COEFFICIENTS OF AN ANALYTIC FUNCTION SUBORDINATION CLASS DETERMINED BY ROTATIONS

SEOK CHAN KIM

(Received 8 December 1993; revised 24 June 1994)

Communicated by P. C. Fenton

Abstract

Let \mathscr{A} denote the set of all functions analytic in $U = \{z : |z| < 1\}$ equipped with the topology of uniform convergence on compact subsets of U. For $F \in \mathscr{A}$ define

$$s(F) = \{F \circ \phi : \phi \in \mathscr{A} \text{ and } |\phi(z)| \le |z|\}.$$

Let $\overline{co} s(F)$ and $\mathscr{E}\overline{co} s(F)$ denote the closed convex hull of s(F) and the set of extreme points of $\overline{co} s(F)$, respectively.

Let \mathscr{R} denote the class of all $F \in \mathscr{A}$ such that $\mathscr{E} \overline{\operatorname{co}} s(F) = \{F_x : |x| = 1\}$ where $F_x(z) = F(xz)$. We prove that $|A_N| \leq |A_{MN}|$ for all positive integers M and N, and $(2\sqrt{2}/3)|A_2| \leq |A_3|$ for $F(z) = \sum_{N=0}^{\infty} A_N z^N \in \mathscr{R}$ and $|A_1| = |A_2|$, then F is a univalent halfplane mapping.

1991 Mathematics subject classification (Amer. Math. Soc.): 30C80.

1. Introduction

Let \mathscr{A} denote the set of all functions analytic in $U = \{z : |z| < 1\}$. \mathscr{A} is a linear topological space with respect to the topology of uniform convergence on compact subsets of U. Let $F \in \mathscr{A}$ and let s(F) denote the set of all $f \in \mathscr{A}$ such that f is subordinate to F. A function f in \mathscr{A} is subordinate to F (written $f \prec F$) if there exists $\phi \in \mathscr{B}_0 = \{\phi \in \mathscr{A} : |\phi(z)| \le |z| \text{ for all } z \in U\}$ such that $f = F \circ \phi$. Let $\overline{\operatorname{co}} s(F)$ and $\mathscr{E} \overline{\operatorname{co}} s(F)$ denote the closed convex hull of s(F) and the set of extreme points of $\overline{\operatorname{co}} s(F)$, respectively.

Let \mathscr{F} be a compact subset of \mathscr{A} . A function $f \in \mathscr{F}$ is called a support point of \mathscr{F} if there is a continuous linear functional J on \mathscr{A} such that f maximizes Re J over \mathscr{F}

This work was supported by KOSEF 923-0100-009-1

^{© 1996} Australian Mathematical Society 0263-6115/95 \$A2.00 + 0.00

and Re J is nonconstant on \mathscr{F} , that is Re $J(f) = \max \{ \operatorname{Re} J(g) : g \in \mathscr{F} \}$ and Re J is nonconstant on \mathscr{F} . We use $\Sigma \mathscr{F}$ to denote the set of support points of \mathscr{F} .

Let \mathscr{R} denote the class of all $F \in \mathscr{A}$ such that $\overline{\operatorname{co}} s(F) = \{\int_{\Gamma} F(xz) d\mu(x) : \mu \in \Lambda\}$ where Λ denotes the set of all probability measures on $\Gamma = \{z : |z| = 1\}$. It is worthy of note that $F \in \mathscr{R}$ if and only if $\mathscr{E}\overline{\operatorname{co}} s(F) = \{F_x : |x| = 1\}$ where $F_x(z) = F(xz)$. We will show this in Lemma 1.

The problem of finding the general conditions for F to be in \mathcal{R} was posed by T. Sheil-Small. Many examples were shown to be in \mathscr{R} by various authors ([2, 3, 4, 6, 9, 10]).

