ON METRIC PROPERTIES OF SETS OF ANGULAR LIMITS OF MEROMORPHIC FUNCTIONS

J. E. MCMILLAN*

Let f be a nonconstant function meromorphic in the unit disc $D = \{|z| < 1\}$, with circumference C, and let E_z be a subset of C with positive (linear) measure. Suppose that at each $\zeta \in E_z$, f has an angular limit a_{ζ} , and let $E_w = \{a_{\zeta} : \zeta \in E_z\}$. It is known that E_w contains a closed set with positive harmonic measure (see Priwalow [6, p. 210] or Tsuji [7, p. 339]). Also known is that even when f is a schlicht function mapping D onto the interior of a Jordan curve, it may happen that E_w has linear measure zero (see Lavrentieff [2]); and a recent theorem of Matsumoto [4, p. 133] states, in effect, that if f is a schlicht function mapping D onto the interior of a Jordan curve, then E_w cannot have $\frac{1}{2}$ -dimensional measure zero (For the definitions of (exterior) linear measure and α -dimensional measure zero ($\alpha > 0$), see [5, pp. 149, 150].). The purpose of the present paper is to prove a theorem that generalizes Matsumoto's theorem. As a corollary of our theorem, we obtain : If each point of E_w is accessible (with a Jordan arc) through the complement of $f(D) = \{f(z) : z \in D\}$, then E_w contains a closed set that does not have $\frac{1}{2}$ -dimensional measure zero.

If E_w is all of the extended w-plane Ω , the desired conclusion already holds; so that we may, by first subjecting Ω to a linear transformation, assume that $\infty \notin E_w$. Our result is most conveniently expressed in terms of the Riemann surface S of f over Ω . For each $\zeta \in E_z$ and positive number h, let $S(\zeta, h)$ be the component of S over $\{|w - a_{\zeta}| < h\}$ such that if r is sufficiently near 1 (r <1), then r ζ corresponds under f to a point of $S(\zeta, h)$; and let $PS(\zeta, h)$ be the projection of $S(\zeta, h)$ onto Ω .

We prove

THEOREM. Suppose that to each $\zeta \in E_z$ there correspond a Jordan arc γ_{ζ} (contained in the finite w-plane) with one endpoint a_{ζ} and a positive number h_{ζ} such

Received July 7, 1965.

^{*} I wish to thank Professor Bagemihl for his help.

that $PS(\zeta, h_{\zeta}) \cap \tau_{\zeta} = \phi$. Then E_{w} contains a closed set that does not have $\frac{1}{2}$ -dimensional measure zero.

Proof. Let m(E) and $m_e(E)$ denote the (linear) measure and exterior (linear) measure of the set $E \subseteq C$. From Lusin's theorem, there exists a closed set $E_z^{(1)} \subseteq E_z$ such that $m(E_z^{(1)}) > 0$ and

(1) the restriction of a_{ζ} to $E_z^{(1)}$ is a continuous function.

For each $\zeta \in E_z^{(1)}$, let \varDelta_{ζ} be an open (Euclidean) disc with rational radius and center with two rational coordinates such that

$$a_{\zeta} \in \mathcal{A}_{\zeta} \subset \{ |w - a_{\zeta}| < h_{\zeta} \},\$$

and let S_{ζ} be the component of S over Δ_{ζ} such that if r is sufficiently near 1 (r < 1), then $r\zeta$ corresponds under f to a point of S_{ζ} . Then $PS_{\zeta} \cap r_{\zeta} = \phi$. Since there are only countably many distinct S_{ζ} , there exists $\zeta_0 \in E_z^{(1)}$ such that the set

$$E_{z}^{(2)} = \{\zeta \in E_{z}^{(1)} : S_{\zeta} = S_{\zeta_{0}}\}$$

has positive exterior measure. Let $S_0 = S_{\zeta_0}$ and $\Delta_0 = \Delta_{\zeta_0}$. Then

(2) for each $\zeta \in E_z^{(2)}$, $PS_0 \cap \gamma_{\zeta} = \phi$ and $a_{\zeta} \in A_0$.

