H. Yokoi Nagoya Math. J. Vol. 33 (1968), 139-152

ON REAL QUADRATIC FIELDS CONTAINING UNITS WITH NORM -1

HIDEO YOKOI

Let Q be the rational number field, and let $K = Q(\sqrt{D}) (D > 0$ a rational integer) be a real quadratic field. Then, throughout this paper, we shall understand by the fundamental unit ε_D of $Q(\sqrt{D})$ the normalized fundamental unit $\varepsilon_D > 1$.

Recently H. Hasse investigated variously real quadratic fields with the genus 1, but with the class number more than one¹). However, since he needed there to know a explicit form of the fundamental unit of a real quadratic field, his investigation had naturally to be restricted within the case of real quadratic fields of Richaud-Degert type whose fundamental units were already given explicitly.

In this paper, we shall give explicitly the fundamental units of real quadratic fields of the more general type than Richaud-Degert's in the case of real quadratic fields with the fundamental unit ε satisfying $N\varepsilon = -1$, and consider the class number of real quadratic fields of this type as Hasse did in the case of Richaud-Degert type.

In §1, by means of expressing any unit $\varepsilon = (t + u\sqrt{D})/2$ of $Q(\sqrt{D})$ as a function of t, we shall give first a generating function of all real quadratic fields with the fundamental unit whose norm is equal to -1 (Theorem 1). In §2, by means of classifying all units $\varepsilon = (t + u\sqrt{D})/2$ with $N\varepsilon = -1$ by the positive value of u, we shall prove that in the class of u = p or 2p (p is 1 or prime congruent to 1 mod 4) the unit $\varepsilon = (t + u\sqrt{D})/2 > 1$ becomes the fundamental unit of $Q(\sqrt{D})$ except for at most finite number of values of D (Theorem 2 and its Corollary). Moreover, we shall show that real quadratic fields of Richaud-Degert type essentially correspond to real quadratic fields with the fundamental unit belonging to the class of u = 1 or 2 in such classification (Proposition 2). In §3, we shall give an estima-

Received February 21, 1968.

¹⁾ Cf. H. Hasse [3].

HIDEO YOKOI

tion formula from below of the class number of real quadratic fields with the fundamental unit belonging to the class of u = p or 2p (Theorem 3). Finally, in §4 we shall show a few examples in concrete cases of p = 5, 13.

§1. Generating function

In order to investigate real quadratic fields with the fundamental unit whose norm is equal to -1, we first give a generating function of those real quadratic fields. The following theorem may be already known, but since by using the theorem we can easily draw up a list of the fundamental unit ε_D of real quadratic fields $Q(\sqrt{D})$ satisfying $N\varepsilon_D = -1^{2}$ and our investigation in this note is based on it, we dare add a simple proof of it.

THEOREM 1. Let $Q(\sqrt{D})$ (D > 0 square-free) be a real quadratic field, then any unit ε of $Q(\sqrt{D})$ satisfying $N\varepsilon = -1$ is of the form $\varepsilon = (t + \sqrt{t^2 + 4})/2$ for some integer t, and the reverse is also true.

In particular, all real quadratic fields with the fundamental unit ε satisfying $N\varepsilon = -1$ are generated by the function $\sqrt{t^2 + 4}$ over Q, and conversely any field $Q(\sqrt{t^2 + 4})$ ($t \neq 0$) generated by $\sqrt{t^2 + 4}$ over Q is a real quadratic field with the fundamental unit ε satisfying $N\varepsilon = -1$.

Proof. Since an unit ε of a real quadratic field $Q(\sqrt{D}) (D > 0$ squarefree) is an integer whose norm is equal to ± 1 , ε is of the form $\varepsilon = (t + u\sqrt{D})/2$; $t \equiv u \pmod{2}$, moreover $t \equiv u \equiv 0 \pmod{2}$ for the special case of $D \equiv 2, 3 \pmod{4}$, and (t, u) satisfies Pell's equation $x^2 - Dy^2 = \pm 4$ because of $\pm 1 = N\varepsilon = (t^2 - Du^2)/4$.

Conversely, if a pair of integers (t, u) satisfies Pell's equation $t^2 - Du^2 = -4$, then clearly $t \equiv u \pmod{2}$ and moreover $t \equiv u \equiv 0 \pmod{2}$ for the special case of $D \equiv 2$, 3 (mod 4). For, if we assume $t \equiv u \equiv 1 \pmod{2}$, then we have $t^2 \equiv u^2 \equiv 1 \pmod{4}$, and hence $t^2 - Du^2 = -4 \pmod{2} = 1 \pmod{4}$. Therefore, $\varepsilon = (t + u\sqrt{D})/2 = (t \pm \sqrt{Du^2})/2 = (t \pm \sqrt{t^2 + 4})/2$ is a unit of $Q(\sqrt{D})$ satisfying $N\varepsilon = -1$.

The following lemma may be partly known, but it is useful throughout this note.