The aim of this paper is to find coefficient conditions for $F(z) = \sum_{N=0}^{\infty} A_N z^N$ to be in R. In [8], D. J. Hallenbeck, S. Perera and D. R. Wilken proved that if $F(z) = \sum_{N=0}^{\infty} A_N z^N \in \mathscr{R}$ and if $A_N \neq 0$, where $N \geq 1$, then $A_M \neq 0$ for every $M \ge N$. Here we prove that $|A_N| \le |A_{MN}|$ for all positive integers M and N, and $2\sqrt{2}/3|A_2| \le |A_3|$ for $F(z) = \sum_{N=0}^{\infty} A_N z^N \in \mathscr{R}$. We also prove that if $F(z) = \sum_{N=0}^{\infty} A_N z^N \in \mathscr{R}$ and $|A_1| = |A_2|$, then F is a univalent halfplane mapping.

From the definition of \mathcal{R} we have the following.

FACT 1. $F \in \mathcal{R}$ if and only if $aF + b \in \mathcal{R}$ for all numbers $a, b \in \mathbb{C}$.

FACT 2. $F \in \mathscr{R}$ if and only if $F_x \in \mathscr{R}, |x| = 1$.

So, $F \in \mathscr{R}$ if and only if $e^{i\eta}F(e^{i\theta}z) \in \mathscr{R}$ for all real η, θ .

LEMMA 1. A nonconstant $F \in \mathscr{A}$ is in \mathscr{R} if and only if $\mathscr{E}\overline{co} s(F) = \{F_x : |x| = 1\}$.

PROOF. The sufficiency is obtained by Theorem 1 of [5] and Theorem 5.5 of [7]. Next, we have (with $\mathscr{F} = s(F)$ in [7, p.92])

$$\overline{\operatorname{co}} \left(\Sigma s(F) \cap \mathscr{E} \overline{\operatorname{co}} s(F) \right) = \overline{\operatorname{co}} s(F).$$

To show $F \in \mathcal{R}$, it is enough to show

$$\Sigma s(F) \cap \mathscr{E}\overline{\operatorname{co}} s(F) \subset \left\{ \int_{\Gamma} F(xz) d\mu(x) : \mu \in \Lambda \right\}$$

If $f \in \Sigma s(F)$, $f = F \circ B$ with B a finite Blaschke product (in [7, p.166]) and $f = F \circ B \in \mathscr{E}\overline{\operatorname{co}} s(F) = \{F_x : |x| = 1\}$ implies $f = F_x$ and $f \in \{\int_{\Gamma} F(xz)d\mu(x) : f \in V\}$ $\mu \in \Lambda$.

LEMMA 2. Let $F \in \mathscr{A}$. If there is a continuous linear functional J and $\varphi \in \mathscr{B}_0$ such that $\operatorname{Re} J(F(\varphi)) > \operatorname{Re} J(F_x)$ for all |x| = 1, then $f \notin \mathscr{R}$.

PROOF. If $F \in \mathcal{R}$, then

$$\overline{\operatorname{co}}\,s(F) = \left\{ \int_{\Gamma} F(xz) d\mu(x) : \mu \in \Lambda \right\}$$

So, for any $\varphi \in \mathscr{B}_0$, we have

$$F \circ \varphi \in \left\{ \int_{\Gamma} F(xz) d\mu(x) : \mu \in \Lambda \right\}.$$

Thus, for any continuous linear functional J on \mathscr{A} , we have

$$\operatorname{Re} J(F \circ \varphi) \leq \max_{\mu \in \Lambda} \operatorname{Re} J\left(\int_{\Gamma} F(xz) d\mu(x)\right)$$
$$= \max_{\mu \in \Lambda} \int_{\Gamma} \operatorname{Re} J(F(xz)) d\mu(x) = \max_{|x|=1} \operatorname{Re} J(F_x).$$

2. Coefficients of elements of the class \mathscr{R}

In this section, we show that, if $F(z) = \sum_{N=0}^{\infty} A_N z^N \in \mathscr{R}, |A_N| \le |A_{MN}|$ for every M, N = 1, 2, 3, ... and we have that if |c + 1| < 1 then $\exp c((1 + z)/(1 - z)) \notin \mathscr{R}$ as a corollary. We also show that $(2\sqrt{2}/3)|A_2| \le |A_3|$.

