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THE EXISTENCE OF PERIODIC SOLUTIONS
FOR SYSTEMS OF

ORDINARY DIFFERENTIAL EQUATIONS

YONG-HOON LEE1

Abstract. We prove a multiplicity result of 2τr-periodic solutions for certain
weakly coupled system of ordinary differential equations with real parameters.
The proofs are based on differential inequalities and coincidence degree.

§1. Introduction

In 1986, Fabry, Mawhin and Nkashama [4] have considered periodic

problems of the form

(1.1)

W W), k =

with / continuous, and have proved that if

(H) /(£, x) —> oo as \x\ —> oo uniformly in t 6 [0, 2τr],

an Ambrosetti-Prodi type result holds, namely there exists a number so such

that the problem has no, at least one or at least two solutions according to

s < 5O, s = so or s > so. Similar results ([7], [9]) hold for

x(0) = x(2π).

Chiappinelli, Mawhin and Nugari [2] have considered the Dirichlet problem

^ Jsinί

x(0) = 0 = x(π).
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146 Y.-H. LEE

Under the assumption (H), they have proved a weakened Ambrosetti-Prodi

type result, namely there exist s0 and s with so < s such that the problem

has no, at least one or at least two solutions according to s <.sOy, s = s or

s > s.

In [3], Ding and Mawhin have studied higher order ordinary differential

equations of the form

χ(k\θ) = χW(2π), 0 < k < 2ra - 1, m > 1.

Under the assumption (H) and a supplementary growth condition on /,

they proved a weakened Ambrosetti-Prodi type result. Ramos and Sanchez

[10] generalize the above result allowing joint dependence of (t, x) in the

nonlinear term. With the same conditions found in [3], they have proved

that the problem

(1.2) x(-2

W ( k ) , 0<k<2m-l, m

has an Ambrosetti-Prodi type result.

Lee [6] has studied periodic solutions for a weakly coupled system of

ordinary differential equations

( l s ) χ'f(t) + 9i(t, Xi(t)) + fn(t, x(t)) = 8i.

Under the assumption (H) for each gι and the boundedness on /^, he has

proved that system ( l s ) has a weakended Ambrosetti-Prodi type result.

In this paper, we prove under some suitable conditions that there exists

so E R n such that (15) has no 2τr-periodic solution, at least one 2τr-periodic

solution or at least two 2τr-periodic solutions according to s < so, s = so

or s > so. Ambrosetti-Prodi type results of 1-dimensional cases are not

precisely parallel to those of n-dimensional systems, since the parameter so

for problems (1.1) or (1.2) is uniquely determined, but not necessarily for

system ( l s ) (one may refer to Remark in Section 2). We leave a question

about more properties of s0 caused by nonuniqueness.

NOTATION. We first introduce some definitions and notation. I =

[0, 2π]. For x = (#i, yxn) G R n , |[.a:|| = (x\ +• , +x^ι)J^ and inequalities

in R n will be defined componentwise, thus, x < y if and only if X{ < yz , for
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EXISTENCE OF PERIODIC SOLUTIONS 147

i = 1, n, etc. Mean value x oΐx and the function x oί mean value 0 will be

respectively defined by x = ^ Jo

 π x(t)dt and ί(£)• = x(t) — x. Ω will denote

the closure of Ω, C (7, R n ) will denote the space of continuous functions

defined on I into R n whose derivative through order k are continuous,

and Cf27Γ(/, R n ) the space of 2π-periodic functions of C fc. Finally for u G

Cfe(/,R"), IMU = Supt€/.||«.(t)|| and ||«||2 = ( £ j f ||«(*)||2dί)5.

Let us consider the n-dimensional second order system

(2s) x;/(t) + F ί (ί 5 x(t) 3

where ŝ  is a real parameter, Fi : / x R n x R —> R is 27r-periodic in the

first variable and continuous. We recall some definitions.

DEFINITION 1. a e C 2(7, R n ) is called a lower solution of (2S) if

θi(0) = αi(2π), αJ(0) > αί(2π), i = 1, •, n.

Similarly, β G C 2 (J, R71) is called an upper solution of (25) if

A(0) = A(2π), β(0) < /3ί(2π), ί = 1, , n.

