SOME RESULTS ON ω-DERIVATIVES AND $B V-\omega$ FUNCTIONS

M. C. CHAKRABARTY *
(Received 1 May 1967, revised 16 October 1967)

1. Introduction

Let $\omega(x)$ be non-decreasing on the closed interval [a, b]. Outside the interval $\omega(x)$ is defined by $\omega(x)=\omega(a)$ for $x<a$ and $\omega(x)=\omega(b)$ for $x>b$. Let S denote the set of points of continuity of $\omega(x)$ and D denote the set of points of discontinuity of $\omega(x)$. R. L. Jeffery [5] has defined the class \mathscr{U}, of functions $f(x)$ as follows:
$f(x)$ is defined on the set $S \cdot[a, b]$ and $f(x)$ is continuous at each point of $S \cdot[a, b]$ with respect to the set S. If $x_{0} \in D$ then $f(x)$ tends to a limit (finite or infinite) as x tends to $x_{0}+$ and x_{0} - over the points of the set S. These limits will be denoted by $f\left(x_{0}+\right)$ and $f\left(x_{0}-\right)$ respectively. When $x<a, f(x)=f(a+)$ and $f(x)=f(b-)$ when $x>b$. $f(x)$ may or may not be defined at points of the set D.

Let \mathscr{U}_{0} denote the class of functions $f(x)$ of \mathscr{U} for which $f\left(x_{0}+\right)$ and $f\left(x_{0}-\right)$ are finite, $x_{0} \in D$.

In [5] Jeffery has also introduced the following definition:
Definition 1.1: For any x and $h \neq 0$ with $x+h \in S$, the function $\psi(x, h)$ is defined by

$$
\psi(x, h)=\left\{\begin{array}{lll}
\frac{f(x+h)-f(x-)}{\omega(x+h)-\omega(x-)}, & h>0, & \omega(x+h)-\omega(x-) \neq 0 \\
\frac{f(x+h)-f(x+)}{\omega(x+h)-\omega(x+)}, & h<0, & \omega(x+h)-\omega(x+) \neq 0 \\
0, & \omega(x+h)-\omega(x \pm)=0
\end{array}\right.
$$

The upper and lower limits of $\psi(x, h)$ as $h \rightarrow 0+(x+h \in S)$ are called respectively the Upper and Lower ω-derivatives of $f(x)$ at x on the right and are denoted by $D^{+} f_{\omega}(x)$ and $D_{+} f_{\omega}(x)$. If $D^{+} f_{\omega}(x)=D_{+} f_{\omega}(x)$, the common value is called the ω-derivative of $f(x)$ at x on the right and is denoted by $f_{+\omega}^{\prime}(x)$. Similarly the left ω-derivatives $D^{-} f_{\omega}(x), D_{-} f_{\omega}(x)$ and

[^0]$f_{-\omega}^{\prime}(x)$ of $f(x)$ are defined. If $f_{+\omega}^{\prime}(x)=f_{-\omega}^{\prime}(x)$, the common value is called the ω-derivative of $f(x)$ at x and is denoted by $f_{\omega}^{\prime}(x)$.

Any set of points $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ such that $\omega\left(x_{i-1}\right) \neq \omega\left(x_{i}\right) \quad(i=1,2, \cdots, n)$ is called an ω-subdivision ([1], [2]) of $[a, b]$. In [1] the following definition has been introduced.

Definition 1.2: Let $f(x)$ be defined on $[a, b]$ and be in the class \mathscr{U}. The least upper bound of the sums

$$
V=\sum_{i=1}^{n}\left|f\left(x_{i}+\right)-f\left(x_{i-1}-\right)\right|
$$

for all possible ω-subdivisions $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ of $[a, b]$ is called the total ω-variation, $V_{\omega}(f ; a, b)$, of $f(x)$ on $[a, b]$. If $V_{\omega}(f ; a, b)<+\infty$, then $f(x)$ is said to be a function of bounded variation relative to $\omega, B V-\omega$, on $[a, b]$.

The purpose of the present paper is to study some properties of ω derivatives of a function $f(x) \in \mathscr{U}$ and to show that if $f(x)$ is $B V-\omega$ on $[a, b]$, then $f_{\omega}^{\prime}(x)$ exists and is finite at all points of $[a, b]$ except on a set of ω-measure (§ 2) zero and that $f_{\omega}^{\prime}(x)$ is summable ($L S$) (§ 2) on $[a, b]$. We require the following known results.

Theorem 1.1. ([5], lemma 2). Let E be any set on $[a, b]$. Let each point x of E be the left hand end point of a sequence of closed intervals $\left[x, x+h_{i}\right]$ for which $h_{i} \rightarrow 0$. Let \mathscr{F} denote the family of all intervals thus associated with the set E. Then for every $\varepsilon>0$ there exists a finite family of pairwise disjoint closed intervals $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{N}$ of \mathscr{F} for which

$$
\sum_{i=1}^{N} \omega^{*}\left(E \Delta_{i}\right)>\omega^{*}(E)-\varepsilon, \sum_{i=1}^{N}\left|\Delta_{i}\right|_{\omega}<\omega^{*}(E)+\varepsilon
$$

where $\omega^{*}(E)$ denotes the outer ω-measure and $|E|_{\omega}$ the ω-measure (§ 2) of the set E.

Theorem 1.2. This theorem is obtained from theorem 1.1 by replacing 'left hand' by 'right hand' and $\left[x, x+h_{i}\right]$ by $\left[x-h_{i}, x\right]$.

Throughout the paper the following notations will be used. S_{0} denotes the union of pairwise disjoint open intervals (a_{i}, b_{i}) in $[a, b]$ on each of which $\omega(x)$ is constant, $S_{1}=\left\{a_{1}, b_{1}, a_{2}, b_{2}, \cdots\right\}, S_{2}=S S_{1}$, and $S_{3}=[a, b] \cdot S-\left(S_{0}+S_{2}\right)$. Then $\omega\left(x_{1}\right)<\omega\left(x_{2}\right)$ for every pair x_{1}, x_{2} with $x_{1}<x_{2}$ where one of them at least is a member of S_{3}. If $f(x) \in \mathscr{U}$, then $f_{\omega}^{\prime}(x)=0$ on S_{0} and $f_{\omega}^{\prime}(x)$ exists at each point of D.

2. ω-measure of a bounded set and Lebesgue-Stieltjes integral

The ω-measure $|(\alpha, \beta)|_{\omega}([5], \S 1)$ of an open interval (α, β) is defined by $|(\alpha, \beta)|_{\omega}=\omega(\beta--)-\omega(\alpha+)$. The ω-measure $|G|_{\omega}$ of a bounded open set $G=\sum_{i}\left(\alpha_{i}, \beta_{i}\right)$, where the open intervals ($\left.\alpha_{i}, \beta_{i}\right)$ are pairwise disjoint, is
defined by $|G|_{\omega}=\sum_{i}\left|\left(\alpha_{i}, \beta_{i}\right)\right|_{\omega}$. If G is void, then $|G|_{\omega}=0$. The ω-measure $|I|_{\omega}$ of a closed interval $I=[\alpha, \beta]$ is defined by $|I|_{\omega}=\omega(\beta+)-\omega(\alpha-)$. The ω-measure $|F|_{\omega}$ of a bounded closed set F is defined by

$$
|F|_{\omega}=|I|_{\omega}-\left|C_{I} F\right|_{\omega}
$$

where I is the smallest closed interval containing F and $C_{I} F$ denotes the complement of F with respect to I. The outer ω-measure $\omega^{*}(E)$ of a bounded set E is the infimum of the ω-measures of all bounded open sets containing E and the inner ω-measure $\omega_{*}(E)$ is the supremum of the ω-measures of all closed sets contained in E. If $\omega^{*}(E)=\omega_{*}(E)$, the set E is said to be ω-measurable and the common value is denoted by $|E|_{\omega}$. Two sets A_{1} and A_{2} are said to be separated relative to ω-measure or ω-separated if corresponding to every $\varepsilon>0$ there exist open sets G_{1}, G_{2} with $G_{1} \supset A_{1}, G_{2} \supset A_{2}$ such that $\left|G_{1} G_{2}\right|_{\omega}<\varepsilon$. A function $f(x)$ defined on the ω-measurable set E is said to be ω-measurable ([5], def. 2) if for every real number r, the set $E(f>r)=\{x ; x \in E$ and $f(x)<r\}$ is ω-measurable.

