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In [5] we defined the concepts of Frobenius and symmetric algebra for

algebras of infinite vector space dimension over a field. It was shown there

that with the introduction of a topology and the judicious use of the terms

continuous and closed, many of the classical theorems of Nakayama [7, 8] on

Frobenius and symmetric algebras could be generalized to the infinite dimen-

sional case. In this paper we shall be concerned with showing certain algebras

are (or are not) Frobenius or symmetric. In Section 3, we shall see that an

algebra can be symmetric or Frobenius in "many ways". This is a problem

which did not arise in the finite dimensional case.

In Section 1, we consider algebras of transformations in an infinite dimen-

sional vector space. We show that the algebras of transformations of finite

rank are symmetric, but that the algebra of all transformations is not even

Frobenius. The latter statement is proved by means of a lemma which shows

(among other things) that every transformation in an infinite dimensional vector

space is actually a commutator.

In Section 2 we consider tensor products of Frobenius and symmetric

algebras. We also show that under certain conditions the inner product on a

Frobenius algebra can be normalized so that (1, 1) =1.

In Section 3, we show that the polynomial ring with coefficients in a field

can be made into a symmetric algebra in an uncountable number of ways. As

a consequence of this, the polynomial ring has an uncountable number of in-

equivalent (metrizable) topologies such that it is a topological ring with respect

to each and in every such topology every non zero ideal is dense in the whole

algebra.

The term topological ring here requires, along with the usual assumptions

about addition, only that multiplication by each single element be a continuous
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function of the ring into itself. In [5] we gave an example of a symmetric

algebra which was a topolocal ring in this sense, but in which multiplication

was not continuous on the product of the ring with itself.

1. Algebras of transformations. The classical theory of Frobenius algebras

as developed by Nakayama in [7, 8] shows that the algebra of all transfor-

mations in a finite dimensional vector space is symmetric. In this section we

study algebras of transformations in an infinite dimensional space. The main

results of this section show that the algebras of continuous transformations

of finite rank are symmetric, but that the algebra of all transformations is not

even Frobenius.

If V is a vector space over a field L and V a subspace of Hoπu (V, L)

which distinguishes points of V then V induces a topology on V, see £2, Chap-

ter IV]. It is convenient to use the bracket notation; (#, x1) is the image in

L of #€Ξ V under x' e V1. Following [2] we let R(V, V) be the algebra of

all continuous transformations of finite rank in V. Let R be the algebra gene-

rated by R(V, V) and the identity transformation.

THEOREM 1.1. R is a symmetric algebra.

Proof. We first write R = L-f- R(V, Vf), a vector space direct sum where

L represents all field multiples of the identity. In the following we define a

linear functional on R. We first deήne φ(l) = 0. Now, if T(ΞR(V, V) then

for x in V, xT has the form

see [2, Chapter IV] for details. We can now define φ(T) = Σ ( j Ί , y'i).
1

We note that this gives a linear functional on R. We define the inner pro-

duct on R by the equation (T, S)=φ(TS).

We must show that ψ(ST) = ψ(TS). Also if Γ^Owe must show that there

exists S such that ψiTS) =̂  0. It is sufficient to consider finite rank transfor-
a n )i

mations. Let xT= Σ t # , yhyu then xTS^ Σ U y[)yiS and ψ(TS) = Σ (yiS, y'i).
1 1 i

T h e n xST can be writ ten Σ ^ S , y[)yi= Σ i # > S'y'i)yi> where S' is the adjoint
1 * 1

n

transformation of S. Thus, ψ<ST) = Σ (v/, S'yi). But the equation (jv, S'y'i)
1

= (v/S, y\) holds for all i, so φ(ST) =φ(TS).
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If T, a finite rank transformation, is not zero then a multiple of it is rank

1. Assume that T is rank one then xT ̂  (x, y')y where / -̂  0 and v ̂  0. Then

there exists S of finite rank such that yS is not in the kernel of y'. It follows

that φ(TS) = (yS, yf) =̂ 0 and the inner product defined by ψ distinguishes points.

Thus R is a symmetric algebra with respect to that inner product. We note

that the linear functional ψ defined on R(V, V) is the infinite dimensional

analog of the trace function. We also remark that the topology induced on R

by the inner product we have defined is comparable to but weaker than the

topology R receives as a space of functions on V, (the product topology in

[2, Chapter II]).

We now consider the algebra of all transformations in V. The following

lemma will help us prove our theorem.

LEMMA 1.2. If T is in the algebra of all linear transformations in a vector

space of dimension > Ho then any equation of the form Yf(Z) — ZY - T can be

solved for Y and Z.