LEMMA 3. If $F(z) = \sum_{N=1}^{\infty} A_N z^N \in \mathscr{R}$, then $|A_N| \leq |A_{MN}|, \qquad M, N = 1, 2, 3, \dots$

PROOF. Since $F \in \mathscr{R}$, for every $\varphi \in \mathscr{B}_0$, there is $\mu \in \Lambda$ such that

$$F(\varphi(z)) = \int_{\Gamma} F(xz) d\mu(x).$$

Take $\varphi(z) = z^M$. Then

$$F(z^{M}) = \int_{\Gamma} F(xz) d\mu(x) \quad \text{for some} \quad \mu \in \Lambda, \quad \text{that is}$$
$$\sum_{N=1}^{\infty} A_{N} z^{MN} = \int_{\Gamma} \left(\sum_{N=1}^{\infty} A_{N} x^{N} z^{N} \right) d\mu(x) = \sum_{N=1}^{\infty} A_{N} \left(\int_{\Gamma} x^{N} d\mu(x) \right) \cdot z^{N}.$$

By considering the coefficient of z^{MN} , we have

Hence
$$A_N = A_{MN} \int_{\Gamma} x^{MN} d\mu(x).$$
$$|A_N| \le |A_{MN}| \int_{\Gamma} |x^{MN}| d\mu(x) = |A_{MN}|.$$

Seok Chan Kim

COROLLARY 1. If $F = \sum_{N=0}^{\infty} A_N z^N \in \mathcal{R}$, then $|A_1| \leq |A_M|$ for all $M = 1, 2, 3, \ldots$

PROOF. Let N = 1 in Lemma 3.

Although the following lemma was proved in [6], we give a shorter proof by using the closedness of \mathcal{R} .

LEMMA 4. If $Re c \ge 0$, then $\exp(c(1+z)/(1-z)) \in \mathscr{R}$.

PROOF. Note $(1 + w/N)^N$ converges uniformly on compact subsets of U to $\exp w$ as N goes to ∞ . Let Re $c \ge 0$. By a simple calculation we see $\exp(c(1+z)/(1-z))$ is the limit of

$$f_N = \left(\frac{1 + ((c - N)/(c + N))z}{1 - z}\right)^N \cdot \left(\frac{c + N}{N}\right)^N, \quad N = 1, 2, 3, \dots$$

each of which is in \mathscr{R} ([4]), since $|(c - N)/(c + N)| \le 1$. Since \mathscr{R} is closed ([8]), the limit function $\exp(c(1 + z)/(1 - z))$ is in \mathscr{R} .

If c < 0, then $\exp(c(1+z)/(1-z)) \in H^1$ so that $\exp(c(1+z)/(1-z)) \notin \mathscr{R}([1])$. So we conjecture:

$$\exp\left(c\frac{1+z}{1-z}\right)\notin\mathscr{R}$$
 if $\operatorname{Re} c<0.$

Corollary 2 is a partial solution for this.

COROLLARY 2. If |c+1| < 1, then $\exp(c(1+z)/(1-z)) \notin \mathscr{R}$.

PROOF. Suppose $F(z) = \exp(c(1+z)/(1-z)) = \sum_{N=0}^{\infty} A_N z^N \in \mathscr{R}$. Then we have

$$A_1 = 2c \exp c$$
 and $A_2 = \frac{1}{2} \cdot (4c^2 + 4c) \exp c$

by simple calculation. By Corollary 1,

$$|A_1| \le |A_2|$$
, that is $2|c||\exp c| \le \frac{1}{2} |4c^2 + 4c| |\exp c|$ or $1 \le |c+1|$.

This proves the corollary.

