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0. Introduction

In this paper we define some lifts of tensor fields of types (1, k) and

(0, k) as well as connections to a product preserving functor 2F. We study algeb-

raic properties of introduced lifts and we apply these lifts to prolongation of

geometric structures from a manifold M to 2F(M). In particular cases of the tan-

gent bundle of p -velocities and the tangent bundle of infinitesimal near points our

constructions contain all constructions due to Morίmoto (see [20]-[23]). In the

cases of the tangent bundle our definitions coincide with the definitions of Yano

and Kobayashi (see [31]). To construct our lifts and to study its properties we use

only general properties of product preserving functors. All lifts verify so-called

the naturality condition. It means that for a smooth mapping φ :M—*N and for

two (^-related geometric objects defined on M and N its lifts to SF{M) and

2F(N) respectively are SF(φ)-related. We explain later the term φ-related for

considered geometric objects.

In the presented paper we do not study problems of classifications of lifts.

A product preserving functor is a covariant functor 2F from the category of

manifolds into the category of fibered manifolds such that 3"{MX X M2) is equiva-

lent to SFiMi) x 2F(M2). In Section 1 we formulate properties of product preserv-

ing functors used in the present paper.

Let 2F be a product preserving functor. In Section 2 we recall lifts of vector

fields and functions to 2F. Lifts of vector fields was introduced by Kolaf in [14].

They are parametrized by elements of so-called the Weil algebra A = ^ ( R )

associated to 9. Lifts of functions to $F was studied by Mikulski in [17]. They de-

pend on functions λ : A—> R. The defined lifts verify the naturality condition.

Let ψ : M—* N be a smooth mapping. Vector fields X, Y defined on M and iV

respectively are called ^-related if the following diagram
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TM > TN

(0.1)

commutes. Two functions / , g defined on M and N respectively are called

^-related if/— g°φ. In Section 2 we prove a few new and "nice" algebraic prop-

erties of introduced lifts which will be very useful in other sections.

In Section 3 we define lifts of tensor fields of type (1, k). This family of lifts

is parametrized by elements of the Weil algebra A = ^ ( R ) associated to 2F. Each

<z-lift verifies the naturality condition. In this case for a smooth mapping φ: M—+N

two tensor fields S, S' of type (1, k) defined on M and N respectively are called

(^-related if the following diagram

TMxM - xMTM • TM

(0.2)

TNxN" xNTN • TN

commutes.

We study algebraic properties of tf-lift, where a ^ A. Among tf-lifts 5 a so

called complete lift S = S *, where 1 is the unity of A, is the most important.

From the proved properties of α-lifts we deduce that for a tensor field S of type

(1,1) and for a polynomial W(t) we have W(SC) = (W(S)f (see Proposition 3.2).

It implies that for an almost complex structure (respectively an almost tangent

structure, an /-structure) S on M its complete lift S is an almost complex struc-

ture (respectively an almost tangent structure, an /-structure) on 3"{M) (see

Corollary 3.3). Next we verify that for a tensor field S of type (1, 1) on M we

have

Nsc = (Ns)
c,

where Ns is the Nijenhuis tensor of S (see Proposition 3.4). From this properties

we conclude that for an almost complex structure (respectively an almost tangent

structure, an /-structure) S on M its complete lift S is integrable if and only if

so is S (see Theorem 3.5).
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In Section 4 we study lifts of tensor fields of type (0, k). This family of lifts

is parametrized by linear functions λ : A—> R on the Weil algebra A = ^ ( R ) of

$P. Each Λ-lift satisfies the naturality condition. Analogously as for tensor fields

of type (1, k) two tensor fields G, G' of type (0, k) are called (^-related if the

following diagram

TMxM - XMTM — ^ — * R

(0.3) dψy. •••xdp id R

xNTN • R

commutes.

Next analogously as in previous sections we prove some properties of λ-liίts

of tensor fields of type (0, A:). Particularly, for a symmetric tensor G on M we

calculate the signature of G as a function of the signature of G and the signa-

ture of the symmetric form A 3 (a, b) —» λ(ab) ^ R associated with λ. From the

proved formula (see Proposition 4.5) we conclude immediately:

G is non-singular if and only if G and the form (a, b)—* λ(ab) are

non-singular

G is positive definite if and only if G and the form (a, b) —> λ(ab) are

positive definite.

We observe (Lemma 4.6) that there is no linear function λ :A~^R on the

Weil algebra of HF such that the associated form A2 3 (a, b) —* λ(ab) ^ R is

positive definite instead of the identity functor 2F given by $F(M) = M and

2F(φ) = φ. It means that we cannot obtain a Riemannian metric on 3F(M) by

A-lifts of Riemannian metrics from M. To obtain a pseudo-Riemannian metric or

an almost symplectic form on HF(M) by a /ί-lift of a pseudo-Riemannian metric or

an almost symplectic form from M we need to use a linear function λ : A~+ R on

the Weil algebra A of 3? such that the associated symmetric form (α, b) —>

λ(ab) is non-singular. In general, there is no function λ with this property. We

give a necessary condition for the existence of such a function λ (see Proposition

4.7). We study properties of lifted (pseudo-)Riemannian metrics and (almost) sym-

plectic forms in Section 6.

In Section 5 we define a complete lift of a linear connection from M to a

linear connection on 2F(M) and we study its properties. The complete lift of linear

connections verifies the naturality condition only for all embeddings φ : M—> N of

two n-dimensional manifolds. For linear connections V and Vf defined on M and

N respectively we say that they are (^-related if for all (^-related vector fields X,
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Xr and all φ-related vector fields Y, Yf the vector fields VXY and V'xΎ
r are

also φ-related.

We prove a "nice" formula for covariant derivations. If V is a linear connec-

tion on M, then its complete lift V is the unique linear connection on 2F(M) such

that

V&Y™ = (VxY)m)

for all vector fields X, Y on M and all a, b ^ A (Proposition 5.6). From this we

can conclude that the torsion and the curvature of V are the complete lifts of the

torsion and the curvature of V (Proposition 5.6).

Lifts of generalized connections to a Weil functor were studied by Slovak

[28].

At the end of this section we prove that lifts of tensor fields commute with

the complete lift of linear connections (Proposition 5.11).

In Section 6 we study lifts of pseudo-Riemannian metrics and (almost) sym-

plectic forms and we prove some standard properties on Riemannian metrics,

Kahlerian structures and the integrability of lifted almost symplectic structures.

We can prolong such geometric structures to 2F(M) under the condition that there

is a linear function λ:A~+R on the Weil algebra A = «^(R) such that the

associated symmetric form A ^ (a, b)—> λ(ab) ^ R is non-singular. We recall

that in general there is no function with this properties. In the case of the r-order

tangent bundle such a function exists and in this case considering a suitable func-

tion λ our propositions coincide with the corresponding results of Morimoto [22].

In the last section we formulate corresponding local expressions of lifted ob-

jects.

In the paper we always suppose that all manifolds and mappings are of class

1. Product preserving1 functors

First we recall the definitions of prolongation functor and product preserving

functor.

DEFINITION 1.1. A prolongation functor is a covariant functor 2F from the categ-

ory of all manifolds and all mappings into the category of fibered manifolds satis-

fying the following conditions:

(1) For every manifold M, 3"(M) is a fibered manifold over M and π = πM:

M is its projection. For a point x ^ M we denote by 3FX(M) =
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π^{x) the fibre over x.

(2) The naturality condition. For every mapping φ : M—• N of two manifolds

M,N, for the induced mapping 2F(φ) : «^(M) —• &(N) the following

diagram

I

commutes.

(3) If φ \M—*N is an embedding of two n-dimensional manifolds M, N,

then for x^M the restriction 2F(φ){pχ(M) : 2Fx(Af) —• % φ{x)(N) is a

diffeomorphism.

(4) 77*0 regularity condition. If <p, : M-+ N is a differentiable family of map-

pings, then ^ ( φ , ) : ^ ( M ) —• ^(ΛO is a differentiable family of mappings.

Let us observe that for every fixed natural number n the restriction of a pro-

longation functor to the category of ^-dimensional manifolds and their embeddings

is so-called a natural bundle (see [25]). Kolaf and Solvak have proved that the reg-

ularity condition is a consequence of conditions (1) and (2) of Definition 1.1 (see

[15]).

This definition immediately implies:

(1) if 17 c M is an open subset then we can identify 2F(U) with 2F(M)\υ by

&(ί) : &(U) -* &(Af) w, where i : t/-> M is the inclusion;

(2) ^ ( R w ) is isomorphic with the trivial bundle Rn X F, where F = ^ 0 ( R W )

The isomorphism ^ : RM x F-+&(Rn) is given by W(x, y) = F(τx)(y),

where τx : Rw —» Rw is the translation.

Every prolongation functor transforms immersions, submersions and embed-

dings into immersions, submersions and embeddings respectively (see [15]).

For two manifolds Mlf M2 we denote by π{: Mγ X M2—* M{ the standard

projection on the ί-th factor, where i = 1, 2.

DEFINITION 1.2. A prolongation functor ^ is called a product preserving functor

if for all manifolds Mlf M2 the mapping

(^(TΓi), &{π2)) : ^ ( M x x M2) -^PiMJ x ^ ( M 2 )

is a diffeomorphism.