Denote a vector-valued function F(t,x,y) on I X R n x R n whose ith-

component is Fi(t,x,yi).

DEFINITION 2. F : / x R n x R n —> R n is said to be quasi-monotone

nondecreasing if for 1 < i < n, i^(t,iλi, , ^ n , ^ ) ^ Fi(t,υι, - ,fn,7/i),

whenever ϋj < fj, for j / i and uι — Vi.

DEFINITION 3. A function F : I x R n x R n —> R n satisfies a Nagumo

condition if for each JR > 0, there exist φi G C(R+, (0, oo)), i = 1, , n,
2

increasing and lim^oo ^Vr = oo such that for all ||x|| < i?, i/i G R and

tei,

'\Fi(t,χ,yi)\<φi(\yi\).

It is well known that the Nagumo condition provides a priori bound of

x' as shown in Lemma 1.
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148 Y.-H. LEE

LEMMA 1. Let x be any 2ττ-periodic solution o/(2 s) satisfying ||x||oo <

R. If F satisfies a Nagumo condition, then there exists M\ > 0 depending

only on s, R and φi, i = 1, , n such that

We give a fundamental theorem on the existence for a 2π-periodic so-

lution of (2S).

THEOREM 1. (Hu and Lakshmikantham [5]) Assume that:

(1) a and β are respectively lower and upper solution of (2S) with a(t) <

β(t) on I.

(2) F is quasimonotone nondecreasing.

(3) F satisfies a Nagumo condition.

Then (25) has a 2π-periodic solution x(t) such that a(t) < x{t) < β(t) on

I and

IkΊloo < M L

§2. Existence

In this section, we give an existence theorem for a 2π-periodic solution

of (2,).

THEOREM 2. Let s e R n be given by Si = max ί(Ej Fi(t,0,0). Suppose

that

(Aι) For each s*, there exists i?i(s*) G R n such that for i = 1, , n,

(2.1) Fi(t, x,0) > max{s*, Si}, whenever x < —i?i(5*)3 for all t.

(A2) iΓ?( , ,0) is bounded below by p:

Fi(t, x, 0) > pi, for all t el, x G R n .

(A3) For each 5*, there exists a positive real number M2(s*) such that for

each s < s* and each possible 2π-periodic solution x of (25), one has
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EXISTENCE OF PERIODIC SOLUTIONS 149

(A4) F is quasi-monotone nondecreasing.

(A5) F satisfies a Nagumo condition.

Then there exists so £ R n such that (25) has no 2τr-periodic solution for

s < so and at least one 2τr-periodic solution for s > s0.

Proof. We first show that (2$) has a 2τr-periodic solution. By Theorem

1, it is sufficient to find upper and lower solutions β and a of (25) with

<*(*) < βify o n I* It is obvious that β = 0 is an upper solution. On the

other hand, by (2.1), — R\(s) is a lower solution. Let 5 = { s G R n : (2S)

has a 2π-periodic solution }, then 5 ^ 0 and (<S, <) is a partially ordered

set. We notice that p is a lower bound for S in R n , otherwise, there is 5 £ S

with Sk < pk for some k — 1, , π. Let x be a 2π-periodic solution of (25)

and let Xk(to) = mintXk(t) > then x'k{to) = 0, xfl(to) > 0 and

This is a contradiction. We show that S has at least one minimal element.

Let C be a chain in 5, we claim that C has a lower bound in S. Let s^ G C

and without loss of generality, we suppose that it is not a lower bound

for C, then we may choose S(2) £ ^ such that S(2) / s(i) a n d 5(2) ^ 5(i)

Suppose similarly that S(2) ^s n ° t a- lower bound for C, then we also choose

5(3) E C such that S(3\ φ S(2)
 a n ( l 5(3) ^ 5(2) Continuing this process, we

obtain a distinct sequence (s(fc)) C 5 such that 5(^+1) < S(fc), fc = 1, 2, .