Let $f(x)$ be ω-measurable on the bounded set E and $A<f(x)<B$ on E. Let $A=y_{0}<y_{1}<y_{2}<\cdots<y_{n}=B$ be a subdivision of [A, B] and $e_{i}=E\left(y_{i} \leqq f<y_{i+1}\right)(i=0,1,2, \cdots, n-1)$. The limit of $\sum_{i=0}^{n-1} y_{i}\left|e_{i}\right|_{\omega}$ as $\max \left|y_{i}-y_{i-1}\right| \rightarrow 0$ is called the Lebesgue-Stieltjes integral ([5], def. 3) of $f(x)$ over E and is written as $\int_{E} f d \omega$. This definition may be extended to unbounded functions in the usual way.

One can verify that (i) the results of the sections $\mathbf{1 - 4}$ ([6]), Ch. III) and the theorems $2.7,2.17-2.20$ ([4], Ch. II) corresponding to ω-measures, (ii) the results of the sections $\mathbf{1 , 2}$ ([6], Ch. IV) and the theorems 3.9-3.11 ([4], Ch. III) corresponding to ω-measurable functions (iii) the results of the sections 2, 3 ([6], Ch. V) and 1, 2 ([6], Ch. VI) corresponding to Lebesgue-Stieltjes integral, are true. Whenever necessary we shall refer these results with a star for the corresponding results of ω-measures, ω-measurable functions and Lebesgue-Stieltjes integral.

If a property P is satisfied at all points of a set A except a set of ω-measure zero, then it will be said that P is satisfied almost everywhere (ω) in A or at ω-almost all points of A.

3. ω-density of sets

Definition 3.1. (cf. [4], def. 5.2, p. 114).
Let A be any subset of S_{3}, x be any point and

$$
v=[x, x+h](h>0, x+h \in S) .
$$

Then

$$
\lim _{h \rightarrow 0} \sup \frac{\omega^{*}(A v)}{|v|_{\omega}}, \quad \lim _{h \rightarrow 0} \inf \frac{\omega^{*}(A v)}{|v|_{\omega}}
$$

are respectively called the right upper and lower ω-densities of A at x. If these limits are equal, their common value is the right ω-density of A at x. Similar difinitions are given for left ω-densities of A. If the left and right ω-densities of A at x are equal, their common value is the ω-density of A at x. Since $\omega^{*}(A v) \leqq|v|_{\omega}$ for any interval v it follows that none of the four ω-densities can exceed unity.

Definition 3.2. Let A be a subset of S_{3} and x be any point. A is said to be ω-dense at x if $\omega^{*}(A v)>0$ for any open interval v containing x. A is said to be ω-dense in itself if A is ω-dense at each point of A.

Theorem 3.1. Let A be a subset of S_{3}. Then at almost all points (ω) of A the ω-density of A is unity.

Corollary 3.1.1. If $A \subset S_{3}$ then A is ω-dense at almost all points (ω) of A.

Theorem 3.2. Let A and B be two subsets of S_{3}. If A and B are ω separated, then at almost all points (ω) of one set the ω-density of the other is zero.

Theorem 3.3. Let A and B be two subsets of S_{3}. If at almost all points (ω) of A the ω-density of B is zero, then A and B are ω-separated.

The above theorems can be proved in a way analogous to that used in proving the results of the section 5.2 ([4], Ch. V) by making use of the theorems 1.1 and 1.2.

Let A and B be any two subsets of S_{3}. Let A_{B} and B_{A} denote the parts of A, B respectively where at least one of the four ω-densities of B, A is different from zero.

Theorem 3.4. If A and B are not ω-separated, then $\omega^{*}\left(A_{B}\right)>0$ and $\omega^{*}\left(B_{A}\right)>0$; also no part of A_{B} with positive outer ω-measure is ω separated from B_{A} and no part of B_{A} with positive outer ω-measure is ω-separated from A_{B}.

Proof. From theorem 3.3 it follows that $\omega^{*}\left(A_{B}\right)>0$ and $\omega^{*}\left(B_{A}\right)>0$. Let $E \subset A_{B}$ with $\omega^{*}(E)>0$. If possible, let E be ω-separated from B_{A}. Write $B^{\prime}=B-B_{A}$. Then $B=B^{\prime}+B_{A}$. At each point of B^{\prime} the ω-density of A and therefore of E is zero. By theorem 3.3 the sets E and B^{\prime} are ω-separated. So the sets E and $B=B^{\prime}+B_{A}$ are ω-separated. Then by theorem 3.2 at almost all points (ω) of E the ω-density of B is zero. This contradicts the definition of A_{B}. If $E \subset B_{A}$ and $\omega^{*}(E)>0$ then as above we can show that E and A_{B} are not ω-separated.

Theorem 3.5. For any two sets A and B and any interval v, we have

$$
\omega^{*}\left(v A_{B}\right)=\omega^{*}\left(v B_{A}\right)
$$

Proof. If A and B are ω-separated then by Theorem 3.2, $\omega^{*}\left(A_{B}\right)=0$ and $\omega^{*}\left(B_{A}\right)=0$. Therefore $\omega^{*}\left(v A_{B}\right)=\omega^{*}\left(v B_{A}\right)$.

Next we suppose that A and B are not ω-separated. Write $A_{0}=v A_{B}$ and $B_{0}=v B_{A}$. Assume that $\omega^{*}\left(A_{0}\right)<\omega^{*}\left(B_{0}\right)$. Let Δ be any open interval containing the sets v, A_{B}, B_{A}. Choose an open set $G \subset \Delta$ such that $A_{0} \subset G$ and $|G|_{\omega}<\omega^{*}\left(B_{0}\right)$. Let F denote the complement of G relative to Δ. Then $\omega^{*}\left(F B_{0}\right)>0$. Since the sets F and G are ω-separated, the same is true for the sets $F B_{0}$ and $G A_{B}$. Again since $F B_{0} \subset v$ and $F A_{B} \subset \Delta-v$ the sets $F B_{0}$ and $F A_{B}$ are ω-separated. Hence $F B_{0}$ is ω-separated from $A_{B}=G \cdot A_{B}+F \cdot A_{B}$. Since $F B_{0} \subset B_{A}$ and $\omega^{*}\left(F B_{0}\right)>0$ this contradicts the Theorem 3.4. Similarly we can show that the assumption $\omega^{*}\left(B_{0}\right)<\omega^{*}\left(A_{0}\right)$ leads to a contradiction. Hence $\omega^{*}\left(A_{0}\right)=\omega^{*}\left(B_{0}\right)$.

Corollary 3.5.1. If A and B are not ω-separated, then

$$
\omega^{*}\left(A_{B}\right)=\omega^{*}\left(B_{A}\right)>0 .
$$

Theorem 3.6. If A and B are not ω-separated, then at almost all points (ω) of A_{B} the ω-density of B is unity and at almost all points (ω) of B_{A} the ω-density of A is unity.