For a product preserving functor 2P we will always identify ^(M1 X Af2)
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with SPiMj) X SF(M2) by the deffeomorphism from the definition. After this iden-

tification we have

(1.1) 9(fx x Λ) - 9(fx) x 9{f2)

(1.2)

for all mappings fλ: Mλ—> Nί9 f2: M2-^ N2, f : M —• A^ and £ : M~> N2.

From the definition we obtain that a product preserving functor 2F has a

point-property i.e. ^(point) = point. This implies that for a constant mapping φ : M

—» Λfthe induced mapping 2F(φ) is also constant.

The tangent bundle TM and the tangent bundle of ^-velocities TPM —

/o (R , ΛO (see [19], [21]) are important examples of product preserving functors.

The most general example of product preserving functor is so-called Weil functor

(see [24]). It is constructed as follows:

Let R[/>] — R t P Q , . . . ,Xp]] be the algebra of all formal power series of p

indeterminates Xlf . . . ,Xp and let mp be the maximal ideal of R[̂ >] of all formal

power series without constant terms. Let α be an ideal of R[/>] such that Rip] /a

< °°. The algebra A = R[p] /α has the unique maximal ideal m = mp/a.

For this algebra A we construct a product preserving functor T .

Let ξA:R[p]-^A be the natural projection. We denote by τ \ ̂ Γ <JBLP)-*

R[p] the formal Taylor expansion at the origin t = 0, i.e. for / e ^ ( R * ) we

have

Now we define an equivalence relation in the set % (R , M) of smooth mappings

R^ -^ M (similar to the relation of jets): γ> γ': R^ —* M are A-equivalent if

for every / e ^°°(Λί). We denote by jAγ the equivalence class of γ : R^—> M, by

T M the set of all equivalence classes and by πA : 71 M-+ M the natural projec-

tion πA(jAφ) = ςp(O).

For a smooth mapping <p: M—>N we define T φ: T M-* T N by

T <p(/ 7) = y (φ°γ). If (C/, ?̂) is a chart on M, then (Γ {/, Γ φ) is a chart on

T M. It is easy to observe that T is a product preserving functor.

In 1986 Eck [3], Kainz, Michor [11] and Luciano [16] have proved indepen-

dently that any product preserving functor is in fact equivalent to some Weil func-

tor.
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THEOREM 1.3. If 3" is a product preserving functor, then there exists an algebra

A = R[p] /a such that &{M) = TA(M) for every manifold M.

In the paper we will not use the above theorem.

Product preserving functors have many interesting properties. In this section

we formulate some properties of product preserving functors used in the paper.

We start from the following proposition:

PROPOSITION 1.4. If ZF is a product preserving functor then A — 2F(R) is a real

associative, commutative and finite dimensional algebra.

/ / " + , * : R —> R are the addition and the multiplication on R and ma : R —• R is

the multiplication by a <Ξ R, then SF( + ) , SF(-), 3F(rna) are the operations in

A, 2F(0) and 9^(1) are the zero and the unity in A (after identification of constant

mappings with their values).

The set N = 2F0(R) is the ideal of nilpotent elements of A. We have A = R 1®N.

The algebra A = 2F(R) will be called Weil algebra of 5\

Proof A = 2F(R) is an algebra by the functoriality of 3>. For instance, to

show the associativity of &(+) we apply 3F to the formula + ° ( + X id) =

+ °(id x + ).

To prove the properties of TV we observe that the restriction of 2F to the

category of 1-dimensional manifolds is a natural bundle, and by [26] it is of finite

order h. Let q{f) = t + t . Since joq = ;oid, thus, for a ^ N we have

a + ah+1 = F0(q)(a) = a.

It implies a + 1 = 0. •

If we apply a product preserving functor to some particular manifolds as

groups, vector spaces, vector bundles and so on we obtain many interesting prop-

erties. We collect these properties in a few propositions. At the beginning we

formulate properties for vector spaces and vector bundles.

PROPOSITION 1.5. Let 3" be a product preserving functor.

1. If V is a finite dimensional vector space, then SF(V) is a finite dimensional

vector space. If+:Vx V—* V is the sum mapping in V and for a ^ R, da: V^ V

is the multiplication by scalar a, then &{+) :2F(V) X &{V) —> &(V) is the sum

mapping in SF(V) and &(da) : 2F(V) ^> SF(V) is the multiplication by scalar a in
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2F{V). The zero ofSF(V) is 2F(0), where 0 : V—• Vis the constant zero mapping.

2. If f : V—• W is a linear mapping of two finite dimensional vector spaces, then

&(f) : &(V) -> ^(WO is also linear.

3. /// : Vι X x V;—• W ts α k-linear mapping, then 3F(f) : ^ ( 7 ^ X •

X &(Vk)-^&(W) is also k-linear.

4. If V — Uλ® U2 is a direct sum of subspaces Uιt U2, then we have 2F(V) —

5. /// : V—* W is linear, then we have

(1.3) keτ&(f) = SFikeτf), im^(f) = 2F(imf).

Proof The proofs of parts 1-4 are standard (cf. the proof of Proposition

1.4). To show part 5 we consider a subspace U such that V— k e r / Θ U. We de-

note by i : ker /—•*• V and y : ί/-̂  V the inclusions. If we apply 2F to the equality

f°i = 0 and to the isomorphism f°j : ί7—* im / we obtain SF(f) |^(ker/) ~ 0 and the

isomorphism &(f)mu) : ^ ( ϋ ) -> ^ ( i m / ) . This implies (1.3). D

For a vector space 7 we can define a richer structure on JF(V). Namely, we

have

PROPOSITION 1.6. L<?ί^ fo a product preserving functor and let A — ̂ ( R ) 6^ iίs

Wigi/ algebra.

1. If V is a finite dimensional vector space, then 2F(V) is an A-module. Ifm:R

X y—• V is the scalar multiplication in V, then the induced mapping 2F(m) :A X

2F(V)-+SF(V) defines the action of A onF(V).

2. If f:V-+W is a linear mapping, then SF(f) : &(/)-+2F(W) is a homo-

morphism of A-modules. If f : Vx X * * * * Vk—> W is k-linear over R, then 2F(f) :

^(Vi) X X &(Vk) -+ $(W) is k-linear over A.

3. If vl9. . . ,flΛ is a basis of a vector space V, then OFivJ,.. . ,2F(vn) is a basis of

the A-module 2F(V). Furthermore, if aly. . . >aκ is a basis of A over R, then all pro-

ducts aJFiVi), where i— 1 , . . . ,n and v = 1 , . . . ,K, is a basis of2F(V) over R.

The proof of parts 1 and 2 is standard. To show part 3 we apply & to the

isomorphism Rw B (ξ\... ,ξn) -• Σ^= 1 ξ'v^ e V.

We can prolong these properties to category of vector bundles. In this case

we obtain
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PROPOSITION 1.7. Let 3" be a product preserving functor.

1. // 7Γ : £—• M is a vector bundle, then 2F(π) : 2F(E) —• ^ ( M ) is α wcίor δww-

dle too. If V is the standard fibre of E and φ \ E\v—> U X V is a trivialization over

an open subset U c M, then 2F(V) is the standard fibre of 2F(E) and SF(φ) :

2F(E)mu)-+F(U) X F(V) is a trivialization overfill) a&(M).

2. If Ψ\E^Er is a vector bundle homomorphism, then 2F(Ψ):2F{E)^

3"{Ef) is also a vector bundle homomorphism.

3. Let Ev.. ,,Ek be vector bundle over the same base M and E be a vector bundle

over N. If Ψ : Eλ X M X MEk—> E is a k-linear mapping covering φ : M~* N , 1 }

then &(¥):&(£,) x^m x ^ m ${Ek) -^ &{E) is a k-linear mapping

covering F(φ) :&(M)^&(N).

4. If E — Ex@ E2 is a direct sum of two vector bundles Eι and E2, then

5. If f : E-+ Ef is a vector bundle homomorphism such that the function

dim ker/j, is constant on the base of E2\ then

(1.4) ker^(/) = Hker/), im&(f) = PQmf).

For Lie groups and their actions on manifolds we collect properties interest-

ing for us in the following proposition.

PROPOSITION 1.8. Let 2? be a product preserving functor and A = ^ ( R ) be its

Weil algebra.

1. If G is a Lie group, then 2F(G) is also a Lie group. If m : G X G—> G is the

product in G and 1 is the unity of G, then SF{m) is the product in SF(G) and 2?(ϊ) is

the unity of2F(G).

2. If a Lie group G acts on a manifold M and A : G x M—+ M is the action,

then 2F(G) acts on &(M) and F(A) : F(G) x F(M) -^ F(M) is the action.

In particular, if ad : G X G—• G is the adjoint action of G on G, then 2F(ad) :

H G ) X &(G)-+&(G) is the adjoint action of ̂ (G) σnSF(G).

If p: GL(RW) X Rw —• Rw is the standard action, then 3F(β) gives an action

on 2F(R ) of A-linear transformations and we have a Lie group monomorphism

I : &(GL(Rn)) — GLA(&(Rn)) c GL(&Rn) given by I(X)(y) = P(p)(X, y) for

X e ^(GL(R W )) and y e ^ ( R M ) .