We notice that for each i — 1, , n, sequence of zth-components ( s ^ J ^ j ^

is decreasing in R bounded below by pi. Thus the sequence converges to a

number sCi, i — 1, , n. Let s c = (sc.)^_1, then s c £ 5. Indeed, let (#(&)) be

a sequence of 2π-periodic solutions of (2S(fc)). We notice that the bound M\

in Lemma 1 can be taken independent of s if 5 belongs to some bounded

set. Therefore, by this fact and (A3), the sequence (x(k)) is bounded in

C27Γ(/, R n ) . Thus it is also bounded in C27Γ(7, R n ) , since x^ is a solution

of (2S(fc)). By compact imbedding property of C27Γ in C27Γ, the sequence

contains a subsequence converging to some x £ C 2 π . It is easy to check by

the integrated form that x is a 2π-periodic solution of (25 c), thus sc £ S.

It is not hard to see that sc is a lower bound for C. Therefore, by Zorn's

lemma, S has a minimal element, say so. To complete the proof, we show

that for each s* > so, [so, 5*] C S. Let u be a 2π-periodic solution of (25 o),

then for 5 G [so, 5*],

u'!{t) + Fi(t,u(t),uf

i(t)) = soi < Si.
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This implies that u(t) is an upper solution of (2S). On the other hand, taking

Ri(s*) in (2.1) large enough to satisfy — Rι(s*) < u(t), for all t G /, we get

—i?i(s*) a lower solution of (25). Therefore (2S) has at least one 2τr-periodic

solution for all s G [5O, s*], and the proof is complete.

We consider the following differential system:

(3β) x"(t)+9ifoxi(t),Xi(t)) + hi(t,x(t)) = sh

where gι : J x R x R —> R and hi : I x R n —» R are 2τr-periodic in the

first variable and continuous. We first give a priori estimate for possible

2π-periodic solutions of (3S).

LEMMA 2. Suppose for i — 1, , n,

(1) lim|,r|_+oo #i(t, x,y) — oo uniformly in t and y.

(2) gi is bounded below.

(3) hi is bounded below.

Then for each 5* G R n , there exist r(s*) G R n and R(s*) G R such that for

each s < s* and each possible 2n-periodic solution x of (3S), one has

for all t G /. and i = 1, , n.

Proof. Let s* be given and let x be a 2τr-periodic solution of (35) for

s < s*. Then

1 /*2

(2.2) — /
ϊπ Jo

We may assume by hypotheses that there exist σ, v G R n such that

gi(t,x,y) > σi and hi(t,u) > v{ for i = 1, ,n and for all ί G /, x,y G R

and u G R n . Without loss of generality, we may assume s > σ + v, oth-

erwise (3S) has no 2τr-periodic solution. Indeed; Assume s\~ < σ^ + V}~,

for some k = l, ,n. Let x be a 2τr-periodic solution of (3S) and let
χk{to) — min^/Xk(t), then x'l{t0) > 0 and

) + hk(t0,x(t0)) < sk < σk + ι/k.
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EXISTENCE OF PERIODIC SOLUTIONS 151

The contradiction shows that s > σ + v if (35) has a 2π-periodic solution.

Taking the Euclidean inner product of (3S) with x(t) and integrating over

the period, by (2.2), we get

\\χ'\\l = ̂  Σ / £i

2^

n

n

< —-= V^ ll^ilbί^* — (σi + Vi)} by Sobolev inequality and 5* > s

Thus

We may assume by hypotheses that there exists r(s*) > 0 in R n such that

(2.3) gi(t,x,y) + hi(t,u) > s*,

whenever |x| > ^(5*), for all t G /, y G R, ^ G R n . We claim that for

i = l, ,n, there exists T{ G I such that |cci(Ti)|_< τ ̂ (s*) for all possible

solutions x of (3S). Suppose that the claim is not true, then there exist a

solution x and an index k such that

\xk(t)\ >rk(s*),

for all t G / . Thus by (2.3)

gk(t,xk(t),x'k(t)) + hk(t,x(t))> 4 >'s*.

This contradicts to (2.2). Now

\r(tM < If ίVΛI -I- I I r'ίTWrl
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where R(s*) is a constant greater than ^ - | | s * — (σ + i/)||. We claim that

-r-iO*) < xi(t) < r{(s*) + R(s*), for all t G /. If it is not true, then there

exist a solution x, an index k and to G / such that

Xk(to) < ~rk(s*).

Let Xk(τ) — minxfc(t), then Xfc(τ) < —Tfc(5*) a n d by (2.3), we get

9k(τ, Xfc(r), 4 ( r ) ) + M r > x(τ)) > s%.