Proof. Let $0<\tau_{1}<\tau_{2}<\cdots$ be a sequence of real numbers with $\tau_{i} \rightarrow 1$ and let E_{i} denote the set of points of A_{B} where the right lower ω-density of B is less than τ_{i}. Consider the set E_{n}. If $x \in E_{n}$ there exists a null sequence $\left\{h_{i}\right\}\left(h_{i}>0, x+h_{i} \in S\right)$ such that for all i

$$
\frac{\omega^{*}\left(B v_{i}\right)}{\left|v_{i}\right|_{\omega}}<\tau_{n}
$$

where $v_{i}=\left[x, x+h_{i}\right]$. Since $B_{A} \subset B$ we have for all i

$$
\begin{equation*}
\omega^{*}\left(v_{i} B_{A}\right)<\tau_{n}\left|v_{i}\right|_{\omega} . \tag{1}
\end{equation*}
$$

Let \mathscr{F} denote the family of all closed intervals v_{i} thus associated with the set E_{n}. Choose $\varepsilon>0$ arbitrarily. Then by theorem 1.1 there exists a finite family of pairwise disjoint closed intervals $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{N}$ of \mathscr{F} for which

$$
\begin{equation*}
\sum_{i=1}^{N} \omega^{*}\left(\Delta_{i} E_{n}\right)>\omega^{*}\left(E_{n}\right)-\varepsilon, \sum_{i=1}^{N}\left|\Delta_{i}\right|_{\omega}<\omega^{*}\left(E_{n}\right)+\varepsilon \tag{2}
\end{equation*}
$$

So,

$$
\begin{array}{rll}
\omega^{*}\left(E_{n}\right)-\varepsilon & <\sum_{i=1}^{N} \omega^{*}\left(\Delta_{i} A_{B}\right)=\sum_{i=1}^{N} \omega^{*}\left(\Delta_{i} B_{A}\right) & \text { [by theorem 3.5] } \tag{1}\\
<\tau_{n} \sum_{i=1}^{N}\left|\Delta_{i}\right|_{\omega}<\tau_{n}\left[\omega^{*}\left(E_{n}\right)+\varepsilon\right] & {[\text { by (1) and (2)] }}
\end{array}
$$

Since $\varepsilon>0$ is arbitrary, (3) leads to a contradiction unless $\omega^{*}\left(E_{n}\right)=0$. If E^{\prime} denotes the set of points of A_{B} where the right lower ω-density of B
is less than unity, then $E^{\prime}=\sum_{i=1}^{\infty} E_{i}$. Since $\omega^{*}\left(E_{i}\right)=0$ for all i, $\omega^{*}\left(E^{\prime}\right)=0$. If $E^{\prime \prime}$ denotes the set of points of A_{B} where the left lower ω-density of B is less than unity, then as above we can show that $\omega^{*}\left(E^{\prime \prime}\right)=0$. Write $E=E^{\prime}+E^{\prime \prime}$. Then $\omega^{*}(E)=0$. Clearly at each point of $A_{B}-E$ the ω-density of B is unity.

Similarly we can show that at almost all points (ω) of B_{A} the ω-density of A is unity. This completes the proof.

Theorem 3.7. If A be a closed set contained in S_{3}, then A can be expressed as $A=P+H$, where P is perfect and ω-dense in itself and where the ω-measure of H is zero.

Proof. Denote by P the set of points of A where A is ω-dense and write $H=A-P$. Then $A=P+H$. By corollary 3.1.1, the ω-measure of H is zero. Let α be a limiting point of P and v be any open interval containing α. Then v contains a point $\xi(\neq \alpha)$ of P which gives that $\omega^{*}(A v)>0$. Since v is arbitrary it follows that A is ω-dense at α and therefore $\alpha \in P$. So the set P is closed. Again let $\alpha \in P$ and v be any open interval containing α. Then $\omega^{*}(v A)>0$. But $\omega^{*}(A v)=\omega^{*}(P v)$. Since $v P \subset S_{3}$, v contains infinity of points of P; so α is a limiting point of P. Thus the set P is perfect. Clearly P is ω-dense at each point of P. This completes the proof.

4. Results on ω-derivatives of $f(x) \in \mathscr{U}$

Theorem 4.1. If $f(x)$ is in the class \mathscr{U}, then all the four ω-derivatives of $f(x)$ are ω-measurable on $[a, b]$.

Proof. We prove the theorem for the derivative $D^{+} f_{\omega}(x)$. The proofs in the other cases are analogous. We have $[a, b]=S_{0}+S_{2}+S_{3}+D$, where the sets S_{0}, S_{2}, S_{3}, D are pairwise disjoint and ω-measurable. $D^{+} f_{\omega}(x)=0$ at each point of S_{0}. Since $\left|S_{2}\right|_{\omega}=0$ and D is at most enumerable, $D^{+} f_{\omega}(x)$ is ω-measurable on each of the sets S_{0}, S_{2} and D. The theorem will be proved if we can show that $D^{+} f_{\omega}(x)$ is ω-measurable on the set S_{3}.

For any real number r write $A_{r}=\left\{x ; x \in S_{3}\right.$ and $\left.D^{+} f_{\omega}(x)<r\right\}$ and $B_{r}=\left\{x ; x \in S_{3}\right.$ and $\left.D^{+} f_{\omega}(x) \geqq r\right\}$. Suppose that $D^{+} f_{\omega}(x)$ is not ω-measurable on S_{3}. There is then a real number r for which the sets A_{r} and B_{r} are not ω-measurable. So by theorem 2.20* ([4], p. 59) the sets A_{r} and B_{r} are not ω-separated. Let $c_{1}<c_{2}<c_{3}<\cdots$ be a sequence of real numbers with $c_{i} \rightarrow r$. Let $E_{i k}$ be the set of points ξ of A_{r} for which

$$
\begin{equation*}
\frac{f(\xi+h)-f(\xi)}{\omega(\xi+h)-\omega(\xi)}<c_{i} \tag{4}
\end{equation*}
$$

whenever $0<h<\mathbf{1} / k$ and $\xi+h \in S$. If $i_{1} \leqq i_{2}$ and $k_{1} \leqq k_{2}$ then
$E_{i_{1} k_{1}} \subset E_{i_{2} k_{2}}$. Also if $x \in A_{\tau}$, then $x \in E_{i k}$ for some i, k. Hence from theorems 2.18* and 2.20* ([4], p. 58-59) it follows that for sufficiently large i, k the sets $E_{i k}$ and B_{r} are not ω-separated. So by theorem 3.6 there is a set $E \subset B_{r}$ with $\omega^{*}(E)>0$ such that at each point of E the ω-density of $E_{i k}$ is unity. Let α be any point of E and c be any real number with $c_{i}<c<r$. Since $D^{+} f_{\omega}(\alpha)>c$ there exists h^{\prime} with $0<h^{\prime}<1 / k, \alpha+h^{\prime} \in S$ such that

$$
\begin{equation*}
\frac{f\left(\alpha+h^{\prime}\right)-f(\alpha)}{\omega\left(\alpha+h^{\prime}\right)-\omega(\alpha)}>c . \tag{5}
\end{equation*}
$$