3. /// : G - * G' is a Lie group homomorphism, then &(f) : ?(G) -+ $(Gr) is a

1] It means that for each point x e M Ψ transfoms (E^ X X (Ek)x into Eφ(x) and

^x = ^K^X.-XCE,), (^i)χ x * ' x (Ek)x-+Eφω is /c-linear.
2 ) This assumption gives a sufficient and necessary condition under which im / c E' and

K e r / c E are vector subbundles.
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Lie group homomorphism. Particularly, if H c G is a Lie subgroup, then 2F(H) is a

Lie subgroup ofSF(G).

4. If P(M, G, TΓ) is a principal fibre bundle with base M, structure group G and

projection π, then 2F(P) (SF(M), 2F(G), &(π)) is a principal fibre bundle with base

2F{M), structure group 2F(G) and projection 3"{π). If φ : P\u~* U X G is a tri-

vialization over U, then 2F(φ) : SF(P)\p(u)—+2F(U) X 3"(G) is a trivialization over

HU).
5. Iff:P(M, G) —• Pf(M\ GO is a homomorphism of principal fibre bundles

covering φ : M—*Mf with an induced Lie group homomorphism pf: G—+G', then

: SP (P) —* 2P (P') is homomorphism of principal fibre bundles covering ¥F(φ) :

ΓO and 2F(pf) \ 2F(G) —* 2F(G') is the induced Lie group homomorph-

ism.

Proof. The unique nonstandard step of the proof is the injectivity of / from

part 2.

Applying $ to Rn X Rn 3 GL(RW) X R ^ R M we obtain

given by ^(pHDr/l, (χk)) = (Σn

]=ιx] x3). This formula implies the injectivity of

/. D

There is a very interesting and nontrivial property saying that for two pro-

duct preserving functors ^ , 2F2 there exists a natural isomorphism %Fλ($F2(MΪ) ~^

!¥2(!<F1(M)). We will use this property only in the case when one of these functors

is the tangent bundle. We have

PROPOSITION 1.9. Let ̂  be a product preserving functor. There exists one and only

one family ηM : 3"{TM) —• TSF(M) of vector bundle isomorphisms

{wherepM : TM^> M is the projection) such that the following conditions hold:

(1) for every smooth mapping ψ : M~* N the following diagram
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VN

commutes

(2) for two manifolds M, N we have ϊ]MxN

 = ϊ]M X r)N

(3) if Ψn : Γ R - > R x R and W^(κ) : 7 ^ ( R ) - > ^ ( R ) x ^ ( R ) ^ ^ stan-

dard trivializations, then

R (R x R) = 2F(R) x ^ ( R ) - ^ T ( ^ ( R ) ) .

Outline of the proof Let us observe that according to (2) we need to define

Vκn = ^ R ) W ̂ O W (1) h°lds for M = Rn and iV = Rw . Next using charts we can

define ηM for any M such that (1) holds. D

In [9] we have proved that condition (2) is a consequence of condition (1) from

Proposition 1.9.

We finish this section by remarks on Lie algebras. We have

PROPOSITION 1.10. Let 3" be a product preserving functor.

1. If % is a Lie algebra, then 2F(Q) is also a Lie algebra with the Lie bracket

2F([ , ] ) , where [, ] : g X g —• g is the Lie bracket in g.

2. / / / : g—• g' is a Lie algebra homomorphism, then 2F(f) : ^(g) —* 2?(gf) is

also a Lie algebra homomorphism.

3. If G is a Lie group and ί£(G) is its Lie algebra, then the restriction

is a Lie algebra isomorphism, where ΐ]G is from Proposition 1.9. The restriction

( ύtt oe denoted also by ϊ]G.

The verifications of parts 1 and 2 are standard. We will prove part 3 in Sec-

tion 2.
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2. Lifts of functions and vector fields

Let 3F be a product preserving functor and let A = ^ ( R ) be the correspond-

ing Weil algebra.

If λ : A—* R is a smooth function and / : M—> R is a smooth function on a

manifold M, then we define Λ-lift of/ to

(2.1) f™ =

f is a smooth function on 2F(M). It is easy to verify

PROPOSITION 2.1. Let ̂  be a product preserving functor and A = SF(R) δe tte

Wet/ algebra. For any smooth function λ : A —• R ί/ie family of mappings °̂° (M) B

f—*f e HlΓiSFM) is a lifting, i.e. for every smooth mapping φ : M—+ N and every

function f e C (N) we have (/ ° φ)ω = f ω

The Λ-lift have the following properties, being an immediate consequence of

the definition.

If λv λ2: A—* R are two smooth functions and av a2 are reals, then

(2.2) fiaiλl+aM = a1f
Ul) + a2f

{λl\

If λ : A—* R is linear and α, /8 are reals, then

(2.3) (af + βg)ω = afω + βgω.

Let S = (alf. . . ,aκ) be a basis of A over R. We consider S a s a linear iso-

morphism A—* R and let % : A—* R be the composition of 3S with the projection

R* -> R on v-th factor, i> = 1, . . . ,K.

For a coordinate system ([/, x ,.. . ,χw) in M we define the induced coordin-

ate system {χuv} on 2F(M) by

(2.4) xUv=(χiγπl\ for i^= l f...,ΛΓ.

From (2.4) we obtain immediately

PROPOSITION 2.2. Let 2F be a product preserving functor and A = ^ ( R ) be its

Weil algebra.

If X, Y are vector fields on 2F(M) such that for every smooth function f on M and

every linear function λ : A-+R we have X(f ) = Ϋ(f ), then X — Ϋ.
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Next we will study lifts of vector fields. The standard example is so-called

complete lift. If X : M—> TM is a vector field on M, then we define X = ϊ}M°

, where ηM is the isomorphism from Proposition 1.9. It is a vector field on

called complete lift of X to 2F(M). We have

PROPOSITION 2.3. Let 2F be a product preserving functor and A = 2F(R) be its

Weil algebra. If φt is a local flow of X, then 2F{φt) is a local flow of X .

Proof It is clear that 2F(φt) is a local flow on 2F(M). Let X be the local vec-

tor field on &(M) defined by &(φt).

According to the commutativity of the condition (1) from Proposition 1.9 we

can assume that M = R .

For a point y ^ 2F(Rn) the coordinates of X(y) are equal to -Ύi2?(φt)(y) \t=0

e / = &(Rn). On the other hand the coordinates of (ηnn°^(X))(y) are equal to

Fy-^j φt\t=QJ(y) = -^^(φt)(y) | ί = 0

 I n t h e l a s t equality we apply that for any

vector space V the mapping

(2.5) ^°°(M, V) 3 h^SF(h) e <g"(2F(M), 2F(V))

is linear. •

From the above proposition we obtain that the complete lift introduced here

coincides with the standard definition by flows which is introduced on natural

bundles. The complete lift has the following properties (see Salvioli [27], cf. also

[5])

(2.6) (aX + βY)c = aXc + βYc, ([X, Y\c = [Xc, Yc]

for all vector fields X, Y on M and all reals a, β.

We will define other examples of lifts of vector fields to OF. We consider the

mapping ! ί : R x TM~+ TM given by Ψ(t> υ) = tυ. Using the natural isomorph-

isms ηM : F(TM) -+ T(FM), the induced mapping 2F(Φ) : A x &(TN) -• F(TM)

determines the mapping

Ψ= ηM°&(W)°(idA x η~M

ι) :A x Ti&M) —

For an element a ^ A and a vector # ^ T(2FM) we define

(2.7) tf *J= ^ ( Λ , ZJ).
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This product has the following properties

(a + b) ϋ = a-ϋ + b-ϋ,

(ab) v = a (b'ϋ),

a - (v + w) — a-υ + a-w,

v) = a dF(φ)(v)

for all a, b e A, v, w e Ty&(M), y e ^(ΛO and every smooth mapping <p : Λ ί ^

iV. These properties are a simple consequence of the definition of " *". We verify

only the last formula from (2.8). A verification of rest formulas are similar.

The equality dφ(tv) = tdφiv) can be written without arguments in the form

dφ°Ψ= Ψ°(\dκ X dφ). Applying 2F and composing the obtained formula with ηN

and idΛ X ηM we obtain

ηN'&(dφ)*P(Φ)*(idA x r?"1) = ηN*&(W)*ddA X 9(dφ) η~M

ι).

Using the commutativity of the second diagram from Proposition 1.9 we deduce

idA x η'M
ι)

\dA x ^ )

By the definition of " " the above equality is equivalent to the last formula from

(2.8).

Let us also observe that after identification Ty(HF(Rn)) with ^ ( R w ) we have

a-v = aϋ

for a e A and t; e 7 ;(^(R n )) = ^ ( R M ) , z/ e ^ ( R w ) , where A-module structure

on 2F(Rn) is defined in Proposition 1.6.

Now for a vector field X on M and an element a ^ A we define

(2.9) Z ( β ) = a Xc = Ψ(a,Xc).

X a is a vector field on ^ ( M ) called fl-Zt/f of X. This α-lift was introduced by

Kolaf [14]. From (2.9) we obtain immediately

(2.10) XC = Xω,

where 1 is the unit of A. Kolaf in [13] proved
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PROPOSITION 2.4. Let % be a product preserving functor, A = ^ ( R ) be its Weil

algebra and a e A. The family of mappings 9C(M) 3 X-+ Xia) e 9C(&M) is a

lifting i.e. for every smooth mapping φ : M-* N and every φ-related vector fields X ^

STOlί), F e 9T(Λ0 tfw vector fields X{a) e W ( M ) ) , F ( α ) e ΘC(&(N)) are^(φ)-

related.