LEMMA 1. If Pell's equation $t^2 - Du^2 = -4$ is solvable for a positive squarefree integer D, then the prime decompositions of D, u are of the following form:

140

²⁾ Cf. Table 1.

$$D = 2^{\delta_1} \prod_i p_i, \quad u = 2^{\delta_2} \prod_j q_j^{e_j},$$

where δ_1 , δ_2 take the value 0 or 1, p_i , q_j are congruent to 1 mod 4, and e_j are positive integers. Moreover, $D \equiv 2 \pmod{4}$ implies $t \equiv 0 \pmod{2}$, which is equivalent to $u \equiv 0 \pmod{2}$.

Proof. If Pell's equation $t^2 - Du^2 = -4$ is solvable, then $t^2 \equiv -4 \pmod{Du^2}$ holds, and hence for any odd prime factor p of Du^2 , we have $t^2 \equiv -4 \pmod{p}$. Therefore, we get $1 = \left(\frac{-4}{p}\right) = (-1)^{\frac{p-1}{2}}$, which implies $p \equiv 1 \pmod{4}$.

Next, if $u \equiv 0 \pmod{4}$ holds, then $t^2 - Du^2 = -4$ implies $t \equiv 0 \pmod{2}$, and hence we may put $u = 4u_0$, $t = 2t_0$, and we have $t_0^2 - 4Du_0^2 = -1$. Therefore, we get $t_0^2 \equiv -1 \pmod{4}$, which is a contradiction. The remaining part is clear from $t^2 - Du^2 = -4$.

§2. Fundamental unit

We first give the fundamental unit of real quadratic fields of two types.

PROPOSITION 1. (i) If $D = t^2 + 4$ (t > 0) is square-free, then $\varepsilon_D = (t + \sqrt{t^2 + 4})/2$ is the fundamental unit of the real quadratic field $Q(\sqrt{D})$ and $N\varepsilon_D = -1$.

(ii) If $D = t_0^2 + 1$ ($0 < t_0 \neq 2$) is square-free, then $\varepsilon_D = t_0 + \sqrt{t_0^2 + 1}$ is the fundamental unit of the real quadratic field $Q(\sqrt{D})$ and $N\varepsilon_D = -1$.

Proof. Let (x, y) = (t, u) be the least positive integral solution of Pell's equation $x^2 - Dy^2 = -4$ (if exists), then $\varepsilon_D = (t + u\sqrt{D})/2$ is the fundamental unit of the real quadratic field $Q(\sqrt{D})$ and $N\varepsilon_D = -1$. Therefore, in the special case of y = u = 1, i.e. $t^2 - D = -4$, $\varepsilon_D = (t + u\sqrt{D})/2 = (t + \sqrt{t^2 + 4})/2$ is certainly the fundamental unit of $Q(\sqrt{t^2 + 4})$ provided that $D = t^2 + 4$ is square-free. In the case of y = u = 2, we get $t \equiv 0 \pmod{2}$ from lemma 1, and hence we may put $t = 2t_0$, and $t_0^2 - D = -1$ holds. Hence, $\varepsilon_D = (t + u\sqrt{D})/2 = t_0 + \sqrt{t_0^2 + 1}$ is the fundamental unit of $Q(\sqrt{t_0^2 + 1})$ provided that $D = t_0^2 + 1$ is square-free and D is not of the above mentioned type (i). However, $D = t_0^2 + 1 = t^2 + 4$ holds for some integers t_0 , t if and only if t_0 is equal to 2, i.e. $D = 5 = 2^2 + 1 = 1^2 + 4$. Thus, the proposition 1 is proved in both cases.

HIDEO YOKOI

Probably, the following result of Richaud-Degert³) is only one that gives explicitly the fundamental unit of real quadratic fields of certain type.

LEMMA 2 (Richaud-Degert). Let $Q(\sqrt{D})$ (D > 0 square-free) be a real quadratic field, and put $D = n^2 + r$ ($-n < r \le n$). Then, if $4n \equiv 0 \pmod{r}$ holds, the fundamental unit ε_D of $Q(\sqrt{D})$ is of the following form:

$$\begin{split} \varepsilon_D &= n + \sqrt{D} \quad \text{with} \quad N \varepsilon_D = - \, \text{sgn} \, r \, \text{for} \quad |r| = 1, \\ &\quad (\text{except for } D = 5, \ n = 2, \ r = 1), \\ \varepsilon_D &= (n + \sqrt{D})/2 \quad \text{with} \quad N \varepsilon_D = - \, \text{sgn} \, r \, \text{for} \quad |r| = 4, \\ \varepsilon_D &= [(2n^2 + r) + 2n\sqrt{D}]/r \quad \text{with} \quad N \varepsilon_D = 1 \quad \text{for} \quad |r| \neq 1, \ 4. \end{split}$$

Such type of real quadratic fields that the assumption of this lemma is satisfied we shall call simply R-D type. Then the following proposition shows a relation between the type of real quadratic fields in proposition 1 and R-D type in the case of real quadratic fields with the fundamental unit whose norm is equal to -1.