Since the ω-density of $E_{i k}$ at α is unity, every interval

$$
[\alpha, \alpha+h](h>0, \alpha+h \in S)
$$

contains infinity of points of the set $E_{i k}$. Choose any ξ of $E_{i k}$ in $\left(\alpha, \alpha+h^{\prime}\right)$ and write $h=\alpha+h^{\prime}-\xi$. Then $\xi+h=\alpha+h^{\prime}$ and $0<h<1 / k$. So, from (4) and (5) we have

$$
f\left(\alpha+h^{\prime}\right)-f(\alpha)>c\left[\omega\left(\alpha+h^{\prime}\right)-\omega(\alpha)\right]
$$

and

$$
f(\xi+h)-f(\xi)<c_{i}[\omega(\xi+h)-\omega(\xi)]
$$

from which we get

$$
\begin{equation*}
f(\xi)-f(\alpha)>\left[\omega\left(\alpha+h^{\prime}\right)-\omega(\alpha)\right]\left[c-\frac{\omega\left(\alpha+h^{\prime}\right)-\omega(\xi)}{\omega\left(\alpha+h^{\prime}\right)-\omega(\alpha)} c_{i}\right] . \tag{6}
\end{equation*}
$$

Now suppose that $\xi \rightarrow \alpha+$ over the points of $E_{i k}$. Then $h \rightarrow h^{\prime}$ and from (6) we get

$$
\begin{equation*}
f(\alpha+)-f(\alpha) \geqq\left[\omega\left(\alpha+h^{\prime}\right)-\omega(\alpha)\right]\left(c-c_{i}\right) . \tag{7}
\end{equation*}
$$

Since $\omega\left(\alpha+h^{\prime}\right)-\omega(\alpha)>0$ and $c>c_{i}$, the relation (7) contradicts the fact that $f(x)$ is continuous at α with respect to the set S. This proves the theorem.

Theorem 4.2. Let $f(x)$ belong to the class \mathscr{U} and P be a non-void perfect set contained in S_{3}. If all the four ω-derivatives of $f(x)$ are greater than A and less than $B(>A)$, then there exists a closed interval $[c, d]$ in $[a, b]$ such that $P \cdot[c, d]$ is a non-void perfect set and for all (x, y) in $X=\{(x, y) ; x \neq y, x \in P \cdot[c, d]$ and $y \in[c, d] \cdot S\}$,

$$
A \leqq \frac{f(x)-f(y)}{\omega(x)-\omega(y)} \leqq B .
$$

Proof. Consider the function $\phi(x)$ defined by $\phi(x)=f(x)-B \omega(x)$ on S and $\phi(x)=f(x+)-B \omega(x+)$ on D. If $x \in P$, then $D^{+} \phi_{\omega}(x)<0$. So there is a positive number h_{x} such that $\phi(y) \leqq \phi(x)$ for all y in $\left[x, x+h_{x}\right]$. From § 293 ($[3]$, p. 393) it follows that there is a closed interval $\left[c_{1}, d_{1}\right]$
in $[a, b]$ such that $P_{1}=P \cdot\left[c_{1}, d_{1}\right]$ is a non-void perfect set and $\phi(y) \leqq \phi(x)$ for all (x, y) in $X_{1}=\left\{(x, y) ; x<y, x \in P_{1}\right.$ and $\left.y \in\left[c_{1}, d_{1}\right] \cdot S\right\}$. Then for all (x, y) in X_{1}

$$
\begin{equation*}
\frac{f(x)-f(y)}{\omega(x)-\omega(y)} \leqq B \tag{8}
\end{equation*}
$$

Since $D^{-} \phi_{\omega}(x)<0$ for $x \in P_{1}$, there is an $h_{x}>0$ such that $\phi(y) \geqq \phi(x)$ for all y in $\left[x-h_{x}, x\right]$. So there is a closed interval $\left[c_{2}, d_{2}\right]$ in $\left[c_{1}, d_{1}\right]$ such that $P_{2}=P_{1} \cdot\left[c_{2}, d_{2}\right]$ is a non-void perfect set and $\phi(y) \geqq \phi(x)$ for all (x, y) in

$$
X_{2}=\left\{(x, y) ; x>y, x \in P_{2} \text { and } y \in\left[c_{2}, d_{2}\right] \cdot S\right\}
$$

This gives that (8) holds for all (x, y) in X_{2}. Hence for all (x, y) in

$$
X_{3}=\left\{(x, y) ; x \neq y, x \in P_{2} \text { and } y \in\left[c_{2}, d_{2}\right] \cdot S\right\}
$$

the relation (8) is satisfied. Considering the function $F(x)$ defined by $F(x)=f(x)-A \omega(x)$ on S and $F(x)=f(x+)-A \omega(x+)$ on D we can show that there exists a closed interval $[c, d]$ in $\left[c_{2}, d_{2}\right]$ such that $P_{2} \cdot[c, d]$ is a non-void perfect set, and that

$$
\begin{equation*}
A \leqq \frac{f(x)-f(y)}{\omega(x)-\omega(y)} \tag{9}
\end{equation*}
$$

for all (x, y) in $X=\left\{(x, y) ; x \neq y, x \in P_{2} \cdot[c, d]\right.$ and $\left.y \in[c, d] \cdot S\right\}$. Clearly $P_{2} \cdot[c, d]=P \cdot[c, d]$. Since $X \subset X_{3}$, both the relations (8) and (9) are satisfied for all (x, y) in X. This proves the theorem.

Theorem 4.3. Let $f(x)$ belong to the class \mathscr{U}. If E denotes the set of points in $[a, b]$ where $f_{+\omega}^{\prime}(x)$ and $f_{-\omega}^{\prime}(x)$ exist and are finite but not equal, then E is at most enumerable and $|E|_{\omega}=0$.

Proof. It is obvious that $E \subset S-S_{0}$. Write $E_{0}=E-S_{2}$. Then $E_{0} \subset S_{3}$. Write

$$
E_{1}=\left\{x ; x \in E_{0} \text { and } f_{-\omega}^{\prime}(x)<f_{+\omega}^{\prime}(x)\right\}
$$

and

$$
E_{2}=\left\{x ; x \in E_{0} \text { and } f_{+\omega}^{\prime}(x)<f_{-\omega}^{\prime}(x)\right\}
$$

Then $E_{0}=E_{1}+E_{2}$. Let $r_{1}, r_{2}, r_{3}, \cdots$ be an enumeration of the rational numbers. If $x \in E_{1}$ there exists a smallest positive integer k such that

$$
f_{-\omega}^{\prime}(x)<\gamma_{k}<f_{+\omega}^{\prime}(x)
$$

There is then a least positive integer m such that $r_{m}<x$ and

$$
\frac{f(\xi)-f(x)}{\omega(\xi)-\omega(x)}<r_{k}
$$

for all $\xi \in\left(r_{m}, x\right) \cdot S$; and a smallest positive integer n such that $r_{n}>x$ and

$$
\frac{f(\xi)-f(x)}{\omega(\xi)-\omega(x)}>r_{k}
$$

for all $\xi \in\left(x, r_{n}\right) \cdot S$. Combining these two relations we have

$$
\begin{equation*}
f(\xi)-f(x)>r_{k}\{\omega(\xi)-\omega(x)\} \tag{10}
\end{equation*}
$$

for all $\xi(\neq x)$ in $\left(r_{m}, r_{n}\right) \cdot S$.
Thus to every $x \in E_{1}$, there corresponds a unique triad (k, m, n). If x_{1}, x_{2} are two distinct points of E_{1}, then with the help of (10) it can be shown that they correspond to two different triads. Since the set of all triads (k, m, n) is enumerable it follows that E_{1} is at most enumerable. Similarly we can show that E_{2} is at most enumerable; hence so is the set E_{0}. Since E is enumerable and contained in S it follows that $|E|_{\omega}=\mathbf{0}$.

Theorem 4.4. Let $f(x)$ belong to the class \mathscr{U}. If E denotes the set of points in $[a, b]$ where all the four ω-derivatives of $f(x)$ are finite but at least one of $f_{+\omega}^{\prime}(x)$ and $f_{-\omega}^{\prime}(x)$ does not exist, then $|E|_{\omega}=0$.