Proof We apply ^ to diagram (0.1) and next we use formulas (2.7) and (2.8).

D

We have the following proposition on flows of X a .

PROPOSITION 2.5. Let % be a product preserving functor and A — 2F(R) be its

Weil algebra. If φ : (— ε, + ε) X £/—• M is a local flow of a vector field X on M,

then the mapping φ : (— ε', + ε') X ^ ( M ) | [/-^ 5KM) ^ivβn 63;

(2.11) φ α , y) =2F(φ)(ta,y)

is a local flow of X .

Proof Let us observe that from the equality φ(t + 5, .r) = φ(t, φ(s, x))

the induced mapping &(φ) : AH_ε>+ε) x 2F(M) \v—> 2F(M) satisfies the condition

&(φ)(a + b, y) = SF(φ)(a, SF(φ)(b, y)) for all a, b and all y such that ^, 6,

a + b e i4|(_ef+e) and z/, 2F(φ)(b, y) ^ 2F(M)W. It implies that φ is a local flow

on HAD.

Without lost of the generality we can assume M = Rw. Let X be a local vec-

tor field on &(Rn) defined by φ. For a point z/ e ^ ( R w ) by (2.9) and Proposition

2.3 the coordinates of X a at y are equal to a~πHF(φt)(y) | ί = 0

The coordinates of X at y are equal to

A
dt
-πF(φ)(ta, y)lt=0 = d{0ΛI)&(φ)(a, 0)

= a'd{0>y)&(φ) (1, 0) by formula (2.8)

because φt = φ° (t X idRW), where t : R—• R is the constant mapping. •
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We can prove the following properties of α-lifts of vector fields.

PROPOSITION 2.6. Let 2F be a product preserving functor and A = ^ ( R ) be its

Weil algebra.

1. If X is a vector field on M, / is a function on M, λ : A —* R is a linear func-

tion and a ^ A, then

(2.12) X{a\f{λ)) = (Xf)iλola\

where la : A—+ A is given by la(b) = ab.

2. If Xj Y are vector fields on M, a, β are reals and a, b ^ A, then

(2.13) (aX + βY)(a) = aX(a) + βY(a)

(2.14) X(aa+βb) = aX(a) + βX{b)

(2.15) [X(a\ Y(b)] = [X, Yliab).

3. If X is a left invariant vector field on a Lie group G and a ^ A, then X is

a left invariant vector field on 2F(G).

Proof In the proof of formula (2.12) we can assume that M = R . By Prop-

osition 2.5, the last formula from (2.8) and the linearity of λ we obtain

(X(a)fa))(y)=jj(. '

= ~dt('

= λ(a dl0Λ)9(f>φHl,0))

= {XfΫM"\y).

The proof of formula (2.12) is finished.
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Formulas (2.13) and (2.14) are an immediate consequence of the definition of

0-lift and (2.6). To show formula (2.15) let us observe that for every function /

on M and every linear function λ : A—»R by (2.12) and the formula la°lb — lab

we have

ta) γib)](fω)=χ{a)(
= (X(Y(f)))
= ax, mf))

)u°'a°'b)a°'b)

a°'°b>

= [X,Y\(ab\fw).

Now using Proposition 2.2 we obtain (2.15).

To prove the part 3 we observe that for a flow φ of X we have φ(t, ξg) =

ξφ(t, g) for ^ R , U G G Applying 9 we deduce F(φ)(b, f g) =

ξ_2F(φ)(b,g) for all b e A, ξ , g e 2F(G). In particular 9(φ){ta, ξg) =

ξF(φ) (ta, g). Since &(φ) (ta, y) is a flow of X ( α ), thus Xia) is left invariant. D

Formula (2.12) is very useful in the calculations (for instance it is used in the

proof of (2.15)). In future we will use also a similar formula for vector-valued

functions.

PROPOSITION 2.7. Let ZF be a product preserving functor and A = ^ ( R ) be its

Weil algebra. Let V be a finite dimensional vector space. For any vector field X on M,

any a ^ A and any smooth function f : M-* V we have

The proof is similar to the verification of formula (2.12).

From (2.4) and (2.12) we deduce

COROLLARY 2.8. Let (U, χι) be a chart on M, dlf. . . ,dn be its adapted frame

and let al9. . . ,aκ be a basis of A. Then {(dt) °v | i = 1,. . . ,w, v — 1, . . . ,KS is the

adapted frame to the induced chart (5F(U), x1>V) on3F(M).

From Corollary 2.8 we obtain immediately

PROPOSITION 2.9. Let 2F be a product preserving functor and A = ^ ( R ) be its

Weil algebra. If S, Sr are two tensor fields of type (1, k) or (0, k) on 2F(M) such that

for all vector fields Xlf... ,Xk on M and all elements av . . . ,ak of A the equality
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holds, then S = S\

Now we can prove the following proposition formulated in Section 1 (see

Proposition 1.10 (3)).

PROPOSITION 2.10. Let OF be a product preserving functor. If G is a Lie group and

£(G) is its Lie algebra, then the restriction (VG^\^{<B{G)) : ^(^(G)) ~^> £(2F(G)) is a

Lie algebra isomorphism, where rjG is from Proposition 1.9.

The restriction (ηG) \^^{G)) w^ be denoted also by rjG.

Proof. For a Lie group H its Lie algebra £(H) consisting of all left invariant

vector fields on H we identify in the standard way with the tangent space TXH.

Let Elf.. .,EN be a basis of £(G) and al9.. .,aκ be a basis ofA = «^(R). By

Proposition 1.6 (3) FiEJ,. . . ,&(EN) is a basis of F(3!(G)) over A On the other

hand by Proposition 2.6 (3) Efv) belong to 5?(^(G)) for = 1,. . . ,N and v = 1,

...,K. Of course, ηG(av$(E)) = Efv\ By Proposition 1.6

Thus

Since ηG is a linear isomorphism, thus the proof is finished. D

3. Lifts of tensor fields of type (1, k)

Let 2F be a product preserving functor and let A — $F(R) be its Weil algebra.

We define lifts of tensor fields of type (1, k) from a manifold M to 2F(M).

We interpret a tensor field 5 of type (1, k) on a manifold M a s a λ -linear

mapping 5 : TM X M XM TM~+ TM of the bundle product over M oί k copies

of the tangent bundle into TM covering the identity on M. We recall that in this

case the /c-linearity means that restrictions of S to fibres (TM X

M ''' x

 M TM)X

= TXM x x TXM-+ TXM is /c-linear for all x e M. Using ηx: 2F(TM) ->
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T(2FM) we define a mapping Sc : T(&M) x^ ( A f ) x mM) T(?M) -• T(&M) by

(3.1) Sc = ηM*?(S)*(ηϊ X X ηj)

called complete lift of S from M to2P{M). From Propositions 1.9 and 1.7 we deduce

that S is a tensor field of type (1, k) on 2F(M).

Let a ^ A. For a tensor field S of type (1, k) on M we define

(3.2) Sia) = a-Sc = Ψ(a, Sc),

where the product "•" is defined by (2.7). From properties of the product " * " (see

(2.8)) we obtain immediately that S is a tensor field of type (1, k) on 3>(M)\ it

is called a-lift of S from M to

Let Si\{M) be the set of tensor fields of type (1, k) on M. Let S G ΣΓι

k(M),

S' ^ ΣΓk(N) and φ:M~^N be a smooth mapping. Tensor fields S, S' are

φ-related if diagram (0.2) commutes. We have

PROPOSITION 3.1. Let ̂  be a product preserving functor and A = ^ ( R ) be its

Weil algebra.

For every a^ A the family of mappings ?l\ CM) e S -» S ia) G ̂ ( ^ M ) is α

/ί/ίw^ i.g. t / S £ ^ ( M ) αncί Sr e ^ (̂ΛO αrg φ-related, where φ:M^N is a

smooth mapping, then Sia) G ?Γ\(2FM) and S/(a) G i r J ( ^ K ) αr^ 2F(φ)-related.

If S is a tensor field of type (1, A:) and a G .A, ί/ι̂ n /or a// vector fields Xlf. . .,

XΛ on M and a// elements al9...,ak ^ A we have

(3.3) S^VC?1*,... X"k)) = (SC*!,. . . ,* i))
<ββι-β*>.

Let us observe that according to Proposition 2.9 formula (3.3) determines un-

lquely o .

Proof Applying ^ , ηM and ηN to diagram (0.2) we deduce the first part of

the proposition.

To show formula (3.3) we apply 2F to the equality

s α ^ ω , . . .,tkχkω) = tx. ..tksucι(x),...,χk(χ)),

where the left and the right sides are considered as mappings defined on R X •

X R X M, and we compose the induced mapping with the natural isomorphisms

ϊ]M and ϊ]M. In consequence, we obtain

S (aι-X1 ,.. .,ak-Xk) = aγ.. .ak-S (Xλ , . . ,,Xk).
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By (3.2) it implies (3.3). D

We will study algebraic properties of tf-lifts of tensor fields. At first, we de-

fine an operation on tensor fields.