To show $(2\sqrt{2}/3)|A_2| \le |A_3|$, we need a technical lemma;

LEMMA 5. If $r \cos \Phi > \frac{1}{2}$, 0 < r < 1, then there exists θ such that

$$2\cos\theta - r\cos(\Phi + 2\theta) \ge \sqrt{2}$$

PROOF. First, we assume $0 \le \Phi < \pi/3$. Let

$$f(\theta) = 2\cos\theta - r\cos(\Phi + 2\theta)$$

= 2\cos\theta - 2r\cos\Delta \cos\Delta + r\cos\Delta + 2r\sin\Delta\sin\theta\cos\Delta.

Let $\theta = \cos^{-1}(1/2r\cos\Phi)$ with $0 < \theta < \pi/2$. Then $\cos\theta = 1/2r\cos\Phi$ and $\sin\theta > 0$. Hence

$$f(\theta) \ge \frac{1}{r\cos\Phi} - \frac{1}{2r\cos\Phi} + r\cos\Phi$$
$$= \left(\frac{1}{\sqrt{2r\cos\Phi}} - \sqrt{r\cos\Phi}\right)^2 + \frac{2}{\sqrt{2}} \ge \frac{2}{\sqrt{2}} = \sqrt{2}.$$

Similarly, we can choose θ with $-\pi/2 < \theta < 0$ for the case $-\pi/3 < \Phi < 0$.

REMARK. If $F(z) = A_1 z + A_2 z^2 + A_3 z^3 + \cdots$ and $\varphi(z) = b_1 z + b_2 z^2 + b_3 z^3 + \cdots$, then

$$F(\varphi(z)) = A_1(b_1z + b_2z^2 + b_3z^3 + \dots) + A_2(b_1z + b_2z^2 + b_3z^3 + \dots)^2 + A_3(b_1z + b_2z^2 + b_3z^3 + \dots)^3 + \dots = A_1b_1z + (A_1b_2 + A_2b_1^2)z^2 + (A_1b_3 + 2A_2b_1b_2 + A_3b_1^3)z^3 + \dots$$

THEOREM 1. If $F(z) = \sum_{N=1}^{\infty} A_N z^N = A_1 z + A_2 z^2 + A_3 z^3 + \dots \in \mathscr{R}$, then

$$\frac{2\sqrt{2}}{3}|A_2| \le |A_3|.$$

PROOF. We may assume $A_2 \neq 0$ so $A_3 \neq 0$ ([8]).

By the Facts 1 and 2 in §1, $F \in \mathscr{R}$ if and only if $aF(xz) \in \mathscr{R}$ for all $a \in \mathbb{C}$, |x| = 1. Take

$$a = \frac{\overline{A}_2^3}{|A_2|^4} \frac{A_3^2}{|A_3|^2}$$
 and $x = \frac{A_2}{|A_2|} \cdot \frac{\overline{A}_3}{|A_3|}$

then

$$\left[z^{2}-\text{coefficient of } aF(xz)\right] = aA_{2}x^{2} = \frac{\overline{A}_{2}^{3}}{|A_{2}|^{4}}\frac{A_{3}^{2}}{|A_{3}|^{2}} \cdot A_{2} \cdot \frac{A_{2}^{2}}{|A_{2}|^{2}}\frac{\overline{A}_{3}^{2}}{|A_{3}|^{2}} = 1$$

and

250

$$[z^{3}-\text{coefficient of } aF(xz)] = aA_{3}x^{3} = \frac{\overline{A}_{2}^{3}}{|A_{2}|^{4}} \cdot \frac{A_{3}^{2}}{|A_{3}|^{2}} \cdot A_{3} \cdot \frac{A_{2}^{3}}{|A_{2}|^{3}} \cdot \frac{\overline{A}_{3}^{3}}{|A_{3}|^{3}}$$
$$= \frac{1}{|A_{2}|} \cdot |A_{3}| > 0.$$

Let $A_2 = 1$, $A_3 > 0$ and it suffices to show that $A_3 \ge 2\sqrt{2}/3$. Let $A_1 = re^{i\Phi}$ and suppose $A_3 < 2\sqrt{2}/3$. Then by Corollary 1 we have $r \le A_3 < 2\sqrt{2}/3 < 1$. We define a continuous linear functional J on \mathscr{A} by $J(f) = a_3/A_3$ where $f(z) = \sum_{N=0}^{\infty} a_N z^N \in \mathscr{A}$. Then

$$\max_{|x|=1} \operatorname{Re} J(F_x) = \max_{|x|=1} \operatorname{Re} \frac{1}{A_3} \cdot A_3 x^3 = 1.$$

We will see that there is a $\varphi \in \mathscr{B}_0$ such that

Re
$$J(F \circ \varphi) > 1$$
 if $A_3 < \frac{2\sqrt{2}}{3}$,

which will prove $F \notin \mathscr{R}$ by Lemma 2.

