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Consider an end Ω in the sense of Heins (cf. Heins [3]): Ω is a relatively non-

compact subregion of an open Riemann surface such that the relative boundary dΩ

consists of finitely many analytic Jordan closed curves, there exist no non-

constant bounded harmonic functions with vanishing boundary values on dΩ and

Ω has a single ideal boundary component. A density P = P(z)dxdy (z = x + iy)

is a 2-form on Ω U dΩ with nonnegative locally Holder continuous coefficient

P(z). Denote by £PP(Ω) the class of nonnegative solutions of the equation

(1) LPu = Δu-Pu = 0 (i.e. d*du~ uP = 0)

on Ω with vanishing boundary values on dΩ. The P-harmonic dimension of Ω (or

the elliptic dimension of P on Ω (cf. e.g. Nakai [8])), dim ZPpiΩ) in notation, is de-

fined to be the 'dimension' of the half module ίPp(Ω). The P-harmonic dimension

dim^oCi?) for the particular P = 0 is called simply the harmonic dimension of Ω

(cf. Heins [3]).

We are particularly interested in the following result by Heins [3]:

THEOREM A. Let {An} be a sequence of mutually disjoint annuli in Ω satisfying

that An+1 separates An from the ideal boundary of Ω for every n. Suppose that the sum

of moduli of An diverges. Then the harmonic dimension of Ω is one.

A density P is said to be finite if / / Pdxdy < °°. The above theorem has

been generalized for finite densities P by Nakai [8] and Kawamura [4] as follows:

THEOREM B. Let P be finite on Ω and {An} be the same as in Theorem A. Then

Received June 17, 1992.
This work was partially supported by Grant-in Aid for Scientific Research, No. 03640042

and 04640145, Japan Ministry of Education, Science and Culture.

131

https://doi.org/10.1017/S0027763000004670 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004670


1 3 2 MICHIHIKO KAWAMURA AND SHIGEO SEGAWA

the P- harmonic dimension of Ω is one.

The following is another generalization of Theorem A (cf. Segawa [9]):

THEOREM C. Let {An} be a sequence of mutually disjoint sets in Ω such that each

An consists of at most N mutually disjoint annuli for a positive integer N and An+ι

separates An from the ideal boundary of Ω for every n. Suppose that the sum of moduli

of An diverges. Then the harmonic dimension of Ω is at most N.

The main purpose of this paper is to unify Theorems B and C to a form in-

cluding both Theorems B and C as special cases. The main theorem is as follows:

MAIN THEOREM. Let P be finite on Ω and {An} be the same as in Theorem C.

Then the P- harmonic dimension of Ω is at most N.

We shall prove a bit more in Theorem 6. In Section 1, we prove a duality re-

lation for P-harmonic dimensions (cf. Theorem 2), which plays a fundamental role

for the proof of Theorem 6.

§1. Duality relation

1.1. A relatively noncompact subregion Ω of an open Riemann surface is re-

ferred to as a general end if the relative boundary dΩ of Ω consists of a finitely

many disjoint analytic Jordan closed curves. In this section we assume that Ω is a

general end. We denote by β the ideal boundary of Ω. Without loss of generality,

we may assume that there exist an open Riemann surface R and its exhaustion

{Rn}ζ=0 with Ω — R — Ro. Let eP be the solution of the equation (1) on Ω Π Rn

— Rn — Ro with boundary values 1 on dΩ and 0 on dRn. Since ieP } is increas-

ing and dominated by the constant function 1, the limit eP

 = lim^^ eP exists.