Let $S(\zeta, r)$ denote the sector $(\zeta = e^{i\tau}, 0 < r < 1)$

$$\left\{\zeta + \rho e^{i\theta} : 0 < \rho < r, \ \tau + \frac{3\pi}{4} < \theta < \tau + \frac{5\pi}{4}\right\},\$$

and for each $\zeta \in E_z^{(2)}$, let r_{ζ} be a positive number such that

(3)
$$f(S(\zeta, r_{\zeta})) \subset \Delta_0$$
.

Let r be a positive number and $E_z^{(3)}$ a subset of $E_z^{(2)}$ such that $m_e(E_z^{(3)}) > 0$, and for each $\zeta \in E_z^{(3)}$, $r \le r_{\zeta}$. Let r' (0 < r' < 1) be such that $\{|z| = r'\}$ intersects the rectilinear segments on the boundary of S(1, r), and let I be a component of $\{r' < |z| < 1\} \cap \cup S(\zeta, r)$, the union being taken over all $\zeta \in E_z^{(3)}$, such that the set

$$E_z^{(4)} = \{\zeta \in E_z^{(3)} : S(\zeta, r) \cap I \neq \phi\}$$

has positive exterior measure. Then

$$I = \langle r' < |z| < 1 \rangle \cap \cup S(\zeta, r),$$

where the union is taken over all $\zeta \in \overline{E}_z^{(4)}$ (the bar denotes closure). Thus *I* is the interior of a rectifiable Jordan curve Γ , and

$$\overline{E}_{z}^{(4)} = \Gamma \cap C \subset E_{z}^{(1)}.$$

From (3) we have $f(I) \subset A_0$, and it follows that I corresponds under f to a subset of S_0 . Thus $f(I) \subset PS_0$, and from (2) we have

(4) for each $\zeta \in E_z^{(4)}$, $f(I) \cap \gamma_{\zeta} = \phi$.

Let *l* be a positive constant, and let $E_z^{(5)}$ be a subset of $E_z^{(4)}$ such that $m_e(E_z^{(5)}) > 0$ and

(5) for each $\zeta \in E_z^{(5)}$, the diameter of γ_{ζ} is greater than or equal to 2 *l*.

By making suitable linear transformations, we may suppose that

(6)
$$0 \in I \text{ and } f(0) = \infty$$
.

Let r be an arbitrary Jordan arc joining $(0 < r < l, a \in \mathcal{Q} - \{\infty\})$ $\{|w-a| = r\}$ to $\{|w-a| = l\}$ and lying, except for its endpoints, in $\{r < |w-a| < l\}$. Let w(w; a, r, r) denote the harmonic measure of $\{|w-a| = r\}$ with respect to $\mathcal{Q} - [\{|w-a| \le r\} \cup r]$. Using Matsumoto's argument [4, pp. 134, 135], we now prove that there exist positive constants h and M (which are independent of a, r and r) such that

(7)
$$\omega(\infty; a, r, \gamma) \leq M\sqrt{r} \qquad (0 < r < h).$$

By letting γ' denote the image of γ under the translation w - a and noting that

$$\omega(\infty; a, r, \gamma) = \omega(\infty; 0, r, \gamma'),$$

we see that we need only prove (7) under the assumption that a = 0. We assume then that a = 0, and write

$$D_r = \{ |w| < r \}, \qquad C_r = \{ |w| = r \}.$$

Let $\omega_r(w)$ be the harmonic measure of C_r with respect to

$$\Omega - [\overline{D}_r \cup \{u + iv : r \le u \le l, v = 0\}].$$

Then from Matsumoto's Lemma 2 [4, p. 132], there exist positive constants h and M such that (h < l)

(8)
$$\omega_r(\infty) \leq M \sqrt{r} \qquad (0 < r < h).$$

Now let r be a fixed number satisfying 0 < r < h. For each r' satisfying r < r' < l, let $\gamma_{r'}$ be the subarc of γ that joins $C_{r'}$ to C_l and lies, except for its endpoints, in $\langle r' < |w| < l \rangle$. And let $\langle J_n \rangle$ be a sequence of Jordan curves such that \overline{D}_r is contained in the exterior of J_n , J_{n+1} is contained in the interior I_n of J_n , and $\gamma_{r'} = \bigcap_{n=1}^{\infty} I_n$. Then the harmonic measure $\omega_n(w)$ of C_r with respect to $\mathcal{Q} - [\overline{D}_r \cup J_n \cup I_n]$ and the harmonic measure $\omega'(w)$ of C_r with respect to $\mathcal{Q} - [\overline{D}_r \cup \gamma_{r'}]$ satisfy