PROPOSITION 2. A real quadratic field $Q(\sqrt{D})$ (D > 0 square-free) with the fundamental unit whose norm is equal to -1 is of R-D type if and only if D is of the form $D = t^2 + 4$ or $t_0^2 + 1$ ($t, t_0 > 0$ integer) except for D = 5, 13; in other words, if and only if u in the least positive integral solution (x, y) = (t, u) of Pell's equation $x^2 - Dy^2 = -4$ is equal to 1 or 2.

Proof. Let $Q(\sqrt{D}) (D > 0$ square-free) be a real quadratic field with the fundamental unit whose norm is equal to -1. Then, if $Q(\sqrt{D})$ is of R-D type, D is of the form $D = t^2 + 4$ or $t_0^2 + 1$, $(t, t_0 > 0$ integers) by lemma 2, and hence it follows from proposition 1 that in the least positive integral solution (x, y) = (t, u) of Pell's equation $x^2 - Dy^2 = -4$ is equal to 1 or 2.

Conversely, if u = 2, i.e. $D = t_0^2 + 1$, then $Q(\sqrt{D})$ is clearly of R-D type. On the other hand, in the case of u = 1, i.e. $D = t^2 + 4$, $Q(\sqrt{D})$ is of R-D type if and only if $t \ge 4$ holds. However, in the case of t = 2, D is equal to 8 and is not square-free.

Therefore, except for D = 5 with t = 1 and D = 13 with t = 3, it is equivalent to u = 1 or 2 that the real quadratic field $Q(\sqrt{D})$ with the fundamental unit whose norm is equal to -1 is of R-D type.

142

³⁾ Cf. G. Degert [2] and C. Richaud [6].

Thus, both $Q(\sqrt{5})$ and $Q(\sqrt{13})$ are not of R-D type, but both values of *u* in the least positive integral solution (x, y) = (t, u) of Pell's equation $x^2 - Dy^2 = -4$ are equal to 1. Hence, from now, we shall understand R-D type in such a wide sense that it contains both $Q(\sqrt{5})$ and $Q(\sqrt{13})$.

In order to give explicitly the fundamental unit of real quadratic fields of a new type different from R-D's, we must prepare the following three lemmas:

LEMMA 3. For any prime p satisfying $p \equiv 1 \pmod{4}$, an unit ε of a real quadratic field $\mathbf{Q}(\sqrt{D})$ that is of the form $(t + p\sqrt{D})/2$ or $t + p\sqrt{D} (D > 0$ square-free) and that satisfies $N\varepsilon = -1$ is the fundamental unit of $\mathbf{Q}(\sqrt{D})$ if and only if the real quadratic field $\mathbf{Q}\sqrt{D}$ is not of R-D type.

Proof. Let $\varepsilon_0 = (t_0 + u_0 \sqrt{D})/2$ (D > 0 square-free) be the fundamental unit of the real quadratic field $Q(\sqrt{D})$, then the norm of ε_0 is equal to -1 and there exists an odd integer n satisfying $\varepsilon = \varepsilon_0^n$. If we put for this odd integer $n \ 2^n \varepsilon_0^n = (t_0 + u_0 \sqrt{D})^n = T + U \sqrt{D}$, then we have $U = {}_n C_1 t_0^{n-1} u_0 + {}_n C_3 t_0^{n-3} u_0^3 D +$ $\cdots + {}_n C_{n-2} t_0^2 u_0^{n-2} D^{\frac{n-3}{2}} + {}_n C_n u_0^n D^{\frac{n-1}{2}} \equiv 0 \pmod{u_0}$, while we have $U = 2^{n-1} p$ or $2^n p$. Hence, in the case of $u_0 \equiv 1 \pmod{4}$, we get $p \equiv 0 \pmod{u_0}$, which implies $u_0 \equiv 1$ or p. In the case of $u_0 \equiv 1 \pmod{4}$, we may put by lemma 1 $u_0 = 2u'_0$, $u'_0 \equiv 1 \pmod{4}$. Hence, we get $p \equiv 0 \pmod{u'_0}$, which implies $u'_0 = 1$ or p. Therefore, the condition $u_0 = p$ or 2p is equivalent to $u_0 \neq 1$, 2. On the other hand, since the condition $\varepsilon_0 = \varepsilon$ is equivalent to $u_0 = p$ or 2p, it follows from proposition 2 that $\varepsilon = \varepsilon_0$ holds if and only if the real quadratic field $Q(\sqrt{D})$ is not of R-D type.

