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In his paper (4), Mahler established several strong quantitative results
on approximation in algebraic number fields using the geometry of numbers.
In the present paper I derive analogous results for algebraic function fields
of one variable using an analogue of the geometry of numbers.

The main result of this paper states that every fractional ideal of
certain Dedekind subrings of the function field has a basis such that all
the valuations of all the basis elements lie between certain limits which
are given in terms of field constants and arbitrary parameters. This result
is then applied to study the approximation of adeles by field elements, the
approximation of field elements by other field elements, and the properties
of certain classes of divisors. Most of the results obtained are well known,
but it seems worthwhile to derive them from the point of view of the
geometry of numbers.

I wish to thank Professor Mahler for his advice on this work, and also
the referee for his suggestions.

In his paper [5], Mahler established various number-geometrical
properties of fields of formal power series. Since I shall be applying some
of these properties here, I begin by stating those needed without proof.

In a notation different from Mahler's, let k0 be a field of arbitrary
characteristic, t an element transcendental over k0, it = ko[t] the ring of
polynomials in t with coefficients in k0, k the quotient field of *(, and vq

the valuation of k defined by «q(0) = oo, and vq(£) = / if £ ^ 0 is of order
/ = degree denominator-degree numerator. Let further &q be the comple-
tion of k relative to vq and thus the field of all formal power series

/ 1 \ ' /I Y+1

Z = Yf \jj +Yf+i \jf H . with Yi e k0.

The valuation Vq is extended to A, by continuity, so that !>„(£) = / if yf # 0.
Next, denote by P" the Cartesian product of kq n times, and thus the
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342 John Coates [2]

space of all points | = (i1, • • •, | n ) with components £4 e£q . Denote by
A" the set of all lattice points in P", i.e. the set of all points with components
in it.

The following result was proven. Let A = {vtj) be a non-singular
matrix with elements in kq and determinant D, and let for £ e P"

n

F{£) = min v (2au£t)-

Then there exist n lattice points

with the following properties:

(1) F ( | 1 ) ^ F ( f 2 ) ^ - - - ^ ( f J ;
(2) F ^ ) is the maximum of F(£) for all f ^ 0 in A"; and for each

suffix h = 2, • • •, n, F(gh) is the maximum of F( | ) for all | in A" that are
linearly independent of ^1, • • •, t-h_x;

(3) F(^)+---+F(in) = vq(D);
(4) the determinant of the components ghi of the lattice points

fi, • • •, fn is equal to 1.

Let K be a finitely generated extension of k0 of transcendence degree
equal to one. Assume that K is a separable extension of k0. Further,
assume k0 is algebraically closed in K.

Choose any separating transcendence basis {t} of K over &0, and, as
in § 1, let k be the field of rational functions in t with coefficients in k0.
Then K is a separable algebraic extension of k of finite degree n, say.

In the following, elements of k (resp. K) will be denoted by small
(resp. capital) Greek letters, and divisors of k (resp. K) by small (resp.
capital) German letters. The letters p and ty will be reserved for prime
divisors of k and K, respectively, k* (resp. K*) will denote the multi-
plicative group of non-zero elements of k (resp. K). As usual, Z will denote
the rational integers.

All results stated without proof in the following are well known, and
can be found in [1], [2] or [6].

The function fields k and K have infinitely many prime divisors p and
with the corresponding order valuations
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[3] Approximation in algebraic function fields 343

vp with vp(0) = oo, and vv with v^(0) = oo,

respectively. We denote the degree of p (resp. $) by dp (resp. dv).
Let kp (resp. !?„) denote the completion of k (resp. K) at p (resp. $) ,

ip (resp. / , ) the ring of integers of kp (resp. Kv), and fcp (resp. K9) the
residue field of ip (resp. / , ) .

Let JT6^ P and IIeK9 satisfy i>p(ji) = 1 and vv(IT) = 1, respec-
tively. Then the elements a of kp and 4 of ifv can be written as series

« = 1 ft*1 and ^ = f J W
ii=u

where yu, yu+1, • -j_ are representatives of ^p in kp, and r o , r c + 1 , • • • are
representatives of Kv in K9.

