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ON LEVEL CURVES OF HARMONIC AND ANALYTIC

FUNCTIONS ON RIEMANN SURFACES
SHINJI YAMASHITAD

1. In this note we shall denote by R a hyperbolic Riemann surface.
Let HP'(R) be the totality of harmonic functions # on R such that every
subharmonic function |#]| has a harmonic majorant on R, The class
HP'(R) forms a vector lattice under the lattice operations:

# V v = (the least harmonic majorant of max(u,));
uANv=—(—u)V (—v)
for « and » in HP'(R). Following Parreau [4] we shall call an element u

in HP'(R) quasi-bounded on R if

im (Mu) A a = Mu,

a—>4c0
where a’s are positive numbers and
My =uVO0—uAO.

A subharmonic function v on R is said to be quasi-bounded on R if »
is of the form:

v=0"—1D,

where v~ is a quasi-bounded harmonic function on R and p=0 is a
Green’s potential on R ([8]).

For any finite real-valued function f on R and for any finite real
number «, we denote by L(f; «) the set of points z in R such that f(z) =
a holds. We shall call L(f; «) the a-level set or the a-level curve of f on
R. Especially, if f=|g|, where g is an analytic function (i.e., pole-free)
on R, then we shall call L(]g|; &) the a-level curve of an analytic function
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gon R. For a>0, the a-level curve of an analytic function g on R is
the counter image of the circle of radius « by g.
For any closed subset F of R and for any fixed point ¢ in R, we denote

1x(¢) = inf s(2),

where s runs over all non-negative superharmonic functions on R such that
s=1 quasi-everywhere (quasi tiberall) on F ([1]).

A function 9(r) defined for =0 is said to be strongly convex if @(»)
is a non-negative monotone non-decreasing convex function defined for »=0
satisfying the condition:

lim @@)/r = + oo.

740

First we shall prove the following

THEOREM. Let v be a non-negative continuous subharmonic function on a hyper-
bolic Riemann surface R and assume that v has a harmonic majorant on R.  Then
the following three conditions are mutually equivalent.

(1) v is quasi-bounded on R.
(2)  There exists a strongly convex function @ depending on v such that

Hm  @(a) 15, () = 0

a—>~+00
Jor some (and hence for any) point ¢ in R.

(3) lim inf « lL(D; “)(t) =0

o —>--00

Sor some (and hence for any) point t in R.

In section 3 we shall prove the following extension of Nakai’s theorem
([31)» as an application of Theorem.

CoRrOLLARY 1. Let R be a hyperbolic Riemann surface. For an element u
in HP'(R), the following three conditions are mutually equivalent.

(4) u is quasi-bounded on R.

(5) There exist two strongly convex functions @ and ¥ depending on u such
that

2) Cf. Lemma 1 in this note.

https://doi.org/10.1017/50027763000024454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024454

HARMONIC AND ANALYTIC FUNCTION 79

(5. 1) lim Q)(a) lL(u ;a)(t) =0

a—>-40c0

and

6.2) lm (=8 lguplt) =0

JSor some (and hence for any) point ¢ in R.

(6) The following
(6. 1) linl inf a1z, ;,(t) =0

and

are valid for some (and hence for any) point t in R.
In section 4 we shall be concerned mainly with «-level curves of

analytic functions on R. The following corollary will play a fundamental
role.

CoROLLARY 2. Let ¢(r) be a non-negative finite real-valued continuous func-
tion defined for a<r<b (where a= — o and b=+ co are admissible) and
@(r) > + oo strictly increasingly as ra (resp. v /'b). Let v(z) be a continuous
Sunction defined on a hyperbolic Riemann surface R such that a <uv(z) <b and the
Sunction ¢(v) is a quasi-bounded subharmonic function on R.  Then there exists a
strongly convex jfunction @ depending on ¢(v) such that

(7) %1:11 2(¢(B)) 1o py(8) =0

(resp. ‘lql_g,l D((B) 1140; py(E) = 0)

Jor some (and hence for any) point t in R.

2. To prove Theorem we shall need the following two lemmas.

LemmA 1. (Nakai’s theorem ([3])) Let u be a non-negative harmonic jfunction
on a hyperbolic Riemann surface R. Then the following three conditions are
mutually equivalent.

(8) u s quasi-bounded on R.

9) Li_f_}}‘_wa 12u;0)() =0
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Sor some (and hence for any) point t in R.

(10) Lim inf alpg, () =0

a—>4o0

Sor some (and hence for any) point ¢ in R.