LEMMA 4. For any prime p satisfying $p \equiv 1 \pmod{4}$, there are two uniquely determined integers a, b such that $a^2 + 4 = bp^2$, $0 < a < p^2$. Moreover, for these p, a, b, $D = p^2m^2 \pm 2am + b \pmod{5}$ is congruent to $1 \mod 4$ or congruent to 4 or 8 mod 16, and Pell's equation $t^2 - Du^2 = -4$ is always solvable.⁴

Proof. Since for any prime p congruent to 1 mod 4 we get $\left(\frac{-4}{p}\right) = 1$, congruence $x^2 \equiv -4 \pmod{p}$ is solvable, and hence congruence $x^2 \equiv -4 \pmod{p^2}$ is also solvable. Among the solutions of this congruence $x^2 \equiv -4$

⁴⁾ L. Rédei notes in [5] that if Pell's equation $t^2 - du^2 = -1$ is solvable for some integer $d = d_0$, then the Pell's equation is also solvable for $d = u_0^2 m^2 + 2t_0 m + d_0$, where (t_0, u_0) is any positive integral solution of $t^2 - d_0 u^2 = -1$ and *m* is any integer.

(mod p^2), there exists only one solution $x \equiv \pm a \pmod{p^2}$ satisfying $0 < a < p^2$. For this positive integer a, there is a unique integer b satisfying $a^2 + 4 = bp^2$. Conversely, if $a^2 + 4 = bp^2$ holds, then $x \equiv \pm a \pmod{p^2}$ is a solution of congruence $x^2 \equiv -4 \pmod{p^2}$.

Next, set $D = p^2m^2 \pm 2am + b$, $t = p^2m \pm a$, u = p (m > 0), then Pell's equation $t^2 - Du^2 = -4$ is certainly satisfied by these D, t, u. Therefore, if we note only that $p^2 \equiv 1 \pmod{4}$ and $t^2 + 4 = Dp^2$, it is easy to see that $D \equiv 1 \pmod{4}$ for odd t, and $D \equiv 0 \pmod{4}$ for even t. In the case of $D \equiv 0 \pmod{4}$, we may put $D = 4D_0$, $t = 2t_0$, and get $t_0^2 + 1 = D_0p^2$. Hence, we obtain similarly $D_0 \equiv 2 \pmod{4}$ for odd t_0 and $D_0 \equiv 1 \pmod{4}$ for even t. Thus, we have $D = 4D_0 \equiv 4$ or 8 (mod 16).

In order to prove theorem 2 we require another lemma, which is itself of some interest.

LEMMA 5. For any integers a > 0, b, c satisfying $b \neq 0 \pmod{a}$, there exist at most a finite number of such natural n that $f(n) = a^2n^2 + bn + c$ is square.

Proof. It follows from the assumption $b \not\equiv 0 \pmod{a}$ that an integer k satisfying $\left|\frac{b}{2a} - k\right| < \frac{1}{2}$ is uniquely determined. By using this integer k, we rewrite f(n) in the following form:

$$f(n) = a^2n^2 + bn + c = (an + k)^2 + (b - 2ak)n + (c - k^2).$$

Then, since |b - 2ak| < a, the inequality

$$-(an + k) < (b - 2ak)n + (c - k^2) < an + k$$

holds for all natural n except at most finite number of cases. Moreover, since $b - 2ak \neq 0$, we know that

$$(b-2ak)n + (c-k^2) \neq 0$$

holds for all natural n except for at most one.

On the other hand, the above inequality shows that $(b-2ak)n + (c-k^2)$ is the nearest integer to $\sqrt{f(n)}$ in absolute value. Therefore, $f(n) = a^2n^2 + bn + c$ does not become square for any natural *n* apart from a finite number of exceptions. The lemma is thus proved.

THEOREM 2. For any prime p congruent to 1 mod 4, let, a, b denote the integer in lemma 4 satisfying $a^2 + 4 = bp^2$ ($0 < a < p^2$). Then, there exists an integer $D_0 = D_0(p)$ such that if $D = p^2m^2 \pm 2am + b$ ($m \ge 0$) has no square factor

except 4, and if $D \ge D_0$, the real quadratic field $Q(\sqrt{D})$ is not of R-D type. Therefore, the fundamental unit ε_D of $Q(\sqrt{D})$ is of the following form:

$$\varepsilon_D = \begin{cases} [(p^2m \pm a) + p\sqrt{D}]/2 \cdots D: \text{ square-free,} \\ (p^2m \pm a)/2 + p\sqrt{D/4} \cdots otherwise, \end{cases}$$

and $N \varepsilon_D = -1$.

Proof. Since Pell's equation $t^2 - Du^2 = -4$ is satisfied by $D = p^2m^2 \pm 2am + b$, $t = p^2m \pm a$, u = p, $\varepsilon = [(p^2m \pm a) + p\sqrt{D}]/2$ is an unit of the real quadratic field $Q(\sqrt{D})$, and $N\varepsilon = -1$. Moreover, by our assumptions $a^2 + 4 = bp^2$ and $p \equiv 1 \pmod{4}$ we have $2a \equiv 0 \pmod{p}$. Therefore, in the case that D is square-free, it follows from lemma 5 that both $D - 1 = p^2m^2 \pm 2am + b - 1$ and $D - 4 = p^2m^2 \pm 2am + b - 4$ are never square for any natural m except at most a finite number, and hence by lemma 2 the quadratic field $Q(\sqrt{D})$ is not of R-D type for any natural m except at most a finite number. In the case of $D = 4D_0(D_0 > 0$ square-free), we have $t = p^2m \pm a \equiv 0 \pmod{2}$ by lemma 1, and hence $m \equiv a \pmod{2}$. By our assumptions $a^2 + 4 = bp^2$, $p \equiv 1 \pmod{4}$, $a \equiv 0 \pmod{2}$ is equivalent to $b \equiv 0 \pmod{4}$, and $a \equiv 1 \pmod{2}$ is equivalent to $b \equiv 1 \pmod{4}$.

