aoldsymbol{Z}_p) iggr| oldsymbol{S}[X] \equiv T mod p^aoldsymbol{Z}_p, \ X \ ext{is primitive} iggr\}$$

for $p \not\mid \nu$. By virtue of Hilfssatz 13 in [7], the identity (#) holds for $A'_{0,pr}$ instead of $A_{0,pr}$. Hence the inversion formula in [4] implies $A'_{0,pr} = A_{0,pr}$. By virtue of Proposition in Section 3 there is a positive constant κ independent of T such that

$$A_{0,\,\mathrm{pr}}(S,\,T;\,P,
u)>\kappa|\,T|^{(m-n-1)/2}$$

if T > 0 and $A_{0,pr}(S, T; P, \nu) \neq 0$, using an argument of the proof of Proposition 9 in [3] with $A'_{0,pr} = A_{0,pr}$. Thus we have proved the following

THEOREM. Let S be a positive definite integral matrix of degree m whose diagonals are even and n a natural number with $m \ge 2n + 3$. We take $P \in M_{m,n}(Z)$ and a natural number ν . Then there exists positive numbers κ, ε such that

$$egin{aligned} &A_{ ext{pr}}(S,\,T;\,P,
u) = A_{0, ext{pr}}(S,\,T;\,P,
u) + O((\min\,T)^{-arepsilon}|\,T|^{(m-n-1)/2})\,, \ &A_{0, ext{pr}}(S,\,T;\,P,
u) > \kappa|\,T|^{(m-n-1)/2} & ext{if}\,\,A_{0, ext{pr}}(S,\,T;\,P,
u)
eq 0\,, \end{aligned}$$

for every positive definite integral matrix T of degree n, provided n = 2.

Immediately we have

COROLLARY. Let $M' \subset M$ be positive definite quadratic lattices over Zof rank $m \geq 2n + 3$, S a finite set of primes containing all prime divisors of 2[M: M'] and such that M_p is unimodular for $p \notin S$. There is a constant c such that for every positive definite quadratic lattice N of rank n and every collection $(f_p)_{p \in S}$ of isometries $f: Z_pN \to Z_pM$ there is an isometry f: $N \to M$ satisfying

> $f \equiv f_p \mod Z_p M'$ for every $p \in S$, $f(Z_p N)$ is primitive in $Z_p M$ for every $p \notin S$,

if $\min_{0 \neq x \in N} Q(x) > c$, provided n = 2.

References

- A. N. Andrianov and G. N. Maloletkin, Behavior of theta series of degree n under modular substitutions, Math. USSR-Izv., 9 (1975), 227-241.
- [2] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. reine angew. Math., 301 (1978), 132-141.
- [3] Y. Kitaoka, Modular forms of degree n and representation by quadratic forms II, Nagoya Math. J., 87 (1982), 127-146.

QUADRATIC FORMS

- [4] —, Lectures on Siegel modular forms and representation by quadratic forms, Tata Institute Lectures on Math., Springer-Verlag (1986).
- [5] M. Kneser, Quadratische Formen, Vorlesungs Ausarbeitung, Göttingen (1973/4).
- [6] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag (1963).
- [7] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math., 36 (1935), 527-606.
- [8] F. van der Blij, On the theory of quadratic forms, Ann. of Math., 50 (1949), 875-883.