Since x£(τ) > 0,

4 < xk(r) + 9k(r, Xfc(r), x;

fc(r)) + ftfc(r, x(τ)) = sk.

This contradicts s*. < s^, and the proof is complete.

Conditions (1) ~ (3) in Lemma 2 implies (Ai), (A2) in Theorem 2 and

Lemma 2 itself implies (A3) in Theorem 2. Therefore we have the following

corollary for the existence result of (3S).

COROLLARY 1. Suppose for i = 1, , n,

(1) lim\x\^oo9i(ti x > y) = °° uniformly in t and y.

(2) gi is bounded below.

(3) hi is bounded below.

(4) /ι(t, x) is quasi-monotone nondecreasing in x.

(5) g satisfies a Nagumo condition.

then there exists so G R n such that (2S) has no 2ττ-periodic solution for

s < so and at least one 2π-periodic solution for s > so.

Now let us consider equation ( l s ) , i.e.

(Is) x"{t) + 9i(t, xi(t)) + hi(t, x(t)) = sh

where gi : / x R —» R and hi : I x R n -+ R are 2π-periodic in the first

variable and continuous, for i — 1, , n. We have the following lemma for

a priori estimate, and the proof follows on the lines of the proof of Lemma

2.
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LEMMA 3. Suppose for i — 1, , n,

(1) lim|x|_>oo 9i{t"> x) — oo uniformly in t.

(2) hi is bounded below.

Then for each s* G R n , there exist r(s*) G R n and R(s*) G R such that for

each s < s* and each possible 2π-periodic solution of ( l s ) 5 one has

-φ*) < Xi(t) < φ*) + R(s ),

for all t £ I and i — 1, , n.

The conditions (2) and (5) in Corollary 1 are redundant and we have

the existence result for ( l s ) as follows.

COROLLARY 2. Suppose for % — 1, , n,

(HI) lim.\x^oogi(t,x) = oo, uniformly in t.

(H2) h{ is bounded below.

(H3) h(t,x) is quasi-monotone nondecreasing in x.

Then there exists so G R n such that ( l s ) has no 2π-periodic solution for

s < so and at least one 2π-periodic solution for s > so.

Remark. We notice that the parameter so in Theorem 2 is not neces-

sarily unique if n > 2. Let us consider the following system

x" + ex1

y" + dy1 + y2 + t a n " 1 x = 52,

where c and d are both nonzero real constants. We can see by integrating

on a period after multiplication by x' that the equation x" + ex1 + x2 = 5χ

admits only constant solutions x = ύzy/s ̂ , si > 0. Therefore the system

has exactly four couples of solutions as follows;

- tan λ

 Λ/i1 J ' \ -\fs2 - tan ι

js2 + tan ι y/sλ J ' \ ~A/ S 2 + tan λ yfs

We also easily see that this system satisfies assumptions in Theorem 2 and

the set of minimal elements of S becomes {(si, — t a n " 1 y/s-^) : s\ > 0}.

Therefore the curve 5χ = 0, 52 > 0 and 52 = — t a n " 1 \Ai> 5χ > 0 in (si, 52)

space separates the parametric points with 2π-periodic solutions from those

without 2π-periodic solutions. We notice that the parameter so in Theorem

2 is (0,0) in this example.
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§3. Degree computations and multiplicity

Our main concern is the multiplicity of 2τr-periodic solution for equation

(l s ) and we state the main theorem.

THEOREM 3. Suppose that {HI), (H2) and-{HZ) in Corollary 2 are

satisfied. Then there exists so G R n such that

(1) ( l s ) has no 2τr-periodic solution for s < so.

(2) ( l s ) has at least one 2π-periodic solution for s = so.

(3) ( l s ) has at least two 2ττ-periodic solutions for s > so,

Operator set-up. We reduce problem (l s ) to an equivalent operator

form. Let us define L : D(L) C C§π(/, R n ) —-> C°(I, R n ) by {χu , xn) *->

« , , < ) , where D(L) = Cξ^I, R Λ ), and 7VS , ̂ ( 7 , R-) — * C°(7, R»)

by

so that (15) can be written as

(3.1) Lx + Nsx = 0.