For two tensor fields S, S' on M of type (1, k) and (1, kθ respectively and

for i — 1 , . . . ,k we define a new tensor field p!(S, SO of type (1, k + kr — 1) on

Mby

(3 4) ^ ( 5 ' S ' ) ( z ; i ' ' z W - i )

= S ^ , . . . , ^ , S ' ( v i 9 . . . , v i + k r ) , υ v )

for vl9...,tW-i e T M , X e M. 3 )

We have the following properties of α-lifts of tensor fields to 3".

PROPOSITION 3.2. Let & be a product preserving functor, A = ^ ( R ) be its Weil

algebra and let a, b ^ A.

(1) If S is a symmetric [respectively skew-symmetric) tensor field of type (1, k) on

M, then S is a symmetric (respectively skew-symmetric) tensor field of type (1, k) on

SF(M).

(2) For tensor fields S, S' of type (1, k) on M and reals a, β we have

(aS + βS'Ϋa) = aS{a) +βSAa),

5 (aa+βb) cite) i nc*(b)

— ao -r po ,

(3) For tensor fields S, S' of type (1, k) and (1, λ O respectively on M, and i —

1,.. ,,k we have

{p (S, S )) — p {S , 6 ),

where p (S, SO is defined by (3.4). Particularly, for two tensor fields S, S' of type

(1,1) on M we obtain

S t e ) S ' ( W = (SS0iab\

(4) If S is a tensor field of type (1, A:) on M and X is a vector field on M, then

Lχ{a)S z= (LχS) ,

where L denotes the Lie derivation.

(5) // δM : TM-* TM is the identity tensor, then (δM) = a δ^{M). In particu-

lar, (δM)c = δo?{M).

3 ) If 5, S" are tensor fields of type (1, 1), then pι(S, 50 is the composition of 5 : TM-

TM and S': TM-+TM.
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(6) If W(t) is a polynomial with real coefficients and S is a tensor field of type

(1,1) onM, then W(SC) = (W(S))C.

Proof. The verification of parts (l)-(5) is obtained by similar methods. Part

(6) is an immediate consequence of parts (2), (5) and (3). In order to present these

methods we show part (3).

Let Xl9... Λπ-r-i G 9C(M) and alf. . . , ^ W - i e A = #"(R). Using (3.3) we

have

& \ > A ί - i » ^ \ Λ i , . . . , A / + r , Λt+k,+ί ,

ςι(α)/ γ^ai-l> ( Q'( Y Y \\(bai ' ai+k'ϊ γ(<*i+kr+ύ \
O V >Λi-l > v ^ v^i> j-Λ ί+jfe'// » ^ ί + fe' + l » /

(o( Y Q'(Y Y \ Y \γabai m'ak+k'-0
VOV f^i-if >>> \Λif. . .,Λt+k,J, Λi+k,+1, ))

(p (S, 50 ( >Xi-l> Xi>- .,Xi+k'> Xi+k'+U ))

Now by Proposition 2.9 we obtain part (3).

In the proof of (4) we use additionally the formula

LxS(Xv...,Xk) = LX,S(Xl9...,Xk)] -
ί = l

and Proposition 2.6. •

From the above proposition we obtain

COROLLARY 3.3. Let $F be a product preserving functor. If t is an almost complex

structure (respectively an almost tangent structure, an f-structure) on M, then t is an

almost complex structure (respectively an almost tangent structure, an /- structure) on

If X is an infinitesimal transformation of t, then X is an infinitesimal trans-

formation of t for every a ^ A — 2F (R).

Proof. The first part follows from Proposition 3.2 (6) and the second

one-from Proposition 3.2 (4). •

The analogous properties were proved in the case of tangent bundle, r-order

tangent bundle, ^-velocities bundle by Yano, Ishihara and Morimoto (see [30],

[18], [20], [22]).
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Next we propose to formulate the following important property.

PROPOSITION 3.4. Let OF be a product preserving functor and A = ^ ( R ) be the

corresponding Weil algebra. If t is a tensor field of type (1, 1) on M and a ^ A, then

iV>) = (Nt) ,

where N denotes the Nijenhuis tensor. In particular, we have

N,c = (Nt)
c.

Proof. To prove this proposition we apply the similar methods as in Proposi-

tion 3.2 to the Nijenhuis tensor

Nt(X, Y) = t2[X, Y\ - t[tX, Y\ - t[X, tY\ + [tX, tY\. D

Now we can prove

THEOREM 3.5. Let 3P be a product preserving functor. Let t be an almost complex

structure (respectively an almost tangent structure, an f-structure) on M. Then t is a

complex structure (respectively a tangent structure, an integrable f-structure) on

2F(M) if and only if t is a complex structure (respectively a tangent structure, an in-

tegrable f-strueture) on M.

Proof. For considered structures the integrability is equivalent to vanishing

of the Nijenhuis tensor. Our theorem is a simple consequence of Proposition 3.4. •

Let us observe that using Proposition 3.4 we can prove the analogous

theorem for all geometric structures (defined by tensor fields t of type (1, 1)) for

which the integrability is equivalent to vanishing of the Nijenhuis tensor.

4. Lifts of tensor fields of type (0, k) Lifts of A:-forms

In this paragraph we can define lifts of tensor fields of type (0, k).

We interpret a tensor field G of type (0, k) on a manifold M a s a λ -linear

mapping G : TM XM XM TM-* R of the bundle product over M of k copies

of the tangent bundle into R. We recall that λ -linearity means that its restrictions

to fibres (TM XM'," XM TM)X = TXM X x TXM^ R are /c-linear for all x

e M. Using the natural isomorphism ηM: 2F(TM) —• T(2PM) we define G :

ΠPM) x^(M) ••• X^(M) T W O — A by
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(4.1) G

G is /c-linear because 2F{G) is λ -linear (see Proposition 1.7 (3)) and ηM is linear

(see Proposition 1.9).

Let λ : A —* R be a linear function. We define

(4.2) G u > = Λ°G.

It is a tensor field of type (0, k) on ^ ( M ) called λ-lift of G from M to SF(M).

Let 2Γk(M) be the space of tensor fields of type (0, k) on M. We verify

PROPOSITION 4.1. Let SF be a product preserving functor, A = 2F(R) be its Weil

algebra and let λ : A —* R be a linear function.

The family of mappings 3^k(M) B G—* G ^ 3'k{^M) is a lifting, i.e. if ten-

sor fields G G ^k(M) and G/ ^ ^k(N) are φ-related, where φ : M~* N is a smooth

mapping, then G and G' are 2£:(φ)-related.

If G is a tensor field of type (0, k), then for all vector fields Xlf. . . ,Xk on M and

all elements a1,...,ak^Awe have

(4.3) Gω(X^\...Xak)) = (GiX, Xk))a"'^"\

where la : A—* A is given by la(b) = ab.

Proof. The first part of the proposition is clear. We verify (4.3) in a similar

way as (3.3). From the equality G(t1X1). . . ,tkXk) — tλ.. . tkG(X1,. . . ,Xk) we con-

clude that

Now, from (4.2) we obtain (4.3). D

We have the following properties of >i-lifts.

PROPOSITION 4.2. Let 2F be a product preserving functor, A = ^ ( R ) be its Weil

algebra, λ, λ': A -* R be linear functions and let a ^ A.

(1) If G, G' are tensor fields of type (0, k) on M and α, β are reals, then

(aG+ βG'Ϋλ) = aGω + βGM\

Lr — (XLr T pCr

(2) L ί̂ G be a tensor field of type (0, k) on M. If G is symmetric {respectively

skew-symmetric) then G is also symmetric (respectively skew-symmetric).

https://doi.org/10.1017/S0027763000004931 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004931


2 4 JACEK GANCARZEWICZ, WZODZIMIERZ MIKULSKI AND ZDZISZAW POGODA

(3) If G is a tensor field of type (0, k) on M and S is a tensor field of type

( 1 , s) on M, then for i = 1 , . . . ,k we have

(4.5) pι(G{λ\ S(a)) = (p'iG, S)) U β ' \

where p'(G, S) is a tensor field of type (0, k + s ~ 1) given by4)

( 4 6 ) f>
i(G,S)(Xv...,Xk+s_1)

= G{XV... ,Xi-ι, S(Xif...,Xi+s), Xi+s+v - - Λ + Λ - I )

for vector fields Xv . . . ,Xk+s-ι on M.

(4) If G is a tensor field of type (0, k) on M and X is a vector field on M, then

(4.7) Lx^Gω = (L x G) U o / f l ) .

Proof The verification is similar to the proof of Proposition 3.2. We use

(4.3) instead of (3.3) and (2.3) instead of (2.13). •

From Proposition 4.2 (2) we obtain that if a) is a λ -form on M, then its >ί-lift

ω(λ) is a /c-form on 2F{M). We prove also:

PROPOSITION 4.3. Let & be a product preserving functor and A = ^ ( R ) be its

Weil algebra. If ω is a k-form on M and λ : A—* R is a linear function, then

(4.8) dω = Wω) .