Proof. The idea of the proof is to use Z to push the difficulties out to

the "end" of a basis of V. Since there isn't any end to the basis, the difficul-

ties are gone. Let B be a basis of V. Among the well orderings of B there

is one in which B fails to have a last element. Here we are using the assump-

tion that the dimension of V is > Ho. For each ^ ε 5 define xΛZ-x*ti where

a -f 1 is the successor of a in the well ordering. If a is a limit ordinal we can

define x*Y to be anything in V (0 will do). If a = β + 1 we define x*Y = #,,Y/( Z)

— Λ:PT. By transfinite induction this defines xaZ and xΛY for all xa in B. Since

B is a basis of V, Z and Y can be considered as linear transformations in V.

But for a basis element x$ in B, we have the equation x?T~ x^Y'fiZ) - x^{Y

= x?Yf(Z)-x?ZY. Thus, T= Yf(Z)-ZY.

A special case of the above situation occurs when/(Z) ~ Z. In that case,

the lemma shows that in the ring of transformations on an infinite dimensional

vector space every transformation is a commutator. We note that this does

not hold in the case that the space is finite dimensional. In that case, no trans-

formation with a non zero trace can be a commutator. Another use of the

lemma occurs in the proof of the following

THEOREM 1.3. The algebra of A all linear transformations on an infinite
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dimensional vector space is not a Frobenius algebra.

Proof. Suppose the contrary, that is, A is equipped with an inner product

(Y, Z) satisfying (XY, Z) = (X, YZ) and distinguishing elements of A. We

suppose also that it has Nakayama's automorphism a such that (Y, Zα) = (Z, Y)

for all Y and Z in A. Since 1, the identity transformation is not zero there

exists T such that (1, T) ^ 0. By the above Lemma we can solve the equation

YZa -ZY=T. But then (1, Γ) = (1, YZa - ZY) - (1, YZ«) - (1, ZY) = (Y, Zα)

— (Z, Y) = 0. This contradiction proves the theorem.

The theorem really proves that algebras in which equations of the form

YZ* ~ZY= T can be solved for all automorphisms a and all T are not Frobenius

algebras. P. M. Cohn has studied a class of simple algebras in which the equa-

tion ax - %b~ c has a solution x for all a, b # 0 and all c [11 These algebras

do not have identities. However, such an algebra can be embedded in an algebra

with identity. A slight variation of the proof of Theorem 3.1 then shows the

enlarged algebras is not a Frobenius algebra.

In comparing Theorems 1.1 and 1.3, we could not say how "far up" in

the algebra of linear transformations one could go before the algebras stop

being Frobenius. We also cannot say when the solutions Y and Z of Lemma

1.2 will be continuous relative to some space V of functionals on V. If we

could always insure continuous solutions then we could insert "continuous" be-

fore "linear transformations" in Theorem 1.3.

2, Tensor products and normalizations* In this section we include several

results which should have been in [5], The finite dimensional formulations of

these appeared in [7, 8].

THEOREM 2.1. The tensor product of two Frobenius (symmetric) algebras

is also Frobenius (symmetric).

Proof. Suppose that A and B are Frobenius (or symmetric) over the field

L with respect to the two inner products (x, y) and O, s> respectively. For

the generators of A®LB we define Lx®r, j><g)s]= (x, yKr, sX We claim that

with respect to this inner product A®LB will be Frobenius (symmetric). The

only point which requires verification is that this new inner product separates

point in
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Suppose that Σ ^ ' ® 5 / ^ 0 . We may assume that Xi, . . . , xn are inde-
1

penden-t and similarly with the s . In A the inner product distinguishes points,

consequently it induces every linear functional on the finite dimensional space

spanned by the xfs. That is, there exists y in A such that [xίf y)-l and

(Xi, y) = 0 for ί = 2, . . . , n. By a similar argument in B there exists t such

that <su ί> = l and <s, , t> = 0 for i = 2, . . . , w. But then [ Σ # , ®5, , y® 0 - 1
1

and the inner product distinguishes points in A®LB.

COROLLARY 2.2. If A is Frobenius (symmetric) over L then so in An the

algebra of n x n matrices with coefficients in A.

Proof, it is enough to note that An is isomorphic to A(& LLn and that Ln

is symmetric.

We remark that the inner product just defined on A ®B will not, in general,

induce on A®1 (isomorphic to A) the original inner product. In fact, if <1, 1>

= 0 where <x, y> is the inner product on B, then the restricted inner product

on Λ g l will be identically equal to zero.