Proof. Let E^{\prime} denote the set of points of E where

$$
D^{+} f_{\omega}(x)-D_{+} f_{\omega}(x)>k(>0) .
$$

From Theorem 4.1. it follows that the set E^{\prime} is ω-measurable. Write $E_{0}=E^{\prime}-S_{2}$. Then $E_{0} \subset S_{3}$ and $\left|E_{0}\right|_{\omega}=\left|E^{\prime}\right|_{\omega}$. If possible, let $\left|E_{0}\right|_{\omega}>0$. For any positive integer r let E_{r} denote the set of points of E_{0} where all the four ω-derivatives of $f(x)$ are numerically less than r. Then $E_{r} \subset E_{r+1}$ for every r and $E_{0}=\sum_{r=1}^{\infty} E_{r}$. We can find a positive integer N such that $\left|E_{N}\right|_{\omega}>0$. From § 2 and theorem 3.7 it follows that there exists a perfect set $B \subset E_{N}$ such that B is ω-dense in itself and $|B|_{\omega}>0$. Consider the function $g(x)=f(x)+N \omega(x)$. On B all the four ω-derivatives of $g(x)$ are >0 and $<2 N$. By theorem 4.2 there is a closed interval $\left[c^{\prime}, d^{\prime}\right]$ in $[a, b]$ such that $B^{\prime}=B \cdot\left[c^{\prime}, d^{\prime}\right]$ is a non-void perfect set and

$$
\begin{equation*}
0 \leqq \frac{g(x)-g(x)}{\omega(x)-\omega(y)} \leqq 2 N, \tag{11}
\end{equation*}
$$

for all (x, y) in $X=\left\{(x, y) ; x \neq y, x \in B^{\prime}\right.$ and $\left.y \in\left[c^{\prime}, d^{\prime}\right] \cdot S\right\}$. From definition 3.2 it follows that $\left|B^{\prime}\right|_{\omega}>0$. Choose the positive integer m such that $\frac{1}{2} k(m-1) \leqq 2 N<\frac{1}{2} k m$. Let B_{i} denote the set of points of B^{\prime} where

$$
\frac{1}{2}(i-1) k \leqq D_{+} g_{\omega}(x)<\frac{1}{2} i k \quad(i=1,2, \cdots, m)
$$

Then for some integer $s(1 \leqq s \leqq m),\left|B_{s}\right|_{\omega}>0$. We can choose a perfect set $P \subset B_{s}$ with $|P|_{\omega}>0$. At each point of P

$$
\frac{1}{2}(s-1) k \leqq D_{+} g_{\omega}(x)<\frac{1}{2} s k \text { and } D^{+} g_{\omega}(x)>\frac{1}{2}(s+1) k .
$$

Let $[c, d]$ be the smallest interval containing P. Clearly $c, d \in P$. Let $[c, d]-P=\sum_{i}\left(\alpha_{i}^{\prime}, \beta_{j}^{\prime}\right)$, where the intervals ($\alpha_{i}^{\prime}, \beta_{i}^{\prime}$) are pairwise disjoint. Choose $\varepsilon>0$ arbitrarily with

$$
\begin{equation*}
\varepsilon<\frac{k|P|_{\omega}}{(2 s+1) k+8 N} . \tag{12}
\end{equation*}
$$

We find the positive integer n such that $\sum_{i=n+1}^{\infty}\left|\left(\alpha_{i}^{\prime}, \beta_{j}^{\prime}\right)\right|_{\omega}<\varepsilon$. Write $\Delta^{\prime}=\sum_{i=1}^{n}\left(\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right)$ and $\Delta=[c, d]-\Delta^{\prime}$. Then $P \subset \Delta$. We arrange the first n intervals ($\alpha_{i}^{\prime}, \beta_{i}^{\prime}$) in the order of increasing end points and rename them as $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \cdots,\left(\alpha_{n}, \beta_{n}\right)$. Write $c=\beta_{0}, d=\alpha_{n+1}$. Since P is perfect we have $\beta_{i}<\alpha_{i+1}(i=0,1, \cdots, n)$. Then $\Delta=\sum_{i=0}^{n}\left[\beta_{i}, \alpha_{i+1}\right]$. Let $P_{i}=P \cdot\left[\beta_{i}, \alpha_{i+1}\right](i=0,1,2, \cdots, n)$. If $x \in P_{\tau}$ then there exists a null sequence $\left\{h_{i}\right\}\left(h_{i}>0, x+h_{i} \in S\right)$ such that

$$
\begin{equation*}
g\left(x+h_{i}\right)-g(x)<\frac{1}{2} s k\left\{\omega\left(x+h_{i}\right)-\omega(x)\right\} . \tag{13}
\end{equation*}
$$

Let \mathscr{F} denote the family of all closed intervals $\left[x, x+h_{i}\right]$ thus associated with the set P_{τ}. By theorem 1.1 there exists a finite family of pairwise disjoint closed intervals $\delta_{1}, \delta_{2}, \cdots, \delta_{\mu}$ of \mathscr{F} for which

$$
\begin{equation*}
\sum_{i=1}^{\mu}\left|\delta_{i} P_{\tau}\right|_{\omega}>\left|P_{\tau}\right|_{\omega}-\varepsilon / n+1, \sum_{i=1}^{\mu}\left|\delta_{i}\right|_{\omega}<\left|P_{\tau}\right|_{\omega}+\varepsilon \mid n+1 \tag{14}
\end{equation*}
$$

Write

$$
\delta_{i}=\left[x_{i}, x_{i}+k_{i}\right] \quad(i=1,2, \cdots, \mu) .
$$

We may suppose that $x_{1}<x_{2}<\cdots<x_{\mu}$ and $x_{1}=\beta_{\tau}, x_{\mu}+k_{\mu}=\alpha_{\tau+1}$. Then $x_{i}+k_{i}<x_{i+1} \quad(i=1,2, \cdots, \mu-1)$. Now let $A_{\tau}^{\prime \prime}=\sum_{i=1}^{\mu} \delta_{i}$ and $\Delta_{\tau}^{\prime \prime \prime}=\sum_{i=1}^{\mu=1}\left(x_{i}+k_{i}, x_{i+1}\right)$. We proceed in this way with each of the sets $P_{0}, P_{1}, \cdots, P_{n}$. The interval $[c, d]$ is thus divided into a finite number of parts consisting of the sets
(i) $\Delta^{\prime \prime}=\sum_{\tau=0}^{n} \Delta_{\tau}^{\prime \prime}$ (ii) $\Delta^{\prime \prime \prime}=\sum_{\tau=0}^{n} \Delta_{\tau}^{\prime \prime \prime}$ and (iii) Δ^{\prime}. We have

$$
\left|4^{\prime \prime}\right|_{\omega}<|P|_{\omega}+\varepsilon,\left|4^{\prime \prime}\right|_{\omega}>|P|_{\omega}-\varepsilon \text { and }\left|\Delta^{\prime \prime \prime}\right|_{\omega}<2 \varepsilon .
$$

Now

$$
\begin{aligned}
g\left(\alpha_{\tau+1}\right)-g\left(\beta_{\tau}\right) & =\sum_{i=1}^{\mu}\left\{g\left(x_{i}+k_{i}\right)-g\left(x_{i}\right)\right\}+\sum_{i=1}^{\mu-1}\left\{g\left(x_{i+1}\right)-g\left(x_{i}+k_{i}\right)\right\} \\
& <\frac{1}{2} s k\left(\left|P_{\tau}\right|_{\omega}+\varepsilon / n+1\right)+2 N\left|\Delta_{\tau}^{\prime \prime \prime}\right|_{\omega} .[\text { Using (11), (13), and (14).] }
\end{aligned}
$$