We have two cases

- (i) Re $A_1 \leq 1/2$.
- (ii) Re $A_1 > 1/2$, that is $1/2 < r \cos \Phi$ and $1/2 < r < A_3 < 2\sqrt{2}/3$.

Case (i) Consider

$$\varphi(z) = \sum_{n=1}^{\infty} b_n z^n = z \frac{z+\alpha}{1+\overline{\alpha}z} = \alpha z + (1-|\alpha|^2) z^2 + \overline{\alpha} (|\alpha|^2 - 1) z^3 + \cdots$$

Let $\alpha = 1 - \varepsilon$, $0 < \varepsilon < 1$, then

$$b_1 = 1 - \varepsilon$$
, $b_2 = 2\varepsilon - \varepsilon^2$, $b_3 = -2\varepsilon + 3\varepsilon^2 - \varepsilon^3$.

From the remark before the Theorem 1, we have

$$J(F(\varphi)) = \frac{1}{A_3} \left(A_1 b_3 + 2b_1 b_2 + A_3 b_1^3 \right) = b_1^3 + \frac{2}{A_3} b_1 b_2 + \frac{A_1}{A_3} b_3$$

= $(1 - \varepsilon)^3 + \frac{2}{A_3} (1 - \varepsilon) \left(2\varepsilon - \varepsilon^2 \right) + \frac{A_1}{A_3} \left(-2\varepsilon + 3\varepsilon^2 - \varepsilon^3 \right)$

So,

Re
$$J(F(\varphi)) - 1 = -3\varepsilon + \frac{2\varepsilon}{A_3} [2 - \operatorname{Re} A_1] + \mathcal{O}(\varepsilon^2)$$

where $\mathscr{O}(\varepsilon^2)$ is such that

$$\lim_{\varepsilon \to 0^+} \frac{\mathscr{O}(\varepsilon^2)}{\varepsilon^2}$$

is finite.

If Re $A_1 \le 1/2$, since $A_3 < 1$, there is $\varepsilon > 0$ such that

Re
$$J(F(\varphi)) > 1 = \max_{|x|=1} J(F_x(z))$$
.

Case (ii) Consider $\varphi_1(z) = e^{-i\theta}\varphi(e^{i\theta z})$. Let $\alpha = 1 - \varepsilon$, $0 < \varepsilon < 1$, then

$$b_1 = 1 - \varepsilon,$$
 $b_2 = (2\varepsilon - \varepsilon^2)e^{i\theta},$ $b_3 = -(2\varepsilon - 3\varepsilon^2 + \varepsilon^3)e^{i\cdot 2\theta}.$

Again from the remark we have

$$J(F(\varphi_1)) = b_1^3 + \frac{2}{A_3}b_1b_2 + \frac{A_1}{A_3}b_3$$

= $(1 - \varepsilon)^3 + \frac{2}{A_3}(2\varepsilon - 3\varepsilon^2 + \varepsilon^3)e^{i\theta} - \frac{A_1}{A_3}(2\varepsilon - 3\varepsilon^2 + \varepsilon^3)e^{i2\theta}.$

So,

Re
$$J(F(\varphi_1)) - 1 = -3\varepsilon + \frac{4\varepsilon}{A_3}$$
 Re $e^{i\theta} - \frac{2\varepsilon}{A_3}$ Re $A_1e^{i2\theta} + \mathscr{O}(\varepsilon^2)$
= $\varepsilon \left[-3 + \frac{2}{A_3} \left(2\cos\theta - r\cos(\Phi + 2\theta) \right) \right] + \mathscr{O}(\varepsilon^2).$

By Lemma 5, there exist $\varepsilon > 0$ and θ such that

Re
$$J(F(\varphi_1)) - 1 > 0$$
,

which proves $F \notin \mathscr{R}$ in case (ii).