Each prime divisor *$ oi K divides exactly one prime divisor p of k,
which is denoted symbolically by

$P | p, or conversely p =

For the corresponding valuations this means that

(1) vv{a) = evvp(x) for all <x.ekp,

where ev is the ramification index of $ over p, and for the corresponding
residue fields that K^ is a finite extension of hp of degree fv, so that

(2) <*, = /„«* , .

Further, Kv is then a finite extension of kp of degree »v = e^f^.
Conversely

(3) 2 «• = *»•

and thus at most n prime divisors of K divide a given prime divisor of k.
Assume that $ | p. Then there exists an integral basis

of Kv over kp. This means that every A eK9 can be written uniquely in
the form „

A = ^ «i-0<» with oc4 e k ,

and that further A el^ii and only if all a, e ip. It follows that

(4) »,(4) ^ ^ m i u »„(«,).

This estimate is the basis of our subsequent investigations.
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344 John Coates [4]

The discriminant

of the basis Qlt • • •, Qn is an element of kp. The value vp(dv) does not
depend on the particular integral basis of Kv over kp.

We next consider global properties of the function fields k and K.
For each a.e k* and A e K* at most finitely many of the values vp (a)

and Vy(A) are distinct from zero. These values are linked by the funda-
mental equations

(!) 2<*PMa) = 0 if aeA*, and Xdvvv(A) = ° if AeK*-
p v

An element of the free abelian group generated by the prime divisors of
k (resp. K) is called a divisor of k (resp. K). A divisor 21 of k can therefore
be written in the form ("almost all" means "except for finitely many")

a = I I plv, with lp e Z, and lp = 0 for almost all p,

and a divisor 21 of K in the form

21 = IIW*. with lv e Z, and lp = 0 for almost all $ .

The exponents /p and lv are denoted by vp(a) and f^(2l), respectively, and
the degrees of a and 21 are defined to be

respectively. The group of divisors of k (resp. i£) is denoted by Dk (resp. Dx).
A divisor 21 e DK is said to be integral if

»,(il) ^ 0 for all %

and we say that 21 divides S3 (written 2I|S3) if the divisor S321""1 is integral.
With each a.ek* and A eK*we associate the divisors

respectively. Such divisors are called principal. By the fundamental equa-
tion (1), the degree of a principal divisor is equal to zero. The set of all
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[5] Approximation in algebraic function fields 345

principal divisors of k (resp. K) is a subgroup of Dk (resp. DK), which is
denoted by Pk (resp. PK).

We define the two homomorphisms of injection and norm

i:Dk-*D
K,

as follows. Since Dk and DK are free abelian groups generated by the prime
divisors of k and K, respectively, it suffices to define i(p) and iV($). Put

From this definition and §3(2), we see that d{W) = d{N{%)). Henceforth
we shall identify p and i(p). With this convention, it follows from § 2(1)
that the same divisor [a] is obtained whether a is considered an element of
k*orK*.

If $ |p , let the discriminant <5V of the integral basis Qlt • • •, Qn be
defined as in § 3. The non-negative rational integer

depends only on p, K and k. We define the local discriminant from K to
k to be the divisor bp = }A of k. Further, as p ranges over all prime
divisors of k, at most finitely many of the vp are non-zero. We can therefore
define the discriminant from K to k to be the divisor

(2) bjcjfc = I I V a n d P u t Ft =

In what follows, we single out the prime divisor q of k to play a special
role. The valuation Vq defined in § 1 corresponds to q. Obviously dq = 1.

When considered as an element of DK, q will split into factors

(1) q = lW°', (l^r^n).

Here dOi = fOt and the integers nx = laJQi satisfy 2J_i ni = n-
Henceforth the letter r will denote any prime divisor of k not equal to

q, and the letter 9t any prime divisor of K apart from Oj, • • •, £lr; the
letter O will denote any of Qj, • • •, £},.. As before, p (resp. ^ ) will denote any
prime divisor of k (resp. !£). Further, for any divisor a e Dh, put
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346 John Coates [6]

Oo = n ^ ( a ) and 00O = qV«),

and similarly for any divisor 91 e DK

The results of § 3 may now be applied to each of the prime divisors,
separately. Hence for each suffix I = 1, • • •, r, there exists an integral basis

of Ka% over kq. Every element A of ifOj, and so in particular every element
of K, can be written uniquely in the form

A = 2 a K^«> with xH e£q .