Note that eP is the solution of (1) on Ω with boundary values 1 on dΩ and Ό on

the ideal boundary β'. The function eP is referred to as the P-unit on Ω for P

(cf. Nakai [7]). Obviously eP does not depend on a choice of {Rn}ζ=0. We consider

the associated operator LP with LP which is introduced by Nakai (cf. [7], [8]):

(2) LPu = Δu + 2V (log eP) Vu

where eP is the P-unit on Ω. Denote by BP(Ω) the class of bounded solutions of

the equation
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(3) LPu = 0

on Ω with continuous boundary values on dΩ. Note that 1 ^ BP(Ω). To begin

with we show the following

LEMMA 1. Suppose that u belongs to BP(Ω). Then u satisfies the following ine-

qualities :

min u(p) < inf u(p) < sup u(p) < max u(p).
pGdΩ peΩ psΩ pedΩ

Proof. We have only to show the last inequality since ~ u also belongs to

BP(Ω). By adding a constant we may assume u > 0. Set M — m a x ^ ^ u{p). Let υn

be the solution of (1) on Ω Π Rn with boundary values u on dΩ and 0 on dRn.

Since {υn} is increasing and vn < MeP (n = 1,2,. . . ) , υ — lim^^ vn exists and is

a solution of (1). It is clear that v /eP < M on Ω. Thus we complete the proof if we

show that u = v/eP, or ueP = f.

Note that LP(ueP) = 0 and 0 < f < w£P on β. There exists a constant C > 0

such that 0 < u < C, i.e. 0 < M^P < CeP. Let ŵ w be the solution of (1) on Ω Π Rn

with boundary values 0 on dΩ and eP on 9i?w. Then wn = eP — eP . By the mini-

mum principle, 0 < ueP — υ < Cwn on Ω Π Rn. Since l inv^ ^ = eP, lim^^ wn

= 0 and therefore w P̂ = f. Π

1.2. Let BP(Ω) be the subspace of BP(Ω) which consists of functions with

the limit 0 at β:

B°P(Ω) = {w e β p(fl) : lim «(/>) = 0}.

Next consider the quotient space

and denote by dim $P(Ω) the dimension of the linear space $IP(Ω). Our first

achievement of this paper is the following duality relation for 5^(42) and

%P(Ω) (cf. Segawa [9]):

THEOREM 2. // either 2PP(Ω) or 3IP(Ω) is of finite dimension, then the

P-harmonic dimension dim ?PP(Ω) coincides with dim 3SP(Ω):

>P(Ω) = dim%P(Ω).

The proof of the above theorem is given in no.1.4. By the definition of
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&p(Ω) and the fact 1 e 3βP(Ω), dim 8IP(Ω) = 1 is equivalent that \imp^β u(p)

exists for every u in BP(Ω). Therefore Theorem 2 implies the following, which

was originally obtained by Hayashi [3] (cf. Nakai [7]):

COROLLARY 3. The P-harmonic dimension dim IPP(Ω) is one if and only if there

exists lim^^g u(p) for every u in BP(Ω).

1.3. Consider the linear space 8 generated by ^ P ( ί2) , i.e.

8= {* !- h2:hlf h2£Ξ9P(Ω)}y

and the bilinear functional

d(w, ft) *-• <w, ft> = — I u*dh = I u

defined on BP(Ω) X 8 where d/dn is the inner normal derivative. Let gn{-, p) be

the Green's function of (1) on Ω Π Rn with pole at p for each n G N, the set of

positive integers. Note that gn(', p) converges to the Green's function g(-, p) of

(1) on Ω with pole at p uniformly on each compact subset in Ω U dΩ. Set

Q= {h e 9>P(Ω) : <1, K) = 1).

We maintain

LEMMA 4. If u e BP(Ω)t then

lim sup u(p) = sup <w, (?)

lim inf u(p) = inf <M, Q>

where (u, Q> = {<u, ti> : h G ρ} .