Proof To show this proposition we apply the similar methods as in Proposi-

tion 3.2. We use the formula

dω(X0,...,Xk) = J - Γ Ϊ { Σ ( - l)%(ω(X09. ..,Xif.. .,Xk))

+ Σ ( - Di+iω([Xif X;], X0,...,Xif. ..X. . . , * , ) ] . D

As an immediate consequence of Propositions 4.3 and 4.2 (4) we obtain

COROLLARY 4.4. Let ω be a k-form and λ:A = 5KR) —> R be a linear func-

tion.

If ω is closed, then its λ-lift co is also closed.

If X is an infinitesimal transformation of co and a ^ A, then X is an

infinitesimal transformation of co .

p\G, S) is a contraction of G ® S.
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If g is a pseudo-Riemannian tensor on M, then for each linear function λ :

A—»R its Λ-lift g is a quadratic form on 2F(M) but, in general, g is not

non-singular. We prove the following proposition about the signature of g .

Namely we have

PROPOSITION 4.5. Let λ : A—» R be a linear function on the Weil algebra A =

^ ( R ) of a product preserving functor $F and let (pλ, pj) be the signature^ of the sym-

metric 2-form A x A 3 (α, 6) —* λ(ab) €= R. If g is a symmetric tensor field of type

(0, 2) on M t^ί/ι α constant signature (pg , pg), then g is a symmetric tensor field

of type (0, 2) on ^ ( M ) wiί/x α constant signature (pgpλ + ^ ^ ^ + PgPΪ)

Proof We fix a point of M There is a basis Xu . . . ,Xn of vector fields on

some neighborhood U of the fixed point such that

1, for i = j= I9...fpg

g(Xi9X,) = - 1 , ίori = j = pg' + l,...,p8'+pg"

. 0, in the other cases.

There is a basis alf... ,ak of A such that

1, for v = μ = 1,...,A+

— 1, for v = μ = pλ +

0, in the other cases.

λ(avau) =

Now, by (4.3) we obtain

Since g(Xif Xj) is a constant function, thus ^(g(Xif Xj)) is also a constant func-

tion and 2F(g(Xif Xj)) — g(Xif Xj). Now, by the linearity of λ we obtain

»\ X^]) = g(Xi9

Ί , for i = j= 1,...,PΪ, v = μ = l,...,pΐ

- 1, for f = > = 1 , . . . ,^+, y = ^ = Λ+ + 1 , . . . A+ + Λ

- 1, for i = = pg + 1 , . . . J* + p~, v = μ = 1 , . . . ,p\

1, for i = = ^ + 1 , . . . ,p+ + p~, v = μ = p+

λ + 1 , . . . ,&+ + p~λ

0, in the other cases.

5) The signature of a symmetric form is a pair (p, q), where p is the number of positive
elements and q is the number of negative numbers in a diagonal matrix of the form.
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It means that g is of constant signature (pgpχ + pgpχ, P~gp\ + Pgpχ) because

the family Xf

av, i = 1,.. .,n, v— 1,...,7ίΓ is a basis of vector fields on 2F(U). •

We can apply the above proposition to lift a (pseudo-)Riemannian metric.

Let us observe that for a Riemannian metric g on M its lift g is never a

Riemannian structure on 2F(M). It is an immediate consequence of the following

lemma

LEMMA 4.6. If 2? is a product preserving functor such that dim A > 16\ then

there is no linear function λ : A —> R such that the symmetric form A X A 3

(a, b) —> λ{ab) €= R is positive definite.

Proof. The assumption dim A > 1 implies that there is a ^ A such that

a Φ 0 and a = 0. Now, by the linearity, we have λ{a ) = 0 , i.e. the considered

symmetric form is not positive definite. •

Let ^ be a pseudo-Riemannian metric on M. Its Λ-lift g is a pseudo-

Riemannian metric on 3?(M) if and only if λ : A—• R is a linear function such that

the symmetric form A X A B (#, b) —> λ(ab) ^ R is non-singular. Thus, to lift

pseudo-Riemannian metrics we need to find a linear function λ with this property.

In general, there are no such linear functions λ because we have.

PROPOSITION 4.7. Let %F be a product preserving functor, A be its Weil algebra

and dim A > 1. Let E be a vector subspace of all elements a ^ A such that for each

nilpotent element u e A we have an = 07\ If there exists a linear function λ : A —• R

such that the symmetric form (a, b) —• λ(ab) is non-singular, then dim E = 1.

Proof Let a €= E and a Φ 0. Since the symmetric form (#, b) —> λ(ab) is

non-singular thus there exists b ^ A such that λ(ab) Φ 0. b can be written in the

form b = a\ + u, where a €Ξ R and w is a nilpotent element because A = R 1 +

N, where iV is the subalgebra of nilpotent elements. Now from 0 Φ λ(ab) =

aλ(ά) we obtain λ(a) Φ 0. It implies that ^ I . E . JE—»R is a monomorphism.

Hence dim E < 1. This finishes the proof. •

6 ) dim A = 1 if and only if 9 is the identity functor, i.e. 2?(M) = M and SF(φ) = φ.
7 ) From the characterization of Weil algebras it follows that dim E > 1.
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5. Complete lift of linear connections

In this section we will study lifts of linear connections from a manifold M to

linear connections on 2FiM). We start from very general situation of connections

in principal fibre bundles.

We recall that for a Lie group G there is a natural isomorphism ηG :

&(£G)-><e(&G) of Lie algebra (see Proposition 1.10). We prove the following

proposition about fundamental vector fields on a manifold associated with an ac-

tion of a Lie group. Namely we have

PROPOSITION 5.1. Let 2F be product preserving functor. Let P be a G-space and

for an element U Ξ- $β(G) let U be the fundamental vector field on M defined by U.

If L:P X £(G) -• TP is given by Lip, U) = U*f then for an element Ό of

the corresponding fundamental vector field D on 9>iP) is given by Uy =

Proof If A : P X G -* P is the action of G on P, then, by Proposition 1.8 (2),

^(/l) defines the action of $(G) on ^ ( P ) . Let us observe that Up = dΛiOp, [/),

where 0p is zero in TpP. Thus we have L = dΛ° (0P X id^ ( G )), where 0P: P~^ TP

is the zero vector field.

Let LiSFiP) X £i&G)-+T&P) be the corresponding mapping for ^ ( P ) .

Since Z = diSFΛ) ° (0^ ( i J ) X id^(^-(G))), thus by Propositions 1.9 and 1.10 (3) we

conclude

L= Ϊ]

The composition ηP ° O^(P) is zero section of OF\TP) —• 2F(P), in consequence,

ηp °O^(P) = ^(Op). Now we obtain

L =
(5.1)

It implies

Now we define a lift of connections in principal fibre bundles. Let α>: TP~^>

be a connection form on a principal fibre bundle P ( M , G). Using the
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induced mapping 2F(ω) : 2F(TP) —> &(!£G) and the canonical isomorphisms

ηP : &(TP) -> 7 W ) , τ?G : ̂ (S?G) — W G ) we define ω c : 7 W ) — <£{&G) by

(5.2) ω c = ηG*2F(ω)*ηP'\

ω is called complete lift of ω from P to 2F{P).

We have (see [26]).

PROPOSITION 5.2. Lei & be a product preserving functor. Ifω: TP—+ ί£(G) is a

connection in a principal fibre bundle P(M, G), then the complete lift ω : ΉF(P) —•

<£(&G) is a connection in the principal fibre bundle &{P) (F(M), &{G)).

Proof We define r : G x TP-+ TP by r(ξ, v) = dRξ(v) = (dR °(0G x

idTP))(ξ, v), where R(p, ξ) = Rξ(p) is the right translation on P, and Ad : G X

Sβ{G) ->£{G) by Ad(ξ, ») = ϋ?(ade)(y) = Wad «(0c x idΓ i G))(f, z/), where

ad(ξ, ζ) = ad e(ζ) is the adjoint action of G on G. Let r:2F(G) x T(SFP)-+

T(9P) and Ά d : ^ ( G ) x ί£{&G)^£{&G) be the corresponding mappings for

the principal fibre bundle 5^(P) and the Lie group 2F(G). Similarly to (5.1) we

verify

(5.3) Ad = )? G ^(Ad) (id^(G) x η~G

ι)

(5.4) r = η ( ) ( ι)

Since ω is a connection, thus we have ω°dRξ = ^ ( a d ^ ^ ω and α)(C7 ) = U

for all ί/G £(G). Using our notations we can write equivalently these formulas

in the form

(5.5) ω°r= Ad°(k x ω)

(5.6) ω°L = p2

where k:G~>G is defined by *(£) = ξ" 1 and ί 2 : P x 2(G)-+2(G) is the

standard projection.

To show that co is a connection in ^ ( P ) we need to verify

(5.7) ωc°r= Ad°(£ x ω c )

(5.8) ωc°L = p~2

where A = ^(A) : ̂ ( G ) — ^ ( G ) and ^ : &(P) x ί?(^(G)) — ί?(^(G)) is the

standard projection. />2 is given by

(5.9) £ = ^
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We will verify (5.7). From (5.5), by (5.3) and (5.4) we obtain

x

-Vo'

= Ad°

= Ad«

r v

(id

(k

ω°r)

SF(G)

x ω

(Φ(k

V -vo
' 1 C

C ) .

K/fc* X ^

The formula (5.7) is proved. Analogously by (5.1), (5.6) and (5.9) we obtain (5.8).