LemMa 2. Let v be a non-negative quasi-bounded subharmonic function on a
hyperbolic Riemann surface R.  Then there exists a strongly convex function @ de-
pending on v such that the subharmonic function ®(v) is quasi-bounded on R.

Proof. First, by Lemma 2 in [8], there exists a strongly convex func-
tion ¢ depending on » such that the subharmonic function ®(v) has a

harmonic majorant on R. Next, we define a function ¢(r) for —oo <7 < +co0
by the following:

o(r) for 0<v,
@0) for » <.

Then the subharmonic function » and the convex function ¢(r) satisfy the
conditions in Lemma 3 in [8]. Therefore by (E) of Lemma 3 in [8], we
can conclude that the least harmonic majorant of the subharmonic function
o(v) = O(v) is quasi-bounded on R, or equivalently, the subharmonic function
&(v) is quasi-bounded on R.

Proof of Theorem.

Proof of (1)=> (2). By Lemma 2 there exists a strongly convex func-
tion @ depending on v such that the subharmonic function w = @(v) is
quasi-bounded on R, that is, w is of the form:

w=w"—0p,
where w~ is a non-negative quasi-bounded harmonic function on R and
p=0 is a Green’s potential on R. Obviously, w=<w".

For a non-negative finite real-valued function g on R and for a posi-

tive finite constant «, we shall denote by S(g; @) the set of points z in R
such that g(z) =« holds.

Obviously the sets S(w; @) and S(w*; @) are closed subsets of R. On
the other hand, the level set L(w; @) (resp. L(w”; a)) is closed and hence
by Satz 4. 8 in [1] we have

1w ay(t) = Lsansay(t) (reSP. 1rcw~;a)(t) = Lswwn;a)(f))
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for any point ¢ in R — S(w*; a). This means that

(11) lim alL(w;(,)(t) = lim alS(w ;a)(t)
o400 >0
(resp. lim alL(w";a)(t) = lim als(wA;d,)(t))
a—>+4o0 a—>+oo

for an arbitrary fixed point ¢ in R, if either the right hand side or the
left hand side of (11) has the meaning, since R =ago (R — S(w~; a)).
By w<w*, we have S(w; a) C S(w”; @) and from this it follows that
0 << Lstws o () < Lsaon; o)(E)
or
(12) 0= a Lsau o) () << @ Lgaw; o)(2)

for any point ¢ in R.

Now we apply Lemma 1 to the non-negative quasi-bounded harmonic
function w~. Then by (9) in Lemma 1, we have

(13) Iim 44 lL(wA;a)(t) =0
a—>4oc0

for some (and hence for any) point ¢# in R. By (11), (12) and (13) we
have

lim alL(w;“)(l‘) =0
a—>-f-co
or
(14) li_{f_}_ma Lrcoya(t) =0
for some (and hence for any) point ¢ in R.
Since @ is strictly increasing from sufficiently large #» on, we have

L(@@); @) = L(v; @ Y(a)) for sufficiently large a. Therefore, by exchanging
a in (14) for @(a), we have

lim @(a) 1L(v; a)(t) =0

a—>-00

for some (and hence for any) point ¢ in R.
Proof of (2) = (3) is obvious since @(a) > a for sufficiently large a > 0.

Proof of (3)=(1). Let v=v*—g¢g be the F. Riesz decomposition
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of » on R, where v~ is the least harmonic majorant of » on R and ¢=0
is a Green’s potential on R.  Obviously ¢ is continuous. By the same
reason as in the proof of (1) => (2), we have
(]_5) lin}v inf (CY/Z) 1L(v,a/2)(t) = lirnl inf (a{/2) 1S(v,a/2)(t)
(resp. im inf alyz,~;q)(¢) = lim inf a 1spn;4(1))

o >0 @400
for an arbitrary fixed point ¢ in R, if either the right hand side or the
left hand side of (15) has the meaning.

Next we prove

(16) hﬂ ‘(a'/2) 1S(q;a/2)(t> =0
or
(16), lim [44 15(4; a)(t) = 0.
o—>-co

To prove (16) we take a,> 0 so large that a fixed point « is in R — S(g; «)
for any > «a, Let a>ea, and R, , be the connected component of the
open set R — S(q; @) containing the point . Then we have U R,,, = R.