So,

$$
\begin{align*}
g(d)-g(c) & =\sum_{\tau=0}^{n}\left\{g\left(\alpha_{\tau+1}\right)-g\left(\beta_{\tau}\right)\right\}+\sum_{\tau=1}^{n}\left\{g\left(\beta_{\tau}\right)-g\left(\alpha_{\tau}\right)\right\} \\
& <\frac{1}{2} s k\left(\sum_{\tau=0}^{n}\left|P_{\tau}\right|_{\omega}+\varepsilon\right)+2 N \sum_{\tau=0}^{n}\left|\Delta_{\tau}^{\prime \prime \prime}\right|_{\omega}+\sum_{\tau=1}^{n} q_{\tau} \tag{15}\\
& <\frac{1}{2} s k\left(|P|_{\omega}+\varepsilon\right)+4 N \varepsilon+q
\end{align*}
$$

where $q_{\tau}=g\left(\beta_{\tau}\right)-g\left(\alpha_{\tau}\right)$ and $q=\sum_{\tau=1}^{n} q_{\tau}$. Since at each point of $P, D^{+} g_{\omega}(x)>\frac{1}{2}(s+1) k$ proceeding as above we can show that

$$
\begin{equation*}
g(d)-g(c)>\frac{1}{2}(s+1) k\left(|P|_{\omega}-\varepsilon\right)+q . \tag{16}
\end{equation*}
$$

From (15) and (16) we get

$$
\frac{1}{2}(s+1) k\left(|P|_{\omega}-\varepsilon\right)<\frac{1}{2} s k\left(|P|_{\omega}+\varepsilon\right)+4 N \varepsilon \text {, or } \varepsilon>\frac{k|P|_{\omega}}{(2 s+1) k+8 N} .
$$

This contradicts (12). Hence $\left|E^{\prime}\right|_{\omega}=0$.
If for a positive integer n, A_{n} denotes the set of points of E where $D^{+} f_{\omega}(x)-D_{+} f_{\omega}(x)>1 / n$, then

$$
\sum_{n=1}^{\infty} A_{n}=A_{+}=\left\{x ; x \in E \text { and } D^{+} f_{\omega}(x)-D_{+} f_{\omega}(x)>0\right\} .
$$

Since $\left|A_{n}\right|_{\omega}=0$ for each n, we have $\left|A_{+}\right|_{\omega}=0$. If

$$
A_{-}=\left\{x ; x \in E \text { and } D^{-} f_{\omega}(x)>D_{-} f_{\omega}(x)\right\},
$$

then proceeding as in the previous case we can show that $\left|A_{-}\right|_{\omega}=0$. Clearly $E=A_{+}+A_{-}$. So $|E|_{\omega}=0$.

5. Function of sets

Definition 5.1. Let A be any set contained in S_{3} and the set function $\phi(e)$ be defined for sets $e \subset A$. Let $x \in A$ and $v=[x, x+h](h>0, x+h \in S)$. The right upper and lower derivatives $D^{+} \phi(e, x)$ and $D_{+} \phi(e, x)$ of $\phi(e)$ at x are defined by

$$
D^{+} \phi(e, x)=\lim _{h \rightarrow 0} \sup \frac{\phi(A v)}{|v|_{\omega}}, \quad D_{+} \phi(e, x)=\lim _{h \rightarrow 0} \inf \frac{\phi(A v)}{|v|_{\omega}} .
$$

If $D^{+} \phi(e, x)=D_{+} \phi(e, x)$, the common value is called the right derivative $D \phi_{+}(e, x)$ of $\phi(e)$ at x. Similarly the left derivatives $D^{-} \phi(e, x), D_{-} \phi(e, x)$ and $D \phi_{-}(e, x)$ of $\phi(e)$ are defined. If $D \phi_{+}(e, x)=D \phi_{-}(e, x)$, the common value is called the derivative $D \phi(e, x)$ of $\phi(e)$ at x.

Theorem 5.1. Let $f(x)$ be summable ($L S$) on the ω-measurable set $A \subset S_{3}$. For any ω-measurable set $e \subset A$ if

$$
\phi(e)=\int_{e} f d \omega
$$

then $D \phi(e, x)=f(x)$ at almost all points (ω) of A.
Proof. Let H denote the set of points of A where $D \phi(e, x)=f(x)$. Choose $\varepsilon>0$ arbitrarily. Then by theorem 3.9* ([4], p. 77) there exists a closed set $F \subset A$ with $|F|_{\omega}>|A|_{\omega}-\varepsilon$ such that $f(x)$ is continuous at each
point of F with respect to F. Let E denote the set of points of F where the ω-density of F is unity. Then by theorem 3.1, $|E|_{\omega}=|F|_{\omega}$. Write $B=A-F$. For $x \in E$, let $v=[x, x+h](h>0, x+h \in S)$. We show that as $h \rightarrow 0$ (I) $\phi(v F) /|v|_{\omega} \rightarrow f(x)$ for all $x \in E$ and (II) $\phi(v B) /|v|_{\omega} \rightarrow 0$ at almost all points (ω) of E.

Let $x \in E$. Choose $\eta>0$ arbitrarily. Then a $\delta>0$ exists such that $\left|f\left(x^{\prime}\right)-f(x)\right|<\eta$ for all $x^{\prime} \in(x-\delta, x+\delta) \cdot F$. Then

$$
[f(x)-\eta]|v F|_{\omega} \leqq \int_{v F} f d \omega \leqq[f(x)+\eta]|v F|_{\omega}
$$

or

$$
\begin{equation*}
[f(x)-\eta] \frac{|v F|_{\omega}}{|v|_{\omega}} \leqq \frac{\phi(v F)}{|v|_{\omega}} \leqq[f(x)+\eta] \frac{|v F|_{\omega}}{|v|_{\omega}} \tag{17}
\end{equation*}
$$

Since the ω-density of F at x is unity, letting $h \rightarrow 0$ in (17) and noting that η is arbitrary we get

$$
\lim _{h \rightarrow 0} \frac{\phi(v F)}{|v|_{\omega}}=f(x)
$$

which proves (I).
Let n be a positive integer and E_{n} denote the set of points of E where

$$
\begin{equation*}
\lim _{h \rightarrow 0} \sup \int_{v B}|f| d \omega /|v|_{\omega}>1 / n,(v=[x, x+h], h>0, x+h \in S) \tag{18}
\end{equation*}
$$

If possible, let $\omega^{*}\left(E_{n}\right)=k>0$. Since $|f(x)|$ is summable (LS) on A by theorem 8* ([6], p. 148) we can find a positive number $\eta<\frac{1}{2} k$ such that for any ω-measurable set $e \subset A$ we have

$$
\begin{equation*}
\int_{e}|f| d \omega<\frac{k}{2 n} \text { whenever }|e|_{\omega}<2 \eta k \tag{19}
\end{equation*}
$$

Since the ω-density of B is zero at each point of E, if $x \in E_{n}$ we can choose a sequence of closed intervals $v_{i}=\left[x, x+h_{i}\right]\left(h_{i}>0, h_{i} \rightarrow 0, x+h_{i} \in S\right)$ such that for all i

$$
\begin{equation*}
\int_{v_{i} B}|f| d \omega>\frac{1}{n}\left|v_{i}\right|_{\omega} \text { and }\left|v_{i} B\right|_{\omega}<\eta\left|v_{i}\right|_{\omega} \tag{20}
\end{equation*}
$$