3. Univalent halfplane mapping

In this section we prove that if $F(z) = \sum_{N=0}^{\infty} A_N z^N \in \mathscr{R}$ satisfies $|A_1| = |A_2|$, then F is a univalent halfplane mapping. By the facts in §1 we may assume $A_0 = 0$ and $A_1 = A_2 = 1$ without loss of generality. We will show $A_N = 1$ for all $N = 3, 4, 5, \ldots$

By the definition of \mathscr{R} , for every $\varphi \in \mathscr{R}_0$, there corresponds a $\mu \in \Lambda$ such that $F(\varphi(z)) = \int_{\Gamma} F(xz) d\mu(x)$. For $F(z) = z + z^2 + \sum_{N=3}^{\infty} A_N z^N \in \mathscr{R}$, the probability measure μ which corresponds to $\varphi(z) = z(z + \varepsilon)/(1 + \varepsilon z)$, $-1 < \varepsilon < 1$, is given as in the following lemma.

LEMMA 6. If $F(z) = z + z^2 + \sum_{N=3}^{\infty} A_N z^N \in \mathscr{R}$, the probability measure μ which corresponds to $\varphi(z) = z(z + \varepsilon)/(1 + \varepsilon z), -1 < \varepsilon < 1$, is

$$\mu = \left(\frac{1+\varepsilon}{2}\right)\delta_1 + \left(\frac{1-\varepsilon}{2}\right)\delta_{-1}.$$

where δ_x is point mass at x.

PROOF. Let $F(z) = z + z^2 + \sum_{N=3}^{\infty} A_N z^N \in \mathscr{R}$. If μ is the probability measure corresponding to $\varphi(z) = z(z + \varepsilon)/(1 + \varepsilon z) \in \mathscr{B}_0$, then

$$F\left(z\frac{z+\varepsilon}{1+\varepsilon z}\right) = \int_{\Gamma} (xz+x^2z^2+\sum_{N=3}^{\infty}A_Nx^Nz^N)d\mu(x) \quad \text{that is}$$
$$z\frac{z+\varepsilon}{1+\varepsilon z} + \left(z\frac{z+\varepsilon}{1+\varepsilon z}\right)^2 + \dots = \int_{\Gamma} xd\mu(x)\cdot z + \int_{\Gamma} x^2d\mu(x)\cdot z^2 + \dots$$

By comparing the coefficients of the z-ve and z^2 -ve terms, we have

$$\int_{\Gamma} x d\mu(x) = \varepsilon$$
 and $\int_{\Gamma} x^2 d\mu(x) = 1$

Let $A = \{1, -1\}$, $B = \Gamma \setminus A$. Suppose $0 < \mu(B) \le 1$. Then there are a positive number η and a subset B_0 of B such that $0 < \mu(B_0)$ and $B_0 = \{x \in \Gamma : |\text{Im}x| \ge \sin \eta\}$. (Note : $0 < \eta < \pi/2$). Then

$$1 = \operatorname{Re} \int_{\Gamma} x^{2} d\mu(x) = \operatorname{Re} \int_{B_{0}} x^{2} d\mu(x) + \operatorname{Re} \int_{\Gamma \setminus B_{0}} x^{2} d\mu(x)$$

$$\leq \left[\max_{x \in B_{0}} \operatorname{Re} x^{2} \right] \mu(B_{0}) + \mu(\Gamma \setminus B_{0}) \leq \sqrt{1 - \sin^{2} \frac{\eta}{2}} \mu(B_{0}) + \mu(\Gamma \setminus B_{0})$$

$$< \mu(B_{0}) + \mu(\Gamma \setminus B_{0}) = 1.$$

This contradiction gives $\mu(B) = 0$ and $\mu(A) = 1$. Thus $\mu = \lambda \mu_1 + (1 - \lambda)\mu_{-1}$ with $0 \le \lambda \le 1$.