D

From definition of the complete lift of connections we can deduce

PROPOSITION 5.3. Let 2F be a product preserving functor and ω : TP—*ί£(G) be

a connection in a principal fibre bundle P(M, G).

(1) If Γ and Γ are the horizontal distributions for ω and ω respectively^, then Γ

(2) //

hω : TP-> TP, hωC :

υω : TP^ TP, υωC :

are the horizontal and vertical projections for ω and a> respectively, then the diagrams

* * SFiTP)

\

T(2FF) ?—+ T{SFP)

commute.

(3) For a vector field X let Xω denote the horizontal lift of X to P with respect to

ω9). If a & A, where A = ^ ( R ) is the Weil algebra of OF, then we have

(xia)rc = (χω)(a).
8 ) They are considered as submanifolds of TP and T2F(P) respectively.
9 ) Xω is the unique vector fields on P such that ω°Xω = 0, dπ°Xω = X°π, where π : P

> M is the bundle projection.
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Proof. Part (1) is an immediate consequence of the definition of ω and of

formula (1.4). Part (2) follows from (1) and the following equality for the vertical

distributions V(2FP) = ηP(^(VP)) which is a consequence of (1.4).

Part (3) is a consequence of the definitions of co , X , of the fact that

2F(π) : 2F(P) -+2F(M) is the bundle projection and of the last formula from (2.8)

for φ = π. •

The constructed complete lift of connection satisfies the naturality condition. In

order to formulate this property we introduce a definition of/-related connections.

L e t / :P—>P' be a homomorphism of principal fibre bundles and let pf: G

—> Gr be the corresponding Lie group homomorphism. Connections co : TP~^

%(G) and ω' : TP'-*£(G') are called f-related if the following diagram

(5.10) 9iL(φ))

commutes.

Now we have (cf. Pogoda [26]).

PROPOSITION 5.4. Let 2F be a product preserving functor. Let f : P(M, G) —•

Pf(M\ GO be a homomorphism of principal fibre bundles and let O), OJ> be connections

inP(M, G) andP'(M', G') respectively. If ω and ω' are f-related, then ω and ω'

are %(f)-related.

Proof. Applying ?F to diagram (5.10) and using ηP, ηF, ηG, ηG, we complete

the proof. D

Proposition 5.4 means that the family of mappings ω—• ω is "gauge-natural"

transformation (see [3]).

To transform the obtained results for linear connections we will need some

following properties of linear bundles.

PROPOSITION 5.5. Let ̂  be a product preserving functor and A = ^ ( R ) be its

Weil algebra.
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For every manifold M there exists one and only one monomorphism

of principal fibre bundles covering the identity on 2F(M) and with the inclusion

I : &(GL(Rn)) -> GL(&(Rn)) given in Proposition 1.8 (2) such that for each chart

([/, φ) on M we have IM°^(σφ) = σ^{φ), where σφ : JJ—» LM and % ( (/ ) ) : 3^{ID —•

L{3"M) are local sections associated with φ and 3"{φ) respectively.

The family {IM} is natural, i.e. for every embedding φ\M—*N of two

n-dimensional manifolds M, N the diagram

df

TP • TP'

(5.11)

commutes, where L(φ) : LM^> LN is the induced mapping.

Proof. We choose the canonical mapping KM : LM x Rn ^> TM, KM(l, υ) =

l(υ). Let us define IM : ^(LM) -> L(^M) by

(5.12) /M(0(t0 = (ηM*F(KM))(ϊ, ϋ),

where 1 ̂  !<F(LM), v ^ An and 7?M is defined in Proposition 1.9. Since

, t;) = KM(l, Xv) we obtain &(KM)(ΪX, v) = P(KM)(J, Xv) for all 7 e

Z e ^(GL(RM)) c GL(^(RM)) and t; e Aw, where the inclusion / is de-

scribed in Proposition 1.8 (2). Therefore

(IM(ΪX))(v) = (IMG))(Xϋ) = (IM(I)X)(v),

i.e. IM is a principal fibre bundle homomorphism. Since the corresponding Lie

group homomorphism is the inclusion /, IM is a pricipal fibre bundle monomorph-

ism.

If φ is a chart on M, then KM(σφ(x), υ) = dφ~~ι(φ(x), v) after the standard

identification TRn with Rn X Rn. Using & and (5.12) we obtain

φ

= (ηM*&(dqΓι)){9(φ){x), ϋ)

, ϋ)

, ϋ)
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Thus IM°$(σψ) = σ^(φ). D

We will study lifts of linear connections from a manifold M to linear connec-

tions on^(M).

Let ω : TLM—*gl(ny R) be a connection form on the bundle of linear frames

(a linear connection on M), where gl(n, R) denotes the Lie algebra of the linear

group and n = dim M. If we apply our construction to a linear connection ω, we

obtain a connection ω° : W(LM) — <£(&GL(Rn)) in &(LM). Using the inclusion

IM : 2F{LM) —• L(2F(M)) from Proposition 5.5 we prolong ω to one and only one

linear connection TL(3"(M)) —• GL(2F(Rn)) denoted also by ω and called also

the complete lift.
Q

We prove the following property of co .

PROPOSITION 5.6. Let 2F be a product preserving functor.

Let ω : TLM—*gl(n, R) be a linear connection on M. If V and V are the

covariant derivations of ω and ω respectively, then for all vector fields X, Y on M

and all a, b e A = ίF(R) we have

(5.13) VχM Y(b) = (VxY)(ab\

V is the unique linear connection on 2F(M) satisfying equality (5.13) for all vec-

tor fields X, Y onM and all a, b e A.

If V and Vr are two φ-related connections on n-dimensional manifolds N and M

respectively, where φ : M—+ N is an embedding, then V and V are ^(φ)-related.

Proof For a vector field X on M let X ~ : LM—> Rw be the corresponding

mapping such that for p ^ LM the value X ~ (p) are coordinates of X(π(p)) in the

basis p. Now we have (see [2] or [13])

(5.14) (VXY) ~ =Xω(Y~).

Since Yπ(n = KM(l, Y~(l)), where KM: LM X Rn -> TM is the canonical

mapping, then

Y^nnn = (VM'?(KM))G, SHYΊΦ) = K?m(IMΦ, 3P(Y~)Φ).

It implies (Y ) ~°/M =

Now we deduce immediately

Hence, by Propositions 5.3 (3) and 2.7 we obtain
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( I ^ < * , Γ ( V ° / M = (x<a))ωC(Yib)) ~°iM

= «VxY)(ab)) ~ΊM.

This formula implies (5.13).

The uniqueness of V follows immediately from Corollary 2.8. The last part

of the proposition is a consequence of (5.13). •

The above theorem means that in the case of the tangent bundle 2F(M) = TM

the constructed connection coincides with the connection defined by Yano and

Kobayashi [32]. In the case of r-order tangent bundle, the tangent bundle of

//-velocities, the tangent bundle of infinitesimal near points our construction coin-

cides with the definition of Morimoto [18]-[23].

From Proposition 5.6 we can deduce formulas for ChristoffeΓs symbols of V .

We will formulate these formulas in Section 7.

For torsions and curvatures of V and V we have

PROPOSITION 5.6. Let SF be a product preserving functor. If T and R is the torsion

and the curvature of V, then T and R are the torsion and the curvature of V .

Proof Let X, Y be vector fields on M and α, b be elements of the corres-

ponding Weil algebra A = ^ ( R ) . If T is the torsion of V , then from Proposition

5.6 and (2.15) we obtain

TVC"\ O = V%»Y{b) - Vc

γWX'a) - [X(a), Y(b)]

= (VXY)M) - (VYX)M) - [X, Y]m)

= axx, Y)Ϋab)

= Tc(Xia), Y(b)).

According to Proposition 2.9, T — T . Analogously we verify the formula for

curvature tensors. O

Proposition 5.6 implies immediately

COROLLARY 5.8. V is a torsionless connection if and only if so is V . V is a

curvatureless connection if and only if so is V .
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We show the following proposition about relationships between geodesies of

V and geodesies of V .

PROPOSITION 5.9. Let % be a product preserving functor. If γ : (— ε, + ε) -* M

is a geodesic of V, then for each element a of the corresponding Weil algebra A —

the curve γa(t) = &(j) (ta) is a geodesic of V°.

Proof. Let X be a local vector on M such that f(t) = X(γ(t)).

Let φ be a flow of X. Then γ(t + s) = φ(t, γ(s)) for sufficiently small t, s.

Applying 9 we get 2F(γ)(a + b) = 2F(φ)(a, ^(f)(b)) for a, b in sufficient small

neighborhood of 0 ^ A. Therefore, by Proposition 2.5, we obtain

Since (VxX)°γ= 0, then

(VxX)(a2)°&(γ) = a ηM°&{(VxX)°γ) = 0.

Now, by (5.13) we have

= (VxX)ia\ϊa(t))
= 0.