Pwo/. We first show that

(4) u{p)eP{p) = - ^~ f u*dg{-yp) (p e β)

for every u G BP(Ω). Suppose that p ^ Ω f) Rn. Let ww be the solution of (3) on

Ω Π Rn with boundary values w on dΩ and 0 on dRn. By Lemma 1, wM converges

to u uniformly on each compact subset in Ω U dΩ. Observe that uneP is the solu-
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tion of (1) on Ω Π Rn with boundary values u on dΩ and 0 on dRn. Hence the

Green's formula yields that un(p)eP(p) = — (l/2ττ) / u*dgn(-,p). By letting

JΘΩ

n-+ °°, we have (4).

Take an arbitrary cluster value a of u at β and a sequence {pn} with \\mn^O0pn

= β and lim^^ u(pn) = a. Applying (4) to l e BP(Ω), we see that eP(pn) =

- (l/2ττ) Γ
^9β

From this it follows that a suitable subsequence of {(l/2π) g(-, pn)/eP(pn)}

converges to a function G, which belongs to Q, uniformly on each compact subset

of Ω U dΩ. By (4) we also have

u(pn) = - f
JdΩ

f
JdΩ

Therefore we conclude that

a—— I u*dG,

i.e. a ^ (u, Q>, which implies

inf (u, Q) < lim inf u(p) < lim sup u(p) < sup (u, Q).

Next we show that

(5) lim inf u{p) < inf <w, Q) < sup (u, Q) < lim sup u(p).

Suppose that h e Q and w e BP(Ω). Let Λww be the solution of (1) on Rm — Rn

(m > n) with boundary values h on dRn and 0 on dRm. The Green's formula

yields that

(u, h) = — I u*dh = — I umeP*dh — \ umeP*dh — h*d(umeP)
dΩ dΩ dRn

= J umeP*dh- hnm*d(umeP)

and
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f umeP*dhnm - hnm*d(umeP) = f umeP*dhnm - hnm*d(umeP) = 0
JdRn

 JdRm

where um is defined at the beginning of the proof. Therefore, by letting m~* °°,

we have

(6) <u, h> = f ueP*d(h- hn)
JdRn

where hn = lim^^^ hnm. Applying (6) to u = 1, we also have

(7) f eP*d(h - hn) = <1, h> = - f *dh = 1.

JdRn

 JdΩ

Hence (6) and (7) imply that

inf u(p) < inf <u, Q> < sup <w, Q> < sup M(/>).

Thus (5) follows from the above.

The proof is herewith complete. Π

1.4. Proof of Theorem 2. By definition, the dimension dim 8 of the linear

space 8 coincides with dim 2PP(Ω).

Consider the 8-kernel (BP(Ω) -kernel resp.)

Kx = Π {u e ^ ( β ) : <M, Λ> = 0}
heg

(K2= Π { » e i : <M, h> = 0} resp.)

of the bilinear functional (u, h) »-̂  <w, /z). By virtue of Lemma 4, it is easily seen

that Kγ = βp(i3), and hence $PC0) = BP(Ω)/KV Since {w | a β : M e BP{Ω)} =

C(dΩ), it follows from h ^ K2 that dh/dn = 0 on 9β. Combining this with the

fact /z = 0 on dΩ, we have K2 = {0} (cf. e.g. Miranda [6]). Therefore we can con-

sider SP(Ω) = BP(Ω)/Kλ (8 = 8/K2 resp.) to be a subspace of «* (»P(Λ)* resp.)

where we denote by X the conjugate space of a linear space X. In particular we

have

dim $P(Ω) < dim g*

and

dίmβ < dim3Bp(fl)*.

Hence we have
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dim SSP(Ω) = dim 8 = dim PP(Ω),

since linear spaces of finite dimension are isomorphic to their conjugate spaces. •

§2. Proof of Main Theorem

2.1. In this section, we give a proof of Main Theorem in terms of extremal

length.

Hereafter we assume that Ω is a parabolic end: i.e. there exist no non-constant

bounded harmonic functions on Ω with vanishing boundary values on dΩ. The fol-

lowing was proved by Nakai [8] essentially:

PROPOSITION 5. If Ω is parabolic and P is finite on Ω, then every bounded solu-

tion of {3) on Ω has finite Dirichlet integral on Ω — Rv

For the proof we refer to Nakai [8] and Kawamura [4].