It is easy to see that L is a Fredholm operator of index 0 and Ns is

L—compact on Ω for any bounded open Ω in C ^ / , R n ) (see [8]). The

coincidence degree DL(L + Λ Ŝ,Ω) is well-defined if Lx + Nsx φ 0 for

i E D(L)Γ)dΩ.

In what follows, without any further comments, so means the one given in

Corollary 2. The following lemma is a common result for Ambrosetti-Prodi

type problems.

LEMMA 4. If (HI), (H2) and (H3) are satisfied, then for each 5* G R n

and each open bounded set Ω such that Ω D {x G C\Έ : —ri{s*) < Xi(t) <

ri(s*) 4- R(s*), t E /, i = 1, , n}, one Ziαs

£>L(L + Λ 5̂, Ω) = 0 whenever s < s*.

Proof. By Lemma 3, Dι(L + Ns, Ω) is well-defined and by Corollary

2, ( l s ) has no solution for s < so. Therefore

DL(L + 7VS, Ω) = 0 whenever 5 < so.
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EXISTENCE OF PERIODIC SOLUTIONS 155

For any fixed s (< s o ) , by the homotopy invariance of degree, we have

DL(L + N8, Ω) = DL(L + N-s, Ω) = 0,

whenever s < s* and this completes the proof.

Modified function. For convenience, we define fs:Ix R n — > R n by

fsi(t,x) = gi(t,xi) + hi(t,x) - si. Let u, v G C°(J ,R n ) satisfy v(t) < u(t).

We define a modified function Fs of fs with respect to u and v as

Fsi(t,x) =

{ fsi (t,x)-

and

( Ui(t), if X{ > Ui(t)

Xi, if Vi(t) < Xi < Ui(t) .

Vi(t), if Xi < Vi(t)

We sometimes call Fs the modification of fs with respect to u and v.

Notice that Fs is continuous and bounded on / x R n and the bound of FSi

is given by
max{|/5 i(ί, x)\ : t G /, v(t) < x < u(t)} + max |^i(t) | + max \vi(t)\ + 1.

Let 5* •>• so and let u(t) be a 2π-periodic solution of ( l S o ) , then for s G

(so, 5*], u(t) is an upper solution and —r(s*), given in Lemma 3, is a lower

solution of ( l s ) , respectively, and — r(s*) < ι/(t) for all ί E /. Therefore

we may define the modification .F5 of / 5 with respect to u and —r(5*), and

easily see that the bound of JPS does not depend of 5, since 5 G (so, 5*]. For

fixed 5*(> 5O), let us consider a homotopy

(4?) x"(t) - (1 - μ)x(ί) + μFβ(t, x(*)) - 0

where μ G [0,1], Fs is the modification of fs with respect to u and — r (s*).

We now give α priori estimate for possible 2π-periodic solutions of the

homotopy.

LEMMA 5. Assume (-HΊ), (H2) and (H3) are satisfied. Let s* (> so)

be given. For s G (so,s*], let x be a possible 2π-periodic solution of (4s).

Then there exists a real number M(s*) > 0, such that

\\xi\\oo<ri(s*)

where ri(s*) is given in Lemma 3.
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Proof. Let a: be a 2τr-periodic solution of (4^) and let

\FSi(t,x)\<Ci(8*)

for all (t, x) G / x Ft71. Following similar steps in the proof of Lemma 2, we

get

\\χ'h < ^ c ( * * ) >

where C{s*) = (Σ£=1 Ci(s*)2)%. We show that there exist n G / for i =

1, ,n such that

|xί(r i) |<ri(s ).

The inequality is obvious for μ — 0. If the inequality is not true for μ G (0,1],

then there exist a 2π-periodic solution x and an index fc such that either

Xk(t) > rk(s*) or xk(t) < -rk(s*), for all t e I. If x/b(t) > rfc(s*) then we

may modify rk(s*) > ||̂ fc||oo if necessary, so that

Integrating (4^) over the period,

(1 - μ) I xk{t)dt < μ {gk(t,uk(t)) + hk(t,u(t)) - sk}dt
Jo Jo

< 2πμ(sOk - sk) < 0.