It means that ya is a geodesic10). •

We can also prove

PROPOSITION 5.10. Let 2F be a product preserving functor and A = ^ ( R ) be its

Weil algebra. Let V be a connection of M and j be its geodesic. If X is a Jacobi field

along γ and a e A, then Xa(t) = (ηM ° 2F(X)) (ta) is a Jacobi field along γa(t) =

Proof. According to Proposition 5.9 γa is a geodesic on 2F(M) and if Y is a

local vector fields on M such that Y(γ(f)) = fit) then Y(a)(γa(t)) = γa(t). Since

From the proof we deduce that if a2 = 0, then γa is geodesic on $F(M) for every con-
nection V on M and every curve γ on M.
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X is a Jacobi field along γ if and only if

V\X + FfΓCϊ, y) + R(X, f)f = 0,

thus using the methods from Proposition 5.9 we can conclude our proposition. D

We finish this section by the following proposition about covariant deriva-

tions.

PROPOSITION 5.11. Let ^ be a product preserving functor, A — ^ ( R ) be its Weil

algebra, V be a linear connection on a manifold M, X be a vector field on M and let a

e A

If S is a tensor field of type (1, k) on M and b ^ A, then

v^s™ = {vxsγab)

If G is a tensor field of type (0, k) on M and λ : A —* R is a linear function,

then

V%Gω = (7xG)a"'\

Proof. Let Xv ... ,Xk be v e c t o r fields on M a n d alt... ,ak e A . U s i n g

(VXS) (X, Xk) = VX(S(XV ...,Xk))-Σ SiX,,..., VxXt,... ,Xk)

i=ι

from (3.3) and (5.13) we obtain

1 , m m . 9 Λ k ) — vX(a){o κ Λ ι , . . . , A A ;

ώ KΛi , . . ., Vχ^)Λt , . . . , Λ k )

- Σ s'b\xϊaύ (vxx,)ia>)

= (Vx(S(Xv...,Xk)))
k

(baa1...ak)

ί = l

= «VxS)(X1,...,Xt))itmi-*)

/ΓT r*\ (ab) / viax) v^k\
— \vχθ) \Λι , . . . ,At. ) .

According to Proposition 2.9 the first part is verified.

A verification of the second part is similar. We use (4.3) instead of (3.3). D
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6. Lifts of Riemannian metrics and symplectic structures

From propositions proved in Sections 4 and 5 we can deduce:

PROPOSITION 6.1. Let 2P be a product preserving functor and A = «^(R) be its

Weil algebra. Let λ : A —• R be a linear function such that the symmetric form A X A

B (a, b) —> λ(ab) £ R i s non-singular and let (pλ, pλ) be its signature.

(1) If g is a pseudo-Riemannian metric on M, then g is a pseudo-Riemannian

metric on HF(M). If (pg, pg) is the signature of g, then the signature of g is (pgpλ

~^~PgPx > PgPx ~̂ ~PgPx̂

(2) If V is the Riemannian connection of g, then V is the Riemannian connec-

tionofg .

(3) If X is a Killing vector field for g and a e A, then X a is a Killing vector

field for g

Proof. The part (1) is an immediate consequence of Proposition 4.5, the part

(2) follows from Proposition 5.11 and the part (3) from Proposition 4.2 (4). •

A Kahlerian structure on a manifold M is a couple (g,f), where g is a

pseudo-Riemannian tensor on M and / is a complex structure on M such that

g(JX, Y) = -g{XJY), VJ=0

for all vector fields X, Y on M, where V is the Riemannian connection of g. For

Kahlerian structures we have

THEOREM 6.2. Let 2F be a product preserving functor and A = «^(R) be its Weil

algebra. Let λ : A —• R be a linear function such that the symmetric form A X A B

{a, b) —•* λ{ab) €= R is non-singular. If (g, J) is a Kahlerian structure on M, then

(g j J ) is a Kahlerian structure on2F(M).

Proof According to Proposition 6.1 g is a pseudo-Riemannian metric on

with Riemannian connection V , where V is Riemannian connection of g,

and by Theorem 3.5 / is a complex structure on 3"{M).

Using the notation of Section 4 the formula g(JX, JO — ~ g(X, JY) can be

written in the form β(g,J) = —β(g,J). Using Propositions 4.2 (3) and 5.11

we finish the proof. •
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An almost symplectic structure on a manifold M is a 2-form a) on M such that

the mapping TM 3 v—+ivω £ Γ M is an isomorphism of vector bundles. The

dimension of manifold M on which there is an almost symplectic structure is odd.

An almost symplectic structure ω on M is called a symplectic structure if dω = 0.

We prove

PROPOSITION 6.3. Let 2F be a product preserving functor and A = 2F(R) be its

Weil algebra. Let λ : A ~» R 6# a linear function such that the symmetric form A X A

B {a, b) —* λ(ab) ^ R is non-singular. If ω is an almost symplectic structure on M,

then ω is an almost symplectic structure on 2F(M).

If ω is a symplectic structure, then so is ω .

Proof Let dim M = 2n. For each point of M there are a neighborhood U and

vector fields Xlf... ,Xn, Xn+1,... ,X2n defined on U such that (see [11] or [4])

1, if y = i + «, i = 1,.. .,w

- 1, if i = + n, j = 1,...,«

0, in the other cases.

Let alf..., aκ be a basis of 4̂ such that

λ(aυaa) =

1 for v = ^ = ! , . . . , / >

- 1 for v = μ = p + 1,...,J

0 in the other cases.

where (p, K — p) is the signature of A x A B (0, b) -+λ(άb) e R and X = dim A

Now, using (4.3) we compute the matrix Ω{itV){j>u) of ω . We obtain

Since ω(Xif Xj) is constant thus we have (cf. the proof of Proposition 4.5)

1, if y = i + n, v = μ = 1 , . . ,,p

- 1, i f ; = i + w, v = // =p + 1,...,K

— 1, if ί = y + w, v = μ = 1,. . .,/>

1, if ί = + w, v = μ = /> + 1 , . . . ,K
1 0, in the other cases.

It means that the matrix Ω — [Ω(i>v)(jfi)] is a block-matrix of the form

\A, 0 - 0

0
Ω =

0 A2

0 0
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where p matrixes from Alt..., Aκ are equal to

, 0 h

and K — p from this sequence are equal to ~~ /. It implies that Ω is a non-

singular matrix. Thus, ω is an almost symplectic structure on 3?(M).

The last part of the proposition follows from Corollary 4.4. •

Let (g, J) be a Kahlerian structure on M. Then ω(X, Y) = g(X, JY) is a

symplectic structure associated to the given Kahlerian structure (g,J). From

Proposition 4.2 (3) we obtain immediately

COROLLARY 6.4. Let λ : A —• R be a linear function such that the symmetric form

A X A B {a, b) —* λ(ab) ^ R is non-singular. If ω is a symplectic structure associ-

ated to a Kahlerian structure (g, J), then ω is associated to (g , J ).

7. Final remarks — local expressions

We have proved all our theorems and propositions without using local

expressions for lifted geometric objects. In the cases of the tangent bundle, the

r-tangent bundle, the tangent bundle of pr-velocities local expressions of coordin-

ates of lifted objects were very important to prove main results. In the cases of

these bundles local expressions have a nice and simple form because in the corres-

ponding Weil algebras we can choose a basis with simple structure constants. In

the general case formulas are more complicated.

Let 3F be a product preserving functor. In this section we fix a basis alf.. .,

aκ of the Weil algebra A — ̂ (R) associated to 2F and let aV{1 be the structural

constants given by

K

(7.1) avau = Σ alu aκ.
κ = l

We denote by aγ,.. .,aκ : A —• R the dual basis.

We start our considerations from looking for a formula for (fg) , where /, g

are functions on M and λ : A —* R is a linear function. Using the formulas

κ
 *Ϊ

V=l

from the definition of / we conclude
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v,u=i

λ(f "g "avau

avuλ(aκ)f v g {of)

iParticularly, if λ = aκ is an element of the dual basis from (7.3) we obtain

(7.4) (/^) ( a ? )= Σ aljiat)gat).

If / is a function on M, X is a vector field on M and α ^ A, then from the

equality (fX)° = 2F(f) 'X°, the definition of a-\iίt of vector fields and from (7.2)

we have

(7.5) = Σf(aΐ)aav-Xc

v=l

Particularly, if a = au is an element of the basis of A, then from (7.5) and (7.1) we

obtain

(7.6)

= .Σ alf{ai)X{aκ\
v,κ—l

Let (U, x1) be a chart on M. lί X = Σ ^ ^ ' ^ is the local expression of a

vector field X, then from (7.6) and Corollary 2.8 we obtain

= Σ Σ «;(r)(ίίli.
ί = l j « , κ = l

The above formula means that Σ^ = i a^iX*) aβ are coordinates of X ay.

Now using Propositions 3.1 and 4.1 we can calculate the local coordinates of

S , where S is a tensor fields of type (1, k) or (0, k).

To finish this section we prove a formula for the ChristoffeΓ symbols of the

complete lift of a linear connection V.
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From Proposition 5.6, Corollary 2.8 and formulas (7.1), (7.6) and (7.7) we

have

Since the

thus from

Christeffel

these two

n

k=l p

n

k=l p

' symbols

formulas

K . .
^ P ( ryk /->> \ \ap>
Cu OC \L Ojf)
=1 v u tJ

"STΛ p x / τtA\ ia%) /-

Σ aV[lapω(ΓJ ωo
, κ , α > = l

Γ(i,v).v#) a r e defined

^ _ y y p(k,x)
v ' fc=l x = l

we obtain

by

Γ{k>κ) — y n/p n/κ

1 (i,v),v,u)~ ^ avp.apω
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