This brings up the question of whether an algebra B, Frobenius with re-

spect to an inner product <#, v>, is also Frobenius with respect to an inner

product (xy y) inducing the same topology in B and such that (1, 1) = 1. If

this is the case, we know by Theorem 3.1 of [5] that there exists a unit g of

B such that <#, v> = (x, yg) for all x, y in B. The converse is also true. It

is natural to say that the two inner products related in this way are equivalent.

This leads us to the following normalization theorem.

THEOREM 2.3. If B is a Frobenius algebra with respect to an inner product

<#, jy> and if B is not Jacobson semisimple then there exists an equivalent inner

product (x} y) such that (1, 1) = 1.

Proof. If <1, l> = α=sFol let (x, y) = <x, y>a~ι and this will do the job.

In the following it will be enough to find an equivalent inner product (x, y)

such that (1, l ) # 0 .

Let G be the group of units of B and suppose that <1, #> = 0 for all g in

G. Then for each n in N, the Jacobson radical of B, < i, «> = <1, 1> - <1, 1 - //>

= 0. But we are assuming that there exists n ^ 0 in Δτ. Then <1, xn> = <#, ?i>

= 0 for all x in B which contradicts the assumption that B was Frobenius.
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Thus there exists g in G such that <1, £> # 0. Now let {x, y) - ζx, yg)> and

note that (1, 1) # 0.

We add here that if B is Jacobson semisimple then the normalization given

in the above theorem is not, in general, possible. See the polynomial examples

in the next section.

3. Examples. As a consequence of Theorem 3.1 of [5] we know that two

inner products on a Frobenius algebra which induce the same topology are

actually equivalent in the sense defined above. In this section we will show by

example that an algebra can be Frobenius with respect to lots of inequivalent

inner products. This varies from the classical theory [7, 8] since there all the

topologies are equivalent (all discrete).

Let L be a field and Lίxl the polynomial algebra over Z. We shall make

Lίxl symmetric in an uncountable number of ways. Choose an increasing

sequence of positive integers m such that m - m-ϊ>i and then define φ(xH) = 0̂,

φ of other powers of x to be zero. Extend φ to be a linear functional in Lίxl.

Now φ induces an inner product on Lίxl by the equation φ(fg) = (/, g). One

readily verifies that L H is symmetric with respect to this inner product. We

note, however, that any infinite subsequence of the sequence m will also define

an inner product on L[χ] and it will be symmetric with respect to that inner

product. No two of these inner products are equivalent, since the unit group

of Lίxl consists only of nonzero field elements. Thus Lίxl has an uncountable

number of inequivalent inner products and is symmetric with respect to each

of them. Actually, it is not hard to show that the cardinality of the set of

inequivalent inner products is the greater of 2̂ ° and the cardinality of L.

We remark that the polynomial algebra Lίxl is a special case of a free

algebra [3, 6]. It can be shown by a rather complicated computation that cer-

tain free algebras without nilpotent one sided ideals are symmetric. In particu-

lar, if S is the direct sum of copies of the field and M is a two sided module

over S of finite dimension over the field then the free algebra F(S, M) is

symmetric if it has no nilpotent one sided ideals.

Now that we have all these different inner products (and different to-

pologies) on the polynomial algebra it might be of some interest to consider

some properties of these topologies. The following theorem is an immediate

corollary to Theorem 6.3 of [5].

https://doi.org/10.1017/S0027763000007558 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007558


SYMMETRIC AND FROBENIUS ALGEBRAS 71

THEOREM 3.1. If A is a Frobenius algebra over a field L and if A has no

L finite dimensional one sided ideals {nonzero) then every one sided ideal of

finite L-index in A is dense in A in the topology induced by the inner product

on A.

But the polynomial algebras have no non zero finite dimensional ideals and

every non zero ideal has finite index. Thus, in the symmetric polynomial alge-

bras defined above, every non zero ideal is dense. This is quite unlike any of

the usual topologies on the polynomial ring.

We note that all the topologies put on the polynomial algebra are metrizable.

We also note that a Frobenius algebra satisfying the hypotheses of Theorem

3.1 is all "big radical". Perhaps the following remarks are in order concerning

the big radical. In [5] we defined the "big radical" to be the intersection of

the closed maximal right ideals of finite field index in the algebra. It is be-

coming increasingly clear that this characteristic ideal is a little big to be called

a radical. For instance, for the polynomial algebras it is the whole algebra.

It has been suggested that the ideal be called "the liberal" instead of the radical.

The use of this term is motivated by the following politico-mathematical obser-

vation : If all the radicals were factored out there would still be quite a bit

of structure left. However, if all the liberals were factored out, the world would

be quite dull.
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