Therefore, in the case of $m \equiv 0 \pmod{2}$, we may put $m = 2m_0$, $b = 4b_0$ and get $D_0 = D/4 = p^2 m_0^2 \pm am_0 + b_0$. Since $a \not\equiv 0 \pmod{p}$, it follows from lemma 5 that both $D_0 - 1$ and $D_0 - 4$ are never square for any natural mexcept at most a finite number. In the case of $m \equiv 1 \pmod{2}$, we may put $m = 2m_0 + 1$, $b = 4b_0 + 1$ and get $D_0 = D/4 = p^2 m_0^2 + (p^2 \pm a)m_0 + (b_0 + (p^2 + 1 \pm 2a)/4)$. Since $p^2 \pm a \equiv \pm a \not\equiv 0 \pmod{p}$, it follows from lemma 5 that both $D_0 - 1$ and $D_0 - 4$ are never square for any natural m_0 except at most a finite number. Thus, for both types of m, we see at once from lemma 2 that the quadratic field $Q(\sqrt{D}) = Q(\sqrt{D/4})$ is never of R-D type for any natural m up to at most a finite number of exceptions.

Therefore, it was proved by lemma 3 for both types of D that there exists an integer $D_0 = D_0(p)$ such that the above mentioned unit $\varepsilon = [(mp^2 \pm a) + p\sqrt{D}]/2$ is the fundamental unit of $Q(\sqrt{D})$ provided that D has no square factor except 4, and that $D \ge D_0(p)$.

This theorem implies the following sufficient condition for an unit ε of a real quadratic field $Q(\sqrt{D})$ (D > 0 square-free) satisfying $N\varepsilon = -1$ to be the fundamental unit.

HIDEO YOKOI

COROLLARY. For any prime p congruent to 1 mod 4, there exists an integer $D_0 = D_0(p)$ such that if for some square-free D satisfying $D \ge D_0$ the real quadratic field $Q(\sqrt{D})$ contains an unit ε of the form $\varepsilon = (t_0 + p_1/\overline{D})/2$ or $t_0 + p_1/\overline{D}$ and $N\varepsilon = -1$ holds, then the unit ε is the fundamental unit of $Q(\sqrt{D})$.

Proof. In the case of $\varepsilon = (t_0 + p\sqrt{D})/2$, $-1 = N\varepsilon = (t_0^2 - Dp^2)/4$ implies $t_0^2 + 4 = Dp^2$. Hence, $x \equiv t_0 \pmod{p^2}$ is a solution of $x^2 \equiv -4 \pmod{p^2}$. On the other hand, let a, b be as in lemma 4 satisfying $a^2 + 4 = bp^2$, then we get $t_0 = p^2m_1 \pm a$ for some integer $m_1 \ge 0$. Therefore, $Dp^2 = t_0^2 + 4 = (p^2m_1 \pm a)^2 + 4 = p^2(p^2m_1^2 \pm 2am_1 + b)$ implies $D = p^2m_1^2 \pm 2am_1 + b \pmod{p^2}$. If we choose D_0 in theorem 2 as $D_0 = D_0(p)$ in question, and consider square-free D satisfying $D \ge D_0$, then it follows from theorem 2 that the unit $\varepsilon = (t_0 + p\sqrt{D})/2$ is the fundamental unit of $Q(\sqrt{D})$.

In the case of $\varepsilon = t_0 + p/\overline{D}$, $-1 = t_0^2 - Dp^2$ implies $t_0^2 + 1 = Dp^2$. Hence, there exists an integer $m_2 \ge 0$ satisfying $2t_0 = p^2m_2 \pm a$, because $x \equiv 2t_0 \pmod{p^2}$ is a solution of $x^2 \equiv -4 \pmod{p^2}$. Therefore, $(4D)p^2 = (2t_0)^2 + 4 = (p^2m_2 \pm a)^2 + 4 = p^2(p^2m_2^2 \pm 2am_2 + b)$ implies $4D = p^2m_2^2 \pm 2am_2 + b \pmod{p^2}$. If we choose D_0 in theorem 2 as $D_0 = D_0(p)$ in question and consider square-free D satisfying $D_0 \le 4D$, it follows from theorem 2 that the unit $\varepsilon = t_0 + p/\overline{D}$ is the fundamental unit of $Q(\sqrt{D})$. Thus, in both cases the corollary is proved.