This is a contradiction, since xk is nonnegative on I. We can show a con-

tradiction in a similar fashion for the case xk(t) < —rk(s*). Therefore we

get

for some T{ € / . Now

| * ' 2 V I ' / I — l ^ i v ' ί / l / l X / z v ' / l u ' /

for all t G /. Taking M(s*) > ^ξC(s*), we get the conclusion.
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EXISTENCE OF PERIODIC SOLUTIONS 157

We now set up the operator form of (4^) as follows. Define T : 0^(1,Rn)

χ [ 0 , l ] — > C ° ( J , R n ) b y

T(x, μ)( ) = - ( 1 - μ)x(-) + μFs(; *(•))

then (4^) is equivalent to

Lx + T(x,μ) = 0

and by the standard argument ([8]), T is L-compact on Ω for any open

bounded Ω, and DL(L + T( ,μ),Ω) is well-defined and constant in μ if

Lx+T(x, μ) φ 0 for μ G [0,1] and x G D(L)Γ\dΩ. To get multiple solutions,

we need the following lemma.

LEMMA 6. If (HI), (H2) and (H3) are satisfied, then for each s* > sO1

one can find an open bounded subset Ωi C 0^(1, R n ) such that for each

s e (so,s*],

Proof. Let s* > sOJ s G (5O)^*] a n d le^ u(t) be a 2π—periodic solution
of ( l S o ) . For the modification Fs of fs with respect to u and — r(s*)3 consider

If x is a 2π-periodic solution of (4j), then we get

-r(s*) < x(t) < u(t).

Indeed; Suppose that the inequalities are not true, so assume that there

exist k G {1, , n) and T £ I such that

xk(τ) > uk(τ).

Then Xk — uk has a positive maximum at to G / so that Xk{to) > Uk(to) and

aϊfe(*o) < f̂e(*o) And we get

-uk(to)

< xfl(to) + gk(to, uk[t0)) + hk(t0, x(to)) - sk

< xk(to) + gk{to, uk(t0)) + hk(t0, u(t0)) - Sfc, by quasi-monotonicity of h

+ gk(to, uk(t0)) + hk(to, u(to)) - sk = sok - sk.
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This contradicts s > so and, thus, x(t) < u(t) for all t £ /.Similarly, by

(2.3) and quasi-monotonicity of h, we can show that — r(s*) < x{t) for all

t G /. Thus the inequalities imply, by the definition of modified function,

that x is a 2π-periodic solution of ( l s ) . Since s £ (so,s*], x{t) < u(t) and

also by Lemma 3, — r(s*) < x(t). Therefore we have

(3.2) - r(s*) < x[t) < u{t).

Let

Ωi - {x e C§π(/,Rn) : - φ * ) < x{t) < u(t), t e I}.'

Then Ωi C Ω, where Ω is given in Lemma 4, and (4j) is equivalent to ( l s )

on Ωχ Therefore

DL{L + Γ( , 1), Ω2) = DL(L + Ns, Ωx).

Now it is enough to compute Dχ/(L-fT( , 1), Ωi). Let Ωo be an open bounded

set in C£ π (/ ,R n ) such that

Ωo D {x e C2°π(/, R Λ ) : Halloo < r,(5*) + M( 5 *) , i = 1, • - •, n}.

Then Ωi C Ωo and by Lemma 5, DL(L + T( , μ), Ωo) is well-defined for μ £

[0,1]. We know by (3.2) that every possible 2π-solution of (4j) is contained

in Ωi. Thus by the excision property of degree,

DL(L + T( , 1), Ωo) = DL(L + Γ( , 1), Ωi).

Furthermore, by Proposition II. 16 in [8] and the homotopy invariance of

degree, we get

±1 = DL(L-I,ΩO)

This completes the proof.

We now prove our main result.
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Proof of Theorem 3. It is enough to show, by Corollary 2, that (l s)
has at least two solutions for s > so. Let us fix s with s > so. Then we
may choose Ω and Ωi as in Lemma 4 and Lemma 6 respectively. By the
additivity of degree, we have

0 = DL(L + N8, Ω) = DL(L + iVs, Ωx) + DL(L + JVβ, Ω \ Ωi).

Since Dι{L + Ns, Ωi) = ±1 by Lemma 6, we get

This implies that (l s) has a 2π-periodic solution in Ωi and another in Ω\Ωi.
And the proof is done.
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