(9)
$$\omega_n(\infty) \uparrow \omega'(\infty)$$

For a fixed n, we choose rectilinear segments

 $L_j = \{w : r_j \le |w| \le r_{j+1}, \text{ argument } w = \theta_j\}$

 $(j=1,\ldots,k; r'=r_1 < r_2 < \cdots < r_{k+1} = l)$ that are contained in I_n . Then the harmonic measure $\omega_n^*(w)$ of C_r with respect to $\mathcal{Q} - \left[\overline{D}_r \cup \bigcup_{j=1}^k L_j\right]$ satisfies the relation $\omega_n(\infty) \le \omega_n^*(\infty)$; and from Matsumoto's Lemma 1 [4, p. 131], the harmonic measure $\tilde{\omega}(w)$ of C_r with respect to

$$\Omega - [\overline{D}_r \cup \{u + iv : r' \le u \le l, v = 0\}]$$

satisfies the relation $\omega_n^*(\infty) \leq \tilde{\omega}(\infty)$. Thus $\omega_n(\infty) \leq \tilde{\omega}(\infty)$, and from (9) we have the relation $\omega'(\infty) \leq \tilde{\omega}(\infty)$; and letting $r' \downarrow r$, we see that $\omega(\infty; 0, r, \gamma) \leq \omega_r(\infty)$. Thus from (8) the proof of (7) is complete.

We now suppose that the set $E_w^{(1)} = \langle a_{\zeta} : \zeta \in E_z^{(1)} \rangle$ (which is closed and bounded because $E_z^{(1)}$ is closed, $\infty \notin E_w$, and (1)) has $\frac{1}{2}$ -dimensional measure zero. We wish to prove that this assumption leads to a contradiction. Let $E_w^* = \overline{E}_w^{(5)}$, where $E_w^{(5)} = \langle a_{\zeta} : \zeta \in E_z^{(5)} \rangle$. Then $E_w^* \subset E_w^{(1)}$. Let $E_z^* = \{\zeta \in E_z^{(1)} : a_{\zeta} \in E_w^* \}$. Then from (1), E_z^* is closed relative to the closed set $E_z^{(1)}$, and is therefore closed.

Let ε be a positive number. Since E_w^* is closed and bounded and has $\frac{1}{2}$ dimensional measure zero, there exists a finite number of discs $\Delta_j = \{|w - a_j| < r_j\}$ $(j = 1, \ldots, n)$ such that

(10)
$$0 < r_j < h$$
 $(j = 1, ..., n),$

(11)
$$\sum_{j=1}^{n} \sqrt{r_j} < \frac{\varepsilon}{M}$$

(12)
$$E_w^* \subset \bigcup_{j=1}^n \Delta_j,$$

and

(13)
$$\Delta_j \cap E_w^* \neq \phi \qquad (j=1,\ldots,n).$$

It follows from (13) that for each j $(j=1, \ldots, n)$ there exists $\zeta_j \in E_z^{(5)}$ such that $a_{\zeta_j} \in A_j$; and from (5) we see that $\gamma_{\zeta_j} \cap \{|w-a_j|=l\} \neq \phi$. Thus we may let γ_j be a subarc of γ_{ζ_j} that joins $\{|w-a_j|=r_j\}$ to $\{|w-a_j|=l\}$ and lies, except for its endpoints, in $\{r_j < |w-a_j| < l\}$. Let U be the component of $\Omega = \bigcup_{i=1}^n [\overline{A}_j \cup \gamma_j]$ that contains ∞ , and let

$$\omega(w) = \sum_{j=1}^{n} \omega(w ; a_j, r_j, \gamma_j) \qquad (w \in U).$$

Then from (7), (10) and (11), we have

(14)
$$\omega(\infty) < \epsilon$$

Let z(z') be a conformal mapping of $D' = \{|z'| < 1\}$ onto I such that z(0) = 0 (recall (6)). Since E_z^* is closed and $E_z^{(5)} \subset E_z^*$, $m(E_z^*) > 0$; and it follows that E_z^* corresponds under z = z(z') to a closed set $E_{z'}^*$ on $C' = \{|z'| = 1\}$; and since I is rectifiable, $m(E_{z'}^*) > 0$ [6, p. 127]. Let u(z') be the harmonic measure of $E_{z'}^*$ with respect to D'. Let F(z') = f(z(z')), let D_0 be the component of $\{z' \in D' : F(z') \in U\}$ that contains 0 (recall (6)), and let B denote the boundary of D_0 .

