ON METRIC PROPERTIES OF SETS OF ANGULAR
LIMITS OF MEROMORPHIC FUNCTIONS

J. E. MCMILLAN*

Let f be a nonconstant function meromorphic in the unit disc D = {|z| <1},
with circumference C, and let E. be a subset of C with positive (linear) measure.
Suppose that at each ¢ € E;, f has an angular limit a;, and let Ew = {a; : ¢ € E:}.
It is known that E, contains a closed set with positive harmonic measure
(see Priwalow [6, p. 210] or Tsuji [7, p. 3391). Also known is that even when
f is a schlicht function mapping D onto the interior of a Jordan curve, it may
happen that E, has linear measure zero (see Lavrentieff [2]) ; and a recent
theorem of Matsumoto [4, p. 133] states, in effect, that if f is a schlicht func-
tion mapping D onto the interior of a Jordan curve, then FE. cannot have
-—é—-dimensional measure zero (For the definitions of (exterior) linear measure
and a-dimensional measure zero (a>0), see [5, pp. 149, 150].). The purpose
of the present paper is to prove a theorem that generalizes Matsumoto’s theo-
rem. As a corollary of our theorem, we obtain: If each point of Eu is accessible
(with a Jordan arc) through the complement of f(D) ={f(2) : z&€ D}, then Ey,

contains a closed set that does not have —;—-dimensional measure zero.

If Ew is all of the extended w-plane 2, the desired conclusion already holds ;
so that we may, by first subjecting 2 to a linear transformation, assume that
o & Ey. Our result is most conveniently expressed in terms of the Riemann
surface S of f over 2. For each ¢ € E, and positive number %, let S(¢, 4) be
the component of S over {|w —a;| <k} such that if » is sufficiently near 1 (r
<1), then 7¢ corresponds under f to a point of S(¢, %) ; and let PS(¢, %) be
the projection of S(¢, %) onto Q.

We prove

THEOREM. Suppose that to each € < E: there correspond a Jordan arc r; (con-

tained in the finite w-plane) with one endpoint a; and a positive number hg such
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that PS(C, hy) Nre=¢. Then Es contains a closed set that does not have

—%-dimensz’onal measure zero.

Proof. Let m(E) and m.(E) denote the (linear) measure and exterior (linear)
measure of the set ECC. From Lusin’s theorem. there exists a closed set
< E, such that m(E®) >0 and

1)
E4

(1) the restriction of a; to EY’ is a continuous function.

For each ¢ E", let 4; be an open (Euclidean) disc with rational radius and

center with two rational coordinates such that
a;edeC{lw—a;| <heh,

and let S; be the component of S over 4; such that if 7 is sufficiently near 1
(r<1), then 7¢ correspbnds under f to a point of S;. Then PS;Nr;=¢. Since
there are only countably many distinct S;, there exists ¢ & E” such that the
set

S ={CeE : §; =5}

has positive exterior measure. Let So=S;, and 4y= 4;. Then
(2) for each C€ EY', PSiN\y;=¢ and a;< 4.

Let S(¢, #) denote the sector ((=¢, 0<r<1)

{¢+06: 0<p<r, r+—34—"'<0<z+ 54” l,

and for each ¢ E7", let 7 be a positive number such that
(3) f(S(C, fg))cdo.

Let 7 be a positive number and E&’ a subset of E such that m.(ES) >0, and
for each (e EY, r<7,.. Let r' (0<»'<1) be such that {|z|=7'} intersects
the rectilinear segments on the boundary of S(l‘. 7), and let 7 be a component
of {r'<lz|<1}N US(, #»), the union being taken over all ¢ E¥, such that
the set

EP = E® : S nNIxg)
has positive exterior measure. Then ‘

I={r'<|z|<1}n US, n,

https://doi.org/10.1017/50027763000011685 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011685

METRIC PROPERTIES OF SETS OF ANGULAR LIMITS OF MEROMORPHIC FUNCTION 123
where the union is taken over all (e E;” (the bar denotes closure). Thus 7
is the interior of a rectifiable Jordan curve I', and

EX=I'NCcEPY.

From (3) we have f(I)C 4, and it follows that I corresponds under f to a
subset of S,. Thus f(I) € PS,, and from (2) we have

(4) for each ¢ EY’, f(I) Ny, =¢.

Let / be a positive constant, and let EY’ be a subset of E. such that

me(EZ’) >0 and

(5) for each (e E”, the diameter of 7; is greater than or equal to 2/
By making suitable linear transformations, we may suppose that

(6) 0l and f(0) = o,

Let r be an arbitrary Jordan arc joining (0<7</, ae 2 ~{}) {lw—al=
r} to {{w —al=1} and lying, except for its endpoints, in {r<|w—a!<l}. Let
w(w ; a, 7, v) denote the harmonic measure of {|w—al=7r} with respect to
2 -T{lw-al<rtUrl. Using Matsumoto’s argument [4, pp. 134, 135], we now
prove that there exist positive constants 2 and M (which are independent of

a,  and 1) such that

(7 o( a7 )<MVr (0<7<h).

By letting y' denote the image of r under the translation w — ¢ and noting that
w(eo 5a, 7, 1)=w(x ;0,71

we see that we need only prove (7) under the assumption that ¢a=0. We

assume then that ¢ =0, and write
Dr={lw|<r}, Cr={lwl=r}
Let w,(w) be the harmonic measure of C, with respect to
2-[DrUu+iv: r<u<l, v=0}1.