§3. Class number

In this \$, we give an estimation formula from below of the class number of those real quadratic fields whose fundamental unit was given in \$2. To this purpose we require the following lemma of Davenport-Ankeny-Hasse:

LEMMA 6. (Davenport-Ankeny-Hasse)⁵ Let $Q(\sqrt{D})$ (D>0 square-free) be a real quadratic field with the fundamental unit $\varepsilon_D = (t + u\sqrt{D})/2$ (t, u > 0). Then, if Pell's equation $(x^2 - Du^2)/4 = \pm m$ (m not square) is solvable, the following inequality holds:

$$m \ge (t-2)/u^2$$
 for $N\varepsilon_D = 1$,
 $m \ge t/u^2$ for $N\varepsilon_D = -1$.

⁵⁾ Cf. N.C. Ankeny, S. Chowla and H. Hasse [1] and H. Hasse [3].

Let us quote this boundary $s = t/u^2$ for $N\varepsilon_D = -1$ in lemma 6 as Hasse's boundary (in the lemma of D-A-H).

THEOREM 3. For any prime p congruent to $1 \mod 4$, let a, b denote the integers in lemma 4 satisfying $a^2 + 4 = bp^2$ ($0 < a < p^2$), and let $D_0 = D_0(p)$ be the integer in theorem 2. Furthermore, set $D = p^2m^2 \pm 2am + b$ for any integer m bigger than 4p, and consider D bigger than $D_0(p)$. Then, if D has no square factor except 4 and p splits in the real quadratic field $Q(\sqrt{D})$ into two conjugate prime ideals with the degree one, these prime ideals are not principal. Therefore, the class number h of $Q(\sqrt{D})$ is bigger than one and the following estimation from below holds:

$$h \ge \frac{\log \sqrt{Dp^2 - 4}}{\log p} - 2 \quad for \quad D \equiv 1 \pmod{2},$$
$$h \ge \frac{\log \frac{1}{4} \sqrt{Dp^2 - 4}}{\log p} - 2 \quad for \quad D \equiv 0 \pmod{2}.$$

Proof. In the case of $D \equiv 1 \pmod{2}$, D is square-free from the assumption, and hence by theorem 2 the fundamental unit of $Q(\sqrt{D})$ is $\varepsilon_D = [(mp^2 \pm a) + p\sqrt{D}]/2$ provided $D \ge D_0(p)$. Therefore, it follows from lemma 6 that Hasse's boundary is $s = (mp^2 \pm a)/p^2 = m \pm a/p^2 (0 < a/p^2 < 1)$. In the case of $D \equiv 0 \pmod{2}$, we have $D \equiv 0 \pmod{4}$ by lemma 4, and $D_0 = 4/D$ is square-free. Therefore, by theorem 2 the fundamental unit of $Q(\sqrt{D})$ is $\varepsilon_D = (mp^2 \pm a)/2 + p\sqrt{D/4}$ provided $D \ge D_0(p)$, and hence by lemma 6 Hasse's boundary is $s = (mp^2 \pm a)/4p^2 = m/4 \pm a/4p^2 (0 < a/4p^2 < 1/4)$. For any integer m bigger than p (in the first case) or 4p (in the second case), the prime p is smaller than Hasse's boundary s i.e. p < s.

If we assume that the prime p splits into two conjugate principal ideals p, p' with the degree one in $Q(\sqrt{D})$, then Pell's equation $(x^2 - Dy^2)/4 = \pm p$ is solvable, and hence lemma 6 implies p > s, which is contrary to the above assertion p < s. Therefore, if the prime p splits into two conjugate prime ideals p, p' with the degree one in $Q(\sqrt{D})$, then the prime p, p' are not principal. Moreover, the order of those prime ideals p, p' in the ideal class group of $Q(\sqrt{D})$ is bigger than one and it is a factor of the ideal class number h of $Q(\sqrt{D})$. Hence, in the case of $D \equiv 1 \pmod{2}$, we have

$$p^{h} \ge s = rac{mp^2 \pm a}{p^2} = rac{\sqrt{Dp^2 - 4}}{p^2}$$
 ,

which implies

$$h \ge \frac{\log \sqrt{Dp^2 - 4}}{\log p} - 2,$$

and similarly in the case of $D \equiv 0 \pmod{2}$, we have

$$p^{h} \ge s = rac{mp^{2} \pm a}{4p^{2}} = rac{\sqrt{Dp^{2}-4}}{4p^{2}}$$
 ,

which implies

$$h \ge \frac{\log \frac{1}{4} \sqrt{Dp^2 - 4}}{\log p} - 2.$$

Thus, the theorem is completely proved.

Remark 1. In the case of $D \geqq D_0(p)$, $\varepsilon = [(mp^2 \pm a)/2 + p\sqrt{D}]$ and $\varepsilon = (mp^2 \pm a)/2 + p\sqrt{D/4}$ are not always the fundamental unit of the real quadratic field $Q(\sqrt{D})$, but they are always an unit of $Q(\sqrt{D})$ satisfying $N\varepsilon = -1$. On the other hand, it is not always necessary in lemma 6 that the unit ε is the fundamental unit of $Q(\sqrt{D})$; it is sufficient that ε is an unit, as we can see easily from proof of lemma 6. Therefore, we can remove the condition $D \ge D_0(p)$ in theorem 3.