Let \mathscr{F} denote the family of all intervals v_{i} thus associated to the set E_{n}. Then by theorem 1.1 there exists a finite family of pairwise disjoint closed intervals $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{N}$ of \mathscr{F} for which

$$
\begin{equation*}
\sum_{i=1}^{N} \omega^{*}\left(\Delta_{i} E_{n}\right)>\omega^{*}\left(E_{n}\right)-\eta, \quad \sum_{i=1}^{N}\left|\Delta_{i}\right|_{\omega}<\omega^{*}\left(E_{n}\right)+\eta \tag{21}
\end{equation*}
$$

Write $e=\sum_{i=1}^{N} \Delta_{i} B$. Then from (20) and (21) we get $|e|_{\omega}<2 \eta k$ and

$$
\int_{e}|f| d \omega=\sum_{i=1}^{N} \int_{\Delta_{i} B}|f| d \omega>\frac{1}{n} \sum_{i=1}^{N}\left|\Delta_{i}\right|_{\omega}>\frac{1}{n}[k-\eta]>\frac{k}{2 n}
$$

which contradicts (19). Hence $\omega^{*}\left(E_{n}\right)=0$. Let E_{0} denotes the set of points of E where the left hand member of (18) is positive. Then $E_{0}=\sum_{n=1}^{\infty} E_{n}$ which gives that $\omega^{*}\left(E_{0}\right)=0$. This proves (II).

Let $x \in E^{\prime}=E-E_{0}$ and $v=[x, x+h](h>0, x+h \in S)$. We have

$$
\begin{equation*}
\frac{\phi(v A)}{|v|_{\omega}}=\frac{\phi(v F)}{|v|_{\omega}}+\frac{\phi(v B)}{|v|_{\omega}} . \tag{22}
\end{equation*}
$$

Letting $h \rightarrow 0$ and using (I) and (II) we get $D \phi_{+}(e, x)=f(x)$ from (22). Similarly we can show that $D \phi_{-}(e, x)=f(x)$ for all x belonging to a set $E^{\prime \prime} \subset E$ with $\left|E^{\prime \prime}\right|_{\omega}=|E|_{\omega}$. If $C=E^{\prime} E^{\prime \prime}$, then $D \phi(e, x)=f(x)$ at each point of C and $|C|_{\omega}=|E|_{\omega}=|F|_{\omega}$. So $H \supset C$ which gives that $A-H \subset A-C$ and $\omega^{*}(A-H)<\varepsilon$. Since $\varepsilon>0$ is arbitrary we get $\omega^{*}(A-H)=0$. This proves the theorem.

6. Results on $B V-\omega$ functions

Theorem 6.1. Let $f(x)$ be $B V-\omega$ on $[a, b]$. If E denotes the set of points in $[a, b]$ where at least one of the four ω-derivatives of $f(x)$ is infinite, then $|E|_{\omega}=0$.

Proof. Since $f(x)$ is $B V-\omega$ on $[a, b]$ it follows that $f(x) \in \mathscr{U}_{0}$. Let $E^{\prime}=E-S_{2}$. Then $E^{\prime} \subset S_{3}$ and $\left|E^{\prime}\right|_{\omega}=|E|_{\omega}$. Write

$$
\begin{aligned}
& E_{1}=\left\{x ; x \in E^{\prime} \text { and } D^{+} f_{\omega}(x)=+\infty\right\} \\
& E_{2}=\left\{x ; x \in E^{\prime} \text { and } D_{+} f_{\omega}(x)=-\infty\right\} \\
& E_{3}=\left\{x ; x \in E^{\prime} \text { and } D^{-} f_{\omega}(x)=+\infty\right\}, \\
& E_{4}=\left\{x ; x \in E^{\prime} \text { and } D^{-} f_{\omega}(x)=-\infty\right\} .
\end{aligned}
$$

Then $E^{\prime}=E_{1}+E_{2}+E_{3}+E_{4}$. Let N be any positive number. If $x \in E_{1}$ there is a null sequence $\left\{h_{i}\right\}\left(h_{i}>0, x+h_{i} \in S\right)$ such that for all i

$$
\begin{equation*}
\frac{f\left(x+h_{i}\right)-f(x)}{\omega\left(x+h_{i}\right)-\omega(x)}>N \tag{23}
\end{equation*}
$$

Let \mathscr{F} denote the family of all intervals $\left[x, x+h_{i}\right]$ thus associated with the set E_{1}. Choose $\varepsilon>0$ arbitrarily. Then by theorem 1.1 there exists a finite family of pairwise disjoint closed intervals $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{n}$ $\left(\Delta_{i}=\left[x_{i}, x_{i}+k_{i}\right]\right)$ of \mathscr{F} for which

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\Delta_{i} E_{1}\right|_{\omega}>\left|E_{1}\right|_{\omega}-\varepsilon, \sum_{i=1}^{n}\left|\Delta_{i}\right|_{\omega}<\left|E_{1}\right|_{\omega}+\varepsilon . \tag{24}
\end{equation*}
$$

Now

$$
\sum_{i=1}^{n}\left|\Delta_{i} E_{1}\right|_{\omega} \leqq \sum_{i=1}^{n}\left\{\omega\left(x_{i}+k_{i}\right)-\omega\left(x_{i}\right)\right\}
$$

So from (23) and (24) we get

$$
\begin{equation*}
\sum_{i=1}^{n}\left|f\left(x_{i}+k_{i}\right)-f\left(x_{i}\right)\right|>N\left(\left|E_{1}\right|_{\omega}-\varepsilon\right) \tag{25}
\end{equation*}
$$

We may assume that

$$
x_{1}<x_{2}<\cdots<x_{n}
$$

Then

$$
x_{i}+k_{i}<x_{i+1} \quad(i=1,2, \cdots, n-1)
$$

Since $x_{i} \in S_{3}$ the points

$$
a \leqq x_{1}, x_{1}+k_{1}, x_{2}, x_{2}+k_{2}, \cdots, x_{n}, x_{n}+k_{n} \leqq b
$$

form a ω-subdivision of $[a, b]$. So from (25) we get

$$
\begin{equation*}
V_{\omega}(f ; a, b)>N\left(\left|E_{1}\right|_{\omega}-\varepsilon\right) \tag{26}
\end{equation*}
$$

Since N and ε are arbitrary the relation (26) cannot hold unless $\left|E_{1}\right|_{\omega}=0$.
Similarly we can show that $\left|E_{i}\right|_{\omega}=0(i=2,3,4)$. So $|E|_{\omega}=0$. This proves the theorem.

Theorem 6.2. If $f(x)$ is $B V-\omega$ on $[a, b]$ then $f_{\omega}^{\prime}(x)$ exists and is finite except on a set of ω-measure zero.

Proof. Let E_{1} denote the set of points of $[a, b]$ where at least one of the four ω-derivatives of $f(x)$ is infinite, E_{2} denote the set of points of $[a, b]$ where all four ω-derivatives of $f(x)$ are finite but at least of one of $f_{+\omega}^{\prime}(x)$ and $f_{-\omega}^{\prime}(x)$ does not exist, E_{3} denote the set of points of $[a, b]$ where $f_{+\omega}^{\prime}(x)$ and $f_{-\omega}^{\prime}(x)$ exist finitely but are different. Then from theorems 4.3, 4.4 and 6.1. $\left|E_{i}\right|_{\omega}=0(i=1,2,3)$. Write $E=E_{1}+E_{2}+E_{3}$. Then $|E|_{\omega}=0$ and at each point of the set $[a, b]-E, f_{\omega}^{\prime}(x)$ exists and is finite. This proves the theorem.