Then from Matsumoto’s Lemma 2 [4, p. 132], there exist positive constants %
and M such that (%2 <)

(8) wr(®)<MV7T 0<r<h).
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Now let 7 be a fixed number satisfying 0<r<%. For each r’ satisfying r<7'
<1, let 7, be the subarc of r that joins C,. to C; and lies, except for its end-
points, in {r'<|w|<!}. And let {J.} be a sequence of Jordan curves such
that D, is contained in the exterior of J., /»+: is contained in the interior I,

of /s, and 7 = F\I,,. Then the harmonic measure w,(w) of C, with respect
to 2 -[DrU Jx U”I—,,,] and the harmonic measure o'(w) of C, with respect to
2—[D, U yr] satisfy
(9 wn( o) 1 w'(o).
For a fixed n, we choose rectilinear segments

Li={w: ri<|w|<rj+1, argument w = 6;}

(j=1, ...,k r"=rn<rn<--+<r, =10 that are contained in I,. Then the
k

harmonic measure wx(w) of C, with respect to 2 — [Dr uuJ Lj] satisfies the
i=1

relation wa(c) <wa(e); and from Matsumoto’s Lemma 1 [4, p. 131], the
harmonic measure &(w) of C, with respect to

2-[D,Vu+idv : r'<u<l, v=0)}]
satisfies the relation @;(®)<@(®). Thus ws(>) <@(c), and from (9) we
have the relation /(o) <@() ; and letting 7’| », we see that w( ; 0, 7, )
<w,(). Thus from (8) the proof of (7) is complete.

We now suppose that the set Ei’ = {a; : (e E{’} (which is closed and
bounded because E:' is closed, © &E,, and (1)) has —%-dimensional measure
zero. We wish to prove that this assumption leads to a contradiction. Let
E5=EJ, where E;’={a; : (€ E{’}. Then E4CEy. Let Ef={(cE®:
a;€ Eu}.  Then from (1), E is closed relative to the closed set E', and is
therefore closed.

Let ¢ be a positive number. Since Ej is closed and bounded and has
—%-dimensional measure zero, there exists a finite number of discs 4; = {|lw — a;]|

<7} (j=1, ..., n) such that

(10) 0<7;<h (j=1, ..., n),
n e __6_
(11) Es/ P <2
(12) Esc _L"JlA;,
P
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and
(13) 4iNES=x¢ (j=1,...,n.

It follows from (13) that for each j (j=1, ..., %) there exists {;e EY’
such that a;;=4;; and from (5) we see that r,;N{lw—ajl=1}x¢. Thus we
may let r; be a subarc of 7., that joins {|w - a;| =7;} to {|lw—a;| =1} and lies,
except for its endpoints, in {rj<!w -a;l<I}. Let U be the component of
2— UI[4;U 7] that contains o, and let

i=1

w(w) = 1uo(w; aj, 7j, 1i) (we U).
i=
Then from (7), (10) and (11), we have
(14) . w(o) <e

Let z(2') be a conformal mapping of D'= {|z'| <1} onto I such that z(0) =
0 (recall (6)). Since E; is closed and ESf'CEf, m(E¥)>0; and it follows
that E; corresponds under z=2z(z') to a closed set EJ on C'={|z'| =1};. and
since I' is rectifiable, m(E;) >0 [6, p. 127]. Let #(2') be the harmonic measure
of E with respect to D'. Let F(z') =f(z(2')), let D, be the component of
{22 D' : F(2') € U} that contains 0 (recall (6)), and let B denote the boundary
of D,.

We wish now to establish the relation

(15) u(2") <w(F(2') (z'€ Dy).

From (4) we see that
(16) FBNDY < Ullw =gl =7} - U,
i= i=1

so that in particular,

lim w(F(z))>1 for each (= BND".

2+, 2’ EDsg

It follows from (4) and a theorem of MacLane [3, p. 10] that for each j (j=
1, ...,n), the level set {z’e D' : |F(z') —a;j|=7;} “ends at points of C'” [3,
p. 8]. Thus it follows from (16) that each point of BN C' is accessible through
D, (that is, for each ¢ BN C' there exists a Jordan arc that is, except for
the one endpoint ¢, contained in D,). Since at each point of E#, F has an
asymptotic value that is in Ej, we have from (12) that each point of EF is
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accessible through D' — D,. Thus, each point of E; N B is accessible through
both D, and D'— Dy, and from a theorem of Bagemihl [1, Theorem 1], the
set ExN B is countable. But for each (e C'— EJ, zhin #(2') =0, so that (15)
follows from an extension of the maximum principIé. ‘

From (15) and (14) we have

@lg m(EE) = u(0) <w(F(0) = w(®) <e,

and since ¢ is arbitrary, we have a contradiction; and the proof of the theorem
is complete.

Remark. Let E=E(pops- + +), where p,=n, be the Cantor-type set defined
by Nevanlinna [5, p. 154]. Then E has positive harmonic measure [5, p. 1551
and for each positive number a, since 2"/(#1)*~0 (% - =), E has a-dimensional
measure zero. Let F be a holomorphic function that maps D one-to-one and
conformally onto the universal covering surface of 2—[EU {%)}]. It follows
from theorems of Nevanlinna [5, pp. 208, 213] that F has angular limits at
almost all (except for a set of measure zero) points of C; and from a theorem
of Lusin and Priwalow [6, p. 212], at almost every point of C the angular
limit value of Fis in E. Applying now an argument of Lusin and Priwalow
(see [6, p. 2101) we see that there exists a nonconstant function f bounded and
analytic in D such that for each posiltive number a, Ew has a-dimensional measure

zero.
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