Moreover

(2) vBi{A) ^ eai min »q(aH) (Z = 1, • • •, r).

We shall apply these estimates shortly.
To overcome a technical point in the proof of our main theorem, it is

necessary to consider a certain subgroup of the group DK. More presicely, we
define a ceiling of K (this terminology is due to Mahler [4]) to be a divisor
© of if satisfying the following conditions:

(3) uo(®) is an integral multiple of ea for all £l;

(4) UH(®) may assume arbitrary integral values for all 9t.

The set of all ceilings of if form a very "large" subgroup of DK, which we
shall denote by Ct. This subgroup clearly depends on the particular tran-
scendental element t of if chosen initially.

Let

Then It is a Dedekind ring whose quotient field is K, and, as before, it is
the polynomial ring ko[t], whose quotient field is k. Hence the group of
fractional 7(-ideals of if is a free group generated by the prime ideals of
/ ( , and it is a unique factorization domain. In particular, the well known
approximation theorem for finitely many 9ft-adic valuations ([1], [6]) is
valid in K.
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[7] Approximation in algebraic function fields 347

If K is any ceiling, we associate with 6 the set (©)t of all elements
A eK satisfying

v9(A) ^ »«(<£) for all St.

(©), is then a fractional 7rideal. Conversely, to any fractional J(-ideal there
corresponds in this manner infinitely many ceilings. In particular, / ( cor-
responds to the unit ceiling 9 = YIV $°.

The ideal (©), has a basis Blt • • •, Bn over it as follows. Firstly, every
element i e (6), can be written uniquely in the form

where I j , •••,!„ are polynomials in it. Secondly, the discriminant

d(B1, • • -, Bn) =
2

on this basis is an element of k*. Its divisor b4((S) = [d(Bt, • • •, Bn)] does
not depend on the particular basis Bx, • • •, Bn.

In the special case when © = Of, then it can be shown that b,(3)0 = (bK | k)0.
For arbitrary ceilings ©, the divisor bt(©) is related to the divisor
by the equation

b,((E)0 =

Since the divisors bt((£) and dt(3) are both principal, and d(^0) = d(N(<&,0)),
it follows that

(1) b,(©)00 =

7

All elements A of ((£)t can be written uniquely in the form

3 = 1

where | 1 ( • • •, |M are in i t . Further, 4̂ satisfies the inequalities

(1) vK(A) ^ »„(<£) for all 3?.

These inequalities say nothing about the remaining values

va(A) for aU Q,

and we shall now investigate how large these can be made if f1( •••,£„ are
chosen suitably in it. This investigation will depend upon the results from
the geometry of numbers collected in § 1.
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348 John Coates [8]

Let the bases
0ii . • • •- £««, (*=! . • • • , r)

be defined as in § 5. For each suffix I = 1, • • •, r, each of the basis elements
Bf of (S)t can be written in the form

B, = 2 Pu,Qu, with fiUi ek, 0" = 1. • ' ' . »)•
i=i

Let &!,•••, ar be elements of Afl satisfying

Hence, if we put

« = 1 I « ? . then »,(tf) =

Now

(2) A = 2 i S

where, for brevity, we have put

(3) ^M(f) = i;«7Vi«fi-

Since 25-i ni — n> this construction therefore produces w linear forms

^ M ( £ ) (/ == 1, • • •, r; * = 1, • • •, n,)

in £1( ••- , !„ with coefficients in &q. We arrange this system of linear forms
lexicographically, and denote its determinant by p.

A simple calculation with determinants shows that

whence, in particular, /? is non-zero. Further

But, by definition, «q(5Oi • • • 5Or) = d(i>K[]eJ and vq(a) =^(©0,,). Hence,
combining this result with § 6 (1), it is clear that

(4) »,(/*) = -pt

where the constant fit is defined by § 4 (2).
Hence, putting

F{6) = min »,(jS?H(f)) for | e P»,

the results of § 1 imply that there exist n lattice points
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[9] Approximation in algebraic function fields 349

£ » = f o i . - " . $ J e i l " (A = 1 , •••,»),

with determinant equal to 1, such that

(5) F&) ^ F(£.) ̂  ^ F(f J ;

(6) F(fx) + • • • + F(fB) = »„(/?) = - f t - i ( C ) .