Remark 2. In the case of real quadratic fields of *R-D* type, H. Hasse obtained already in [3] an explicit estimation formula as in theorem 3, and in the case of $Q(\sqrt{a^2+1})$ T. Nagell also treated in [4] a similar problem.

§4. Examples

[I] The case of
$$p = 5$$
.

 $a = 11, b = 5, D_0(p) = 61,$ $t = 25m \pm 11, D = 25m^2 \pm 22m + 5.$

(1) If $m \equiv 0 \pmod{2}$, then $D \equiv 1 \pmod{4}$, and hence the fundamental unit is

 $\varepsilon = [(25m \pm 11) + 5\sqrt{25m^2 \pm 22m + 5}]/2.$

Hasse's boundary is $s = m \pm 11/25$.

Hence $s > 5 \iff m \ge 6$.

(2) If $m \equiv 1 \pmod{2}$, then $D \equiv 0 \pmod{4}$, and hence the fundamental unit is

148

 $\varepsilon = (25m \pm 11)/2 + 5\sqrt{(25m^2 \pm 22m + 5)/4},$

Hasse's boundary is $s = m/4 \pm 11/100$. Hence $s > 5 \iff m \ge 21$. $D_0 = D/4 \equiv 2 \pmod{4} \iff m \equiv 1 \pmod{4}$, $D_0 = D/4 \equiv 1 \pmod{4} \iff m \equiv -1 \pmod{4}$.

- [II] The case of p = 13. $a = 29, b = 5, D_0(p) = 58,$ $t = 169m \pm 29, D = 169m^2 \pm 58m + 5.$
 - (1) If $m \equiv 0 \pmod{2}$, then $D \equiv 1 \pmod{4}$, and hence the fundamental unit is

$$\varepsilon = [(199m \pm 29) + 13\sqrt{169m^2 \pm 58m + 5}]/2,$$

Hasse's boundary is $s = m \pm 29/169$. Hence $s > 13 \iff m \ge 14$.

(2) If $m \equiv 1 \pmod{2}$, then $D \equiv 0 \pmod{4}$, and hence the fundamental unit is

 $\varepsilon = (169m \pm 29)/2 + 13\sqrt{(169m^2 \pm 58m + 5)/4},$

Hasse's boundary is $s = m/4 \pm 29/676$.

Hence $s > 13 \iff m \ge 53$

 $D_0 = D/4 \equiv 2 \pmod{4} \iff m \equiv 1 \pmod{4}$,

 $D_0 = D/4 \equiv 1 \pmod{4} \iff m \equiv -1 \pmod{4}.$

References

- N.C. Ankeny, S. Chowla and H. Hasse, On the class number of the real subfield of a cyclotomic field. J. reine angew. Math. 217 (1965), 217-220.
- [2] G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. math. Sem. Univ. Hamburg 22 (1958), 92–97.
- [3] H. Hasse, Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper. Elemente der Mathematik 20 (1965), 49–59.
- [4] T. Nagell, Bemerkung über die Klassenzahl reell-quadratischer Zahlkörper. Det Kongelige Norske Videnskabens Selskab, Forhandlinger 11 (1938), 7–10.
- [5] L. Rédei, Über die Pellsche Gleichung $t^2 du^2 = -1$. J. reine angew. Math. 173 (1935), 193–221.
- [6] C. Richaud, Sur la résolution des équations $x^2 Ay^2 = \pm 1$. Atti Accad. pontif. Nuovi Lincei (1866), 177–182.

t	D	и		t	D	u	
1	5	1		31	965=5.193	1	
2	2	2		32	257	2	
3	13	1		33	1093	1	
4	5	2	ε ³⁶⁾	34	$290 = 2 \cdot 5 \cdot 29$	2	
5	29	1		35	1229	1	
6	10=2.5	2		36	13	10	ϵ_{13}^3
7	53	1		37	1373	1	
8	17	2		38	$362 = 2 \cdot 181$	2	
9	85=5.17	• 1		39	61	5	
10	26=2.13	2		40	401	2	
11	5	5	ε5	41	$1685 = 5 \cdot 337$	1	
12	37	2		42	$442 = 2 \cdot 13 \cdot 17$	2	
13	173	1		43	$1853 = 17 \cdot 109$	1	
14	2	10	ε_2^3	44	485=5.97	2	
15	229	1		45	2029	1	
16	$65 = 5 \cdot 13$	2		46	$530 = 2 \cdot 5 \cdot 53$	2	
17	293	1		47	2213	1	
18	82=2•41	2		48	577	2	
19	$365 = 5 \cdot 73$	1		49	$2405 = 5 \cdot 13 \cdot 37$	1	
20	101	2		50	$626 = 2 \cdot 313$	2	
21	$445 = 5 \cdot 89$	1		51	$2605 = 5 \cdot 521$	1	
22	$122 = 2 \cdot 61$	2		52	677	2	
23	$533 = 13 \cdot 41$	1		53	2813=29•97	1	
24	$145 = 5 \cdot 29$	2		54	730=2.5.73	2	
25	$629 = 17 \cdot 37$	1		55	$3029 = 13 \cdot 233$	1	
26	$170 = 2 \cdot 5 \cdot 17$	2		56	785=5.157	2	
27	733	1		57	3253	1	
28	197	2		58	842=2.421	2	
29	5	13	ε <mark>7</mark>	59	$3485 = 5 \cdot 17 \cdot 41$	1	
30	$226 = 2 \cdot 113$	2		60	$901 = 17 \cdot 53$	2	