Theorem 6.3. If $f(x)$ is $B V-\omega$ on $[a, b]$, then $f_{\omega}^{\prime}(x)$ is summable ($L S$) on $[a, b]$.

Proof. We have $[a, b]=S_{0}+S_{2}+S_{3}+D$ where the sets S_{0}, S_{2}, S_{3}, D are pairwise disjoint and ω-measurable. Since $\left|S_{0}\right|_{\omega}=0,\left|S_{2}\right|_{\omega}=0$, $f_{\omega}^{\prime}(x)$ is summable ($L S$) on the sets S_{0}, S_{2}. The set D is at most enumerable. So we can take its elements as $\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots$. Write $D_{i}=\left\{\alpha_{i}\right\}$. Clearly

$$
\int_{D_{i}}\left|f_{\omega}^{\prime}\right| d \omega=\left|f_{\omega}^{\prime}\left(\alpha_{i}\right)\right|\left|D_{i}\right|_{\omega}=\left|f\left(\alpha_{i}+\right)-f\left(\alpha_{i}-\right)\right|
$$

Since $f(x)$ is $B V-\omega$ on $[a, b]$ the series $\sum_{i}\left|f\left(\alpha_{i}+\right)-f\left(\alpha_{i}-\right)\right|$ is convergent.

Hence by theorem $5^{*}\left([6]\right.$, p. 146) $f_{\omega}^{\prime}(x)$ is summable (LS) on D. From theorem 3^{*} ([6], p. 145) it follows that the theorem will be proved if we can show that $f_{\omega}^{\prime}(x)$ is summable ($L S$) on S_{3}.

Assume that $f_{\omega}^{\prime}(x)$ is not summable ($L S$) on S_{3}. Let E denote the set of points of S_{3} where $f_{\omega}^{\prime}(x)$ exists and is finite. Then by theorem 6.2, $|E|_{\omega}=\left|S_{3}\right|_{\omega \cdot}$. Write $g(x)=\left|f_{\omega}^{\prime}(x)\right|$ and $E_{n}=E(0 \leqq g \leqq n)(n=1,2,3, \cdots)$. Then $\int_{E_{n}} g d \omega \rightarrow \infty$ as $n \rightarrow \infty$. Let N be any positive number. We fix n such that $\int_{E_{n}} g d \omega>N+\mathbf{l}$. Let k be a positive number with $k>\max \left\{\left|S_{3}\right|_{\omega}, \mathbf{l}\right\}$. By theorem 8^{*} ([6], p. 148) we can find a positive number $\varepsilon<1 / 4 k$ such that for any ω-measurable set $e \subset E_{n}$ with $|e|_{\omega}<\varepsilon$ we have $\int_{e} g d \omega<\frac{1}{2}$. For any ω-measurable set $e \subset E_{n}$ we define $\phi(e)=\int_{e} g d \omega$. Let

$$
E_{0}=\left\{x ; x \in E_{n} \text { and } D \phi(e, x)=g(x)\right\}
$$

By theorem 5.1, $\left|E_{0}\right|_{\omega}=\left|E_{n}\right|_{\omega}$. If $x \in E_{0}$ and $v=[x, x+h](h>0, x+h \in S)$, then

$$
\lim _{h \rightarrow 0} \int_{v E_{n}} \frac{g d \omega}{|v|_{\omega}}=g(x)=\lim _{h \rightarrow 0} \frac{|f(x+h)-f(x)|}{\omega(x+h)-\omega(x)}
$$

So we can choose a sequence of intervals

$$
\left\{v_{i}\right\}\left(v_{i}=\left[x, x+h_{i}\right], h_{i}>0, h_{i} \rightarrow 0, x+h_{i} \in S\right)
$$

such that for all i

$$
\begin{equation*}
\left|\int_{v_{i} E_{n}} \frac{g d \omega}{\left|v_{i}\right|_{\omega}}-\frac{\left|f\left(x+h_{i}\right)-f(x)\right|}{\omega\left(x+h_{i}\right)-\omega(x)}\right|<\varepsilon \tag{27}
\end{equation*}
$$

Let \mathscr{F} denote the family of all intervals v_{i} thus associated with the set E_{0}. By theorem 1.1 we can select a finite family of pairwise disjoint closed intervals $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{m}\left(\Delta_{i}=\left[x_{i}, x_{i}+k_{i}\right]\right)$ of \mathscr{F} for which

$$
\begin{equation*}
\sum_{i=1}^{m}\left|E_{0} \Delta_{i}\right|_{\omega}>\left|E_{0}\right|_{\omega}-\varepsilon, \sum_{i=1}^{m}\left|\Delta_{i}\right|_{\omega}<\left|E_{0}\right|_{\omega}+\varepsilon \tag{28}
\end{equation*}
$$

Write $A=\sum_{i=1}^{m} \Delta_{i} E_{0}$ and $B=E_{n}-A$. Then from (28) $|B|_{\omega}<\varepsilon$. Now from (27) and (28) we have

$$
\begin{aligned}
\left|\int_{A} g d \omega-\sum_{i=1}^{m}\right|\left|f\left(x_{i}+k_{i}\right)-f\left(x_{i}\right)\right| \mid & \leqq \sum_{i=1}^{m}\left|\int_{\Delta_{i} E_{0}} g d \omega-\left|f\left(x_{i}+k_{i}\right)-f\left(x_{i}\right)\right|\right| \\
& <\varepsilon \sum_{i=1}^{m}\left|\Delta_{i}\right|_{\omega}<\varepsilon\left(\left|E_{0}\right|_{\omega}+\varepsilon\right)<\frac{1}{2}
\end{aligned}
$$

So

$$
\begin{equation*}
\sum_{i=1}^{m}\left|f\left(x_{i}+k_{i}\right)-f\left(x_{i}\right)\right|>\int_{A} g d \omega-\frac{1}{2}=\int_{E_{n}} g d \omega-\int_{B} g d \omega-\frac{1}{2}>N \tag{29}
\end{equation*}
$$

We may suppose that

$$
x_{1}<x_{2}<\cdots<x_{m}
$$

Then $x_{i}+k_{i}<x_{i+1}(i=12 \cdots, m-1)$. Since $x_{i} \in S_{3}$, the points

$$
a \leqq x_{1}, x_{1}+k_{1}, x_{2}, x_{2}+k_{2}, \cdots, x_{n}, x_{n}+k_{n} \leqq b
$$

form a ω-subdivision of $[a, b]$. So from (29) we have $V_{\omega}(f ; a, b)>N$. Since N is arbitrary, it follows that $V_{\omega}(f ; a, b)=+\infty$ which contradicts the hypothesis. Hence $f_{\omega}^{\prime}(x)$ is summable $(L S)$ on S_{3}.

I am grateful to Dr. P. C. Bhakta for his kind help and suggestions in the preparation of the paper.

References

[1] P. C. Bhakta, On functions of bounded ω-variation., Riv. Mat. Univ. Parma (2) 6 (1965).
[2] P. C. Bhakta, On functions of bounded ω-variation, II. J. Aust. Math. Soc., 5 (1965), 380-387.
[3] E. W. Hobson, The Theory of Functions of Real Variable and the theory of Fourier Series, Vol. I. Dover, 1957.
[4] R. L. Jeffery, The Theory of Functions of a Real Variable. Toronto, 1962.
[5] R. L. Jeffery, Generalized Integral with respect to functions of Bounded Variation. Cand. J. Math., 10 (1958), 617-628.
[6] I. P. Natanson, Theory of Functions of a Real Variable, Vol. I, New York, 1955.
Suri Vidyasagar College
West Bengal, India

[^0]: * Present address: Department of Mathematics, Kalyani University, West Bengal, India.