Therefore, if we define

4k = 2 ^ - (A = 1 , •••,*»),

then ^ L • • •, An is a basis for the ideal ((£),. From (2) we see that, for each
suffix I = 1, • • \ r.

(7) ^A = 2 o,J?u(£h)Qu (h = 1, • • -, »).

andthusby§5(2)

(8) »O|(il») ^ ^ . ( O + ^ F ^ ) (A = 1, • • •, n).

Substitute the inequalities (1) and (8) into the fundamental equations

(9) H » » W = 0 (A = 1 , ••-,»»),

whence we obtain the upper estimate

(10) F{Sh) ^ - <*(<£) (h = 1, • • • •, »).
w

Next, substitute all but one of the inequalities (10) into (6). This then gives
the lower estimate

(11) F{h)^-Pt-^d<$) (A = 1. • • • , » ) .

Combining (8) and (11), we see immediately that, for A = 1, • • • , » ,

(12) va(Ah) ^ vo(e) - ^ rf(6)-eajUj for aU Q.

Finally, substituting all but one of the lower estimates (1) and (12) into
(9), it follows that, for h = 1, • • •, n,

vK(Ah) ^ vn(<S,)+n/it for all %
evQ(Ah) < va(£) + {n-ea)?t - -* d(C) for aU Q.

Combining these results we arrive at the following theorem.
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350 John Coates [10]

T H E O R E M 1. / / © is any ceiling of K, and (S)e the corresponding ideal,
then there exists a basis A 1 , • • •, A n of (®)t such that, for h — 1, • • • , « ,

«„((£) ^ vn{Ah) ^ vu(%)+npt for all %

/or «// Q.

The basis ^4X, • • •, An given by Theorem 1 will henceforth be called a
&-basis. The estimates given for the valuations of the basis elements are
convenient, but not best possible. We shall return to this question after
first giving several applications of Theorem 1.

8

We first apply Theorem 1 to study the approximation of adeles of K
by field elements. We recall that an adele a = {a^} of K is an infinite family,
where to each prime divisor ŝ of K there corresponds a component a^ e K^,
subject to the condition that

%{%) £̂  0 for almost all ^.

The set of all adeles of K is an abelian group under componentwise addition,
which we denote by stfK. By identifying A e K with adele {A }, we see that
K can be embedded in s/K. Finally, the degree of an adele a = {a^} is
defined to be

d(a) = 2 dvvv{av)

and hence is either a rational integer or oo.
Let a = {a^} be an adele and © any ceiling of K. We first study the

approximation of a by field elements at the prime divisors 5R.

LEMMA 1. There exists B BK such that

vK(aK—B) ^ »„(©) for all 9ft.

PROOF. The proof is due to Mahler [4]. Let X* be the set of all 9* for
which either *>„(#„) is negative or vx((E) is non-zero, so that X* has only a
finite number of elements. Let M be the set of all prime elements of k whose
corresponding prime divisors are divisible by at least one prime divisor in
X*. Denote by X and X the sets of all prime divisors R which divide, and
do not divide, a prime of k corresponding to an element of M, respectively.
Denote by W the product of all elements of M.

From these definitions

(1) »„(«,) ^ 0 = »„((£) = v^m) for all 9ft e X.

https://doi.org/10.1017/S1446788700004183 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004183


[11] Approximation in algebraic function fields 351

Choose m to be so large a positive integer that

w«(aM"«ii) ^ 0 forallSReX.

The finitely many elements WmaK, for die X, are thus 3i-adic integers. By
the approximation theorem for finitely many SR-adic valuations of K,
there exists C elt such that

(2) vn{Mmax-C) ^w«((£)+»«P") for all SR eX.

Choose B = 2ft-"1 C. It follows from (2) that

»„(« , -£) ^ »„((£) for aU $R e X.