Table 1

 $\varepsilon_D = (t + u\sqrt{D})/2$

⁶⁾ $\varepsilon_5^3 = (4+2\sqrt{5})/2$ means the third power of the fundamental unit ε_5 of the real quadratic field $Q(\sqrt{5})$, and etc.

Table	2
-------	---

The case of
$$p=5$$
.

t = 25m - 11 $D = 25m^2 - 22m + 5$ t = 25m + 11 $D = 25m^2 + 22m + 5$

t	D	u	т	t	D	u
			0	11	5;εξ	5
14	2 ; ε_2^3	10	1	36	13; ε_{13}^{3}	10
39	61	5	2	61	149	5
64	41	10	3	86	74=2.37	10
89	317	5	4	111	$493 = 17 \cdot 29$	5
114	130=2.5.13	10	5	136	185=5.37	10
139	773	5	6	161	$1037 = 17 \cdot 61$	5
164	269	10	7	186	346=2.173	10
189	1429	5	8	211	$1781 = 13 \cdot 137$	5
214	458=2.229	10	9	236	1129	10
239	$2285 = 5 \cdot 457$	5	10	261	109 ;	25
264	$697 = 17 \cdot 41$	10	11	286	818=2.409	10
289	$3341 = 13 \cdot 257$	5	12	311	3869=53.73	5
314	$986 = 2 \cdot 17 \cdot 29$	10	13	336	1129	10
339	4597	5	14	361	$5213 = 13 \cdot 401$	5
364	53 ;	50	15	386	$1490 = 2 \cdot 5 \cdot 149$	10
389	6053	5	16	411	$6757 = 29 \cdot 233$	5
414	$1714 = 2 \cdot 857$	10	17	436	1901	10
439	7709=13.593	5	18	461	8501	5
464	2153	10	19	486	$2362 = 2 \cdot 1181$	10
489	9565=5.1913	5	20	511	$10445 = 5 \cdot 2089$	5
514	$2642 = 2 \cdot 1321$	10	21	536	17 ;	130
539	11621	5	22	561	12589	5
564	3181	10	23	586	$3434 = 2 \cdot 17 \cdot 101$	10
589	13877	5	24	611	$14933 = 109 \cdot 137$	5
614	3770=2.5.13.29	10	25	636	$4045 = 5 \cdot 809$	10
639	16337	5	26	661	17477	5
664	4409	10	27	686	$4706 = 2 \cdot 13 \cdot 181$	10
689	$18989 = 17 \cdot 1117$	5	28	711	$20221 = 73 \cdot 277$	5
714	$5098 = 2 \cdot 2549$	10	29	736	5417	10

Ĺ	t = 169m - 29 $D = 169m^2 - 58m + 5$				t = 169m + 29 $D = 169m^2 + 58m + 5$		
t	D	u	m	t	D	u	
		,	0	29	5; ε ⁷ 5	13	
140	29 ; ε ³ ₂₉	26	1	198	$58 = 2 \cdot 29$	26	
309	565=5.113	13	2	367	797	13	
478	2;	338	3	536	17 ;	130	
647	2477	13	4	705	$2941 = 17 \cdot 173$	13	
816	985=5.197	26	5	874	1130=2.5.113	26	
985	5741	13	6	1043	$6437 = 41 \cdot 157$	13	
1154	$1970 = 2 \cdot 5 \cdot 197$	26	7	1212	$2173 = 41 \cdot 53$	26	
1323	10357	13	8	1381	$11285 = 5 \cdot 37 \cdot 61$	13	
1492	3293=37.89	26	9	1550	$3554 = 2 \cdot 1777$	26	
1661	653 ;	65	10	1719	$17485 = 5 \cdot 13 \cdot 269$	13	
1830	$4954 = 2 \cdot 2477$	26	11	1888	5273	26	
1999	$23645 = 5 \cdot 4729$	13	12	2057	25037	13	
2168	$6953 = 17 \cdot 409$	26	13	2226	7330=2.5.733	26	

Table 3

```
The case of p=13.
```

Mathematical Institute Nagoya University

The author wishes to express his hearty thanks to Professor H. Hasse who kindly pointed out that it had been forgotten to add in Lemma 4 the condition $0 < a < p^2$, which establishes uniqueness. (27, August 1968)