2.2. We denote by λ(Γ) the extremal length of a curve family Γ in Ω. For

the definition and details of extremal length we refer to e.g. Ahlfors and Sario [1].

For every positive integer n, let Γn(Ω) be the totality of 1-cycles γ in Ω such that

γ consists of at most n closed curves and separates dΩ from the ideal boundary β.

The following is the main achievement of this paper (cf. Shiga [10]):

THEOREM 6. Suppose that P is finite on Ω. If the extremal length λ(ΓN(Ω)) is

zero for an N ^ N, then the P-harmonic dimension dim 2PP(Ω) is at most N.

Proof Set Γ, = Γ,(Ω) and Γn = Γn(Ω) - Γn^(Ω) (n = 2,3, •). Since

ΓN(Ω) = U " = 1 Γn, there exists a y ^ N such that v < N and λ(Γv) = 0. We shall

show that dim 2Pp(Ω) is at most v. Take arbitrary v + 1 functions ulf- ' ,uv+ι in

BP{Ω). By virtue of Theorem 2, we have only to show that a nonzero linear com-

bination c1u1 + - - - + cv+1uv+1 of ulf — - ,uv+ι belongs to BP(Ω).

Consider the 'density' p on Ω such that

v+l

1 , 1 Σ I Vu{ I I dz I on Ω — i?,
PI dz I = ί=1

 ί ι

0 on Ω Π R v

By Schwarz' inequality and Proposition 5, we have
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where

f (' pdxdy < (v + 1) Σ1 Do.Au,) < oo,

V * («*) = Γ Γ I Vut I2 rf^ S e t /Γ = (r ̂  r υ : r n i?w = 0}. By
1 J JΩ-R1

means of λ(Γp) = 0, we have λ{Γ™) = 0 for every m ^ N (cf. Kusunoki [5]).

Therefore, because of (8), we can find a sequence {γn} in Γv such that γn

converges to the ideal boundary β and lim^^ J p\ dz\ = 0. In particular, we

obtain

(9) lim f \Vut\\dz\ = 0 (i = 1, , y + 1).

By definition, every 7W consists of exactly v closed curves γnl, , 7 ny.

Accordingly (9) implies that there exist a subsequence {γnf} of {7̂ } and vectors
v ί = (an>''' > îv) e RV (̂  — 1, * * *» ^ + 1) such that

(10) lim max | u{(p) — α ί 7 1 = 0 (j — 1, * ,y).

Evidently we can find (cx, * * ,cv+1) ^ Ry — {(0, ,0)} such that Σ^ = 1 ĉ v,- =

(0, * ,0). Therefore, (10) yields that

(11) lim max I Σ qu^p) \ = 0.

Since each γn separates dΩ from the ideal boundary β, it follows from Lemma 1

and (11) that lim^^ Σ/=χ ciui = 0. This completes the proof. •

2.3. Proof of Main Theorem. Main Theorem is easily verified from Theorem 6

as follows. Assume that ίAj is the same as in Theorem C. Set An = U ̂  A^

where A^/s are mutually disjoint annuli and v(n) < N. Let Λn be the totality of

1-cycles 7 in An such that 7 = U ; = 1 γnj where each j n j is a closed curve in Anj

and separates two boundary components of Anj. Set J Π = U*=1yln. Note that f c

ΓN(Ω). By virtue of Theorem 6, we have only to show that λ(Γ) = 0.

It is well-known that λ(Λn) = 2π/modAn, where modAn is the modulus of

An (cf. Ahlfors and Sario [1]). Since A^s are mutually disjoint, we see λ(Γ) Ξ>

Σ,ζ=ϊλ(Λn)~ . Hence, from the assumption Σζ=ιmodAn = °° it follows that

λ(Γ)=0. •
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