Further, the inequalities (1) imply that

vK(aK—B) ^ min {*>„(«„), ^(B)} ^ 0 = «„(©) for all R e X.

Hence B satisfies the assertions of the lemma.
The system of inequalities

v^a^-A) ^ »„(<£) for all 3?,

has not only the solution A = B constructed in the last paragraph, but it is
more generally satisfied by all elements of the form

(3) A = B+X.A.+- • -+xnAn

where Alt • • •, An is any ©-basis, and xlt • • •, xn are arbitrary polynomials
in it.

We now choose the polynomials xt, • • •, xn in such a way that also

va{aa—A) for all £l,

allow simple lower estimates. To this end, we note that, by § 7(7), for each
suffix I = 1, • • -,r,

Ah = 2 o&u^Qu (h = 1, • • -, n),

where the matrix formed from the (r,JS?H(|h) has non-zero determinant.
Further, there exist n elements a.u e kq such that

a -B = \ *„*>„ (l=l,--;r).
t=i

There exist then ylt • • •, yn in kq such that
n

«H = 2 ffi^«(f»)y» (* = 1, • • •, n,; / = 1, • • -, r).

We now choose the polynomials xx, • • •, xn to satisfy the inequalities
»q(y»-*»)^l (A = 1 , • • - , * ) .
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Obviously
aa-B = (y1-*1)i41+ • • • + (yn-xn)An (I = 1, • • -, r),

so that by Theorem 1

va{aa-B) ^ »O|((£) - ^ < * ( 6 ) - s o > , - l ) (/ = 1, • • •, r).

We have therefore proven the following theorem.

THEOREM 2. / / a = {a^} is a«y adele and © a«y ceiling of K, then there
exists A eK such that

Vxia*—A) ^ v*(&) f°r *U %
va(aa-A) ^ »O((E) - ^ rf(IE)-«o(pt-l) for all G.

COROLLARY. J O et>m/ arfefe a £Aere exists A eK such that the degree of
the adele a—A is at least n(\—[it).

This theorem is essentially equivalent to the Riemann-Roch Theorem
(see [1] or [3]). In the next section we shall indicate how to derive the
Riemann-Roch Theorem from it, and conversely, we can deduce a slightly
improved version of it from the Riemann-Roch Theorem, although we do
not give the details here.

We next give one application of Theorem 2. If 21 is any divisor of K,
we define A (21) to be the set of all adeles a = {av} of K satisfying

^ »-(«) for all %

Both siK and A (21) are vector spaces over k0, and we now investigate the
^-dimension of the quotient space s

THEOREM 3. / / 21 is any divisor of K, then the k0-dimension of the
quotient space jtfK\A(W)-\-K is at most max{0, d(W)+n([it—1)}.

PROOF. For this paragraph only, let us choose the transcendence basis
{t} of K over k0 so that q is unramified in K, i.e. eai = • • • = e^ = 1.
This is always possible since only a finite number of prime divisors of a
given rational subfield of K ramify in K. With this choice of transcendence
basis, the ceiling group Ct is equal to DK.

If a; is a real number, [*] denotes, as usual, the integral part of x.
If 21 is any divisor of K, put s = max{0, [(l/»)d(9l)+iu«—1]}. By

Theorem 2, for every adele a = {av} of K, there exists A eK satisfying
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v^a^—A) ^ »„(«) for all 3i
va{aa-A) ^ va(<2t)-s for aU a

Hence, if n e kq satisfies vq(7r) = 1, and if, for each suffix I = 1, • • •, r,
wn ' ' *» win, a r e representatives in Kai of a basis of KQi over k0, then there
exist a.Hi e k0 such that

Thus the images of the adeles

Kt = {but9). w h e r e bu& = j Q
l-s+t if p =

) if P ^

M-;* = O , - - - , s - l ; i =

under the canonical homomorphism j^K^-ji/KIA(^i)-{-K generate
j^KIC<H)-{-K over ^0. Since the number of these adeles is at most
max{o, d(9l)+«(i«t— 1)}, this completes the proof.