We wish now to establish the relation

(15)
$$u(z') \leq \omega(F(z')) \qquad (z' \in D_0).$$

From (4) we see that

(16)
$$F(B\cap D') \subset \bigcup_{j=1}^n \{|w-a_j|=r_j\} - \bigcup_{j=1}^n \gamma_j,$$

so that in particular,

 $\lim_{z' \to \zeta, \, z' \in \mathcal{V}_{0}} \omega(F(z')) \ge 1 \quad \text{for each } \zeta \in B \cap D'.$

It follows from (4) and a theorem of MacLane [3, p. 10] that for each j ($j = 1, \ldots, n$), the level set $\{z' \in D' : |F(z') - a_j| = r_j\}$ "ends at points of C'" [3, p. 8]. Thus it follows from (16) that each point of $B \cap C'$ is accessible through D_0 (that is, for each $\zeta \in B \cap C'$ there exists a Jordan arc that is, except for the one endpoint ζ , contained in D_0). Since at each point of $E_{z'}^*$, F has an asymptotic value that is in E_w^* , we have from (12) that each point of $E_{z'}^*$ is

J. E. MCMILLAN

accessible through $D' - D_0$. Thus, each point of $E_{z'}^* \cap B$ is accessible through both D_0 and $D' - D_0$, and from a theorem of Bagemihl [1, Theorem 1], the set $E_{z'}^* \cap B$ is countable. But for each $\zeta \in C' - E_{z'}^*$, $\lim_{z' \to \zeta} u(z') = 0$, so that (15) follows from an extension of the maximum principle.

From (15) and (14) we have

$$\frac{1}{2\pi}m(E_{z'}^*)=u(0)\leq \omega(F(0))=\omega(\infty)<\varepsilon,$$

and since ε is arbitrary, we have a contradiction; and the proof of the theorem is complete.

Remark. Let $E = E(p_0p_1 \cdots)$, where $p_n = n$, be the Cantor-type set defined by Nevanlinna [5, p. 154]. Then E has positive harmonic measure [5, p. 155] and for each positive number α , since $2^n/(n!)^{\alpha} \rightarrow 0$ $(n \rightarrow \infty)$, E has α -dimensional measure zero. Let F be a holomorphic function that maps D one-to-one and conformally onto the universal covering surface of $Q - [E \cup \{\infty\}]$. It follows from theorems of Nevanlinna [5, pp. 208, 213] that F has angular limits at almost all (except for a set of measure zero) points of C; and from a theorem of Lusin and Priwalow [6, p. 212], at almost every point of C the angular limit value of F is in E. Applying now an argument of Lusin and Priwalow (see [6, p. 210]) we see that there exists a nonconstant function f bounded and analytic in D such that for each positive number α , E_w has α -dimensional measure zero.

References

- F. Bagemihl: Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A., 41 (1955), 379-382.
- [2] M. Lavrentieff: Sur quelques problèmes concernant les fonctions univalentes sur la frontière, Rec. Math., 43 (1936), 816-846 (en russe).
- [3] G. R. MacLane: Asymptotic values of holomorphic functions, Rice Univ. Studies, 49 (1963), 1-83.
- [4] K. Matsumoto: On some boundary problems in the theory of conformal mappings of Jordan domains, Nagoya Math. Journ., 24 (1964), 129-141.
- [5] R. Nevanlinna: Eindeutige analytische Funktionen, Berlin-Göttingen-Heidelberg. 1953.
- [6] I. I. Priwalow: Randeigenschaften analytischer Funktionen, Berlin, 1956.
- [7] M. Tsuji: Potential theory in modern function theory, Tokyo, 1959.

University of Wisconsin-Milwaukee