Now, $\int_{\Gamma} x d\mu(x) = \varepsilon$ gives $\lambda = (1 + \varepsilon)/2$, which implies the lemma.

THEOREM 2. If $F(z) = z + z^2 + \sum_{N=3}^{\infty} A_N z^N \in \mathcal{R}$, then $A_N = 1$ for all $N = 3, 4, 5, \ldots$, so that F is a univalent halfplane mapping.

PROOF. By Lemma 6, every $F(z) = z + z^2 + \sum_{N=3}^{\infty} A_N z^N$ in \mathscr{R} satisfies

(*)
$$F\left(z\frac{z+\varepsilon}{1+\varepsilon z}\right) = F(z) + \frac{1-\varepsilon}{2} \left\{F(-z) - F(z)\right\}$$

From (*) we have, by differentiating twice with respect to ε ,

(**)
$$F''\left(z\frac{z+\varepsilon}{1+\varepsilon z}\right)\frac{1-z^2}{1+\varepsilon z}-2F'\left(z\frac{z+\varepsilon}{1+\varepsilon z}\right)=0.$$

Continuing differentiation, we have

$$F^{(N+1)}\left(z\frac{z+\varepsilon}{1+\varepsilon z}\right)\frac{1-z^2}{1+\varepsilon z}-(N+1)F^{(N)}\left(z\frac{z+\varepsilon}{1+\varepsilon z}\right)=0.$$

Let z = 0. Then we have

$$F^{(N+1)}(0) - (N+1)F^{(N)}(0) = 0,$$

which implies $A_N = 1$ for all $N = 3, 4, 5, \ldots$

COROLLARY 3. If $F(z) = \sum_{N=0}^{\infty} A_N z^N \in \mathscr{R}$ and $|A_1| = |A_{2N}| = 1$ for some positive integer N, F is a univalent halfplane mapping.

PROOF. By Lemma 3, we have $|A_1| = |A_2| = 1$.

I wish to thank Professor D. R. Wilken, who was my advisor at SUNY at Albany, for providing invaluable assistance at every stage in studing the subject.

References

- [1] Y. Abu-Muhanna, ' H^1 subordination and extreme points', *Proc. Amer. Math. Soc.* **95** (1985), 247–251.
- [2] _____, 'Subordination and extreme points', Complex Variables Theory Appl. 9 (1987), 91–100.
- [3] Y. Abu-Muhanna and D. J. Hallenbeck, 'A class of analytic functions with integral representations', to appear.
- [4] D. A. Brannan, J. G. Clunie and W. E. Kirwan, 'On the coefficient problem for functions of bounded boundary rotation', Ann. Acad. Sci. Fenn. Ser. A. I. Math. 523 (1973).
- [5] L. Brickman, T. H. MacGregor and D. R. Wilken, 'Convex hulls of some classical families of univalent functions', *Trans. Amer. Math. Soc.* 156 (1971), 91–107.
- [6] J. Feng, *Extreme points and integral means for classes of analytic functions* (Ph.D. Thesis, SUNY at Albany, 1974).
- [7] D. J. Hallenbeck and T. H. MacGregor, *Linear problems and convexity techniques in geometric function theory*, Monographs and Studies in Math. 22 (Pitman, Boston, 1984).
- [8] D. J. Hallenbeck, S. Perera and D. R. Wilken, 'Subordination, extreme points and support points', *Complex Variables Theory Appl.* 11 (1989), 111–124.
- [9] S. C. Kim, Properties of the family of analytic functions with subordination class determined by rotations (Ph.D. Thesis, SUNY, Albany, 1991).

[10] S. C. Kim, 'Analytic function with subordination class determined by rotations', Complex Variables Theory Appl. 23 (1993), 177–187.

Department of Mathematics Changwon National University Changwon 641-773 Korea