It is a routine matter to deduce the indefinite form of the Riemann-
Roch Theorem from Theorem 3 (see (1), (3)). We omit the details. The
definite form of the Riemann-Roch Theorem implies that the constant
n(fit—1) appearing in Theorem 3 can be improved to the best possible
value 2g—1, i.e. 2(/j,f—n)J

rl, using the classical formula g = fif—n+l for
the genus of K. The above estimate is therefore quite good, despite the bad
estimates of § 7.

10

As a second application of Theorem 1, we study the approximation of
elements of K by elements of K. The Thue-Siegel-Mahler-Roth Theorem
shows that this approximation cannot be very good. The following theorem
is in the opposite direction.

THEOREM 4. / / A is any element of K*, then there exists an infinite
sequence S1 ( B2, • • • of distinct elements of K* such that

7k-»oo

and
rf([.4—5^) ^ ^([^ft]0O)+M(l— pt) (h = 1, 2, • • •).

PROOF. Let Kx be an ceiling of K such that

and let A1,---,An be a 6^-basis. 4̂ can be written in the form
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A = 3/1^1+ • • • +ynAn, where ylt • • •, yn are in k. Thus, if we choose
polynomials xx> • • -, xn to satisfy

»o(?<-*<) ^ 1 (» = 1, • • •, n),

then, by Theorem 1, the element Bt = xxAx+ • • • xnAn of (©^ satisfies

But by the choice (1) of (S1( we see that B1 is non-zero, and therefore, by
the fundamental equation 2<p d^v^Bj) = 0, it follows that

(2)

Now choose any ceiling ©2 satisfying

(3) -d(^)+n(l-Mt) >

and construct the approximating element B2 just as Bt was constructed
for the ceiling ©x. By (3) it is immediate that

d{[A-B2\ao)>d{[A-B1\ao).

Continuing in this manner, it is clear that we can construct the required
sequence Blt B2, • • •. This completes the proof.

11

As a final application of the results of § 7, we derive an analogue of
a theorem of Minkowski. Let DK0 be the set of all divisors of K of the
form 2l0 for some divisor %eDK, and let PKo be the subgroup of DK0

consisting of all divisors of the form [A]o for some A eK*. The elements of
the quotient group DKO\PKo are called divisor classes.

THEOREM 5. In every divisor class of the group DKQjPKQ there is an
integral divisor 2l0 satisfying 0 ̂  ^(SIQ) ^ jit.

PROOF. AS mentioned before, the estimates given in Theorem 1 are
not best possible. In particular, taking § 7(5) and § 7(6) together, we can
immediately give the better estimate i 7 ^ ) 2: —fijn—1/« d(<&), whence
the basis element Ax defined in § 7 satisfies.

^ for all O
n n

Hence we have shown that, for every ceiling (5, there exists a non-zero
element A of ((£), satisfying ddA]^) ^ — d($0)— /ut.

Now let S30 be any divisor in DK0. Then, by the remark just made,
there exists a non-zero element A e (S33"1), satisfying ddA]^) ^ — \
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The fundamental equation %9dvvv(A) = 0 therefore implies that
d{[A]0) ^difto1 )+/it. Hence the divisor % = [A]0f&0 is an integral
divisor in the same class as 93O satisfying 0 ^ d($t0) ^ fif. This completes
the proof.

In the case when the constant field k0 is finite, there are only finitely
many integral divisors having degree at most fit. Thus Theorem 5 implies
the classical result that the group DKo/PKO is finite and, in addition, gives
quite a good estimate for the order of this group.

One can make further application of Theorem 1 when the constant field
k0 is finite (e.g. many of Mahler's results for algebraic number fields carry
over verbatim to function fields over k0). We omit the details.

Finally, I note that Eichler has also used an analogue of the geometry
of numbers for fields of formal power series to obtain the Riemann-Roch
Theorem for function fields of one variable. However, he uses an analogue
of Minkowski's theorem on linear forms, rather than an analogue of
Minkowski's theorem on the successive minima of a distance function, as
we have done. Naturally, both methods give substantially the same result
when applicable. Eichler's results can be found in his book. "Einfuhrung
in die Theorie der algebraischen Zahlen und Funktionen".
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