a>ag

For any point ¢ in R, we have

C](t) = qa;.a(t> =« 1S(q; a)(t) = 09

where ¢, , is the greatest harmonic minorant of ¢ in the domain R, ,, since
by the definition of 1gy4;

q(t) = o Lgg;)(8) =0
for any point ¢ in R,,. On the other hand,
Goelt) O as a— + oo,

for any point ¢ in R since ¢ is a Green’s potential on R and {R, .},sq,

exhausts R. Therefore we have

lim sup algy; () =0

a—y=4=00
for any point ¢ in R, or we have (16,

Now by v* =v + ¢ we obtain
S~ a) € Slv; af2) U Slg; «/2).

https://doi.org/10.1017/50027763000024454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024454

HARMONIC AND ANALYTIC FUNCTIONS 83

From this it follows that

0 =< 1sep~; o)(8) <2 Ls(osaz2y (E) + Lsca; /2)(t)

or

17) 0 < a 1seon;0)(E) < 20(/2) Lsto; ay2)(t) + (@/2) Lsig; ar2)(8)]
for any point ¢ in R. Assume (3) in the theorem. Then

(18) lim inf (a/Z) ]-L(v ;“/2)(t) =0

o =>4

for some (and hence for any) point ¢ in R. Therefore by (15), (16), (17)
and (18), we have

lim inf a1z~ 0(¢) =0

a—>4o0

for some (and hence for any) point ¢ in R. We apply Lemma 1 to the
non-negative harmonic function v*. Then v+~ is quasi-bounded on R and
therefore v is a quasi-bounded subharmonic function. We have completely
proved the theorem.

Remark. By applying Lemma 2 to a non-negative continuous quasi-
bounded subharmonic function v repeatedly and using (1) = (2) of Theo-
rem, we have the following: There exists a sequence {@,}.>, of strongly
convex functions depending on v such that for any fixed number m, we
have

Hm [0n(@n-y(+ + « (@ie)) + *N]lLersay(t) =0

a0
for some (and hence for any) point ¢ in R.

3. In this section we give

Proof of Corollary 1.

Proof of (4) = (5). Since # is quasi-bounded on R, # V 0 as well as
—u# A0 is quasi-bounded on R. By inequalities

max (#,0)<<u V 0
and
max(—u,0)<(—u)VO=—u A0,

the subharmonic functions max (#,0) and max (— #,0) are quasi-bounded on
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R.  We apply (1) = (2) of Theorem to max (#,0) and max (— #,0). Then
there exist two strongly convex functions ¢ and ¥ depending on max (%, 0)
and max (—u,0) respectively (and hence depending on #) such that

(19) lim O(a) 1L(max(u,o); u)(t) =0
>0
and
(20) hm yf(a) 1L(max(——u,0);a)(t) =0
a—>-400

for some (and hence for any) point ¢ in R. On the other hand,
(21) L(max (#,0); «) = L(u; )
and
(22) L(max (—u,0); a) = L(—u; @) = L(u; §)
for @ >0, where we put 8= —«a. By (19) and (21) (resp. (20) and (22)) we
have (5. 1) (resp. (5. 2)).

Proof of (5) == (6) is obvious.

Proof of (6) => (4).  Combining (21) and (6. 1) (resp. (22) and (6. 2))
and using Theorem, (3) =—> (1), we can easily show that the subharmonic
function max (#,0) (resp. max (— #,0)) is quasi-bounded on R. Hence « V 0
as well as (—u) V 0 is a quasi-bounded harmonic function on R. There-
fore u=uVO0+uANO=uVO0—(—u)VO0 is quasi-bounded on R. This
completes the proof of Corollary 1.

4. Before proving Corollary 2, we shall give some examples of func-

tions » and ¢ stated in Corollary 2.

Exampre 1. Let H,(R) (for p>0) be the Hardy class on R, that is,
the totality of analytic functions f on R such that every subharmonic func-
tion |f|? has a harmonic majorant on R. Then, by Theorem 2 in [8], an
analytic function f on R belongs to H,(R) if and only if the subharmonic
function | f|” has a quasi-bounded harmonic majorant on R, or equivalently,
| f1? is a quasi-bounded subharmonic function on R. In this case,

v=|f]

and
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0 for a<r<o,
¢(r) =
r? for 0<r7 <+ oo,
where a is an arbitrary negative number. Obviously ¢(r) 7 + co as 7 7 40,
We have: There exists a strongly convex function @ such that
lim @(g%)1 () =0
lim 9(8")12q171:6(2)

for some (and hence for any) point ¢ in R.

ExampLE 2. By Theorem 1 in [8], an analytic function f on R is in
the Smirnov class S(R) (cf., e.g., [8]) if and only if the subharmonic function
log*|f| has a quasi-bounded harmonic majorant on R, or equivalently,
log*| f| is a quasi-bounded subharmonic function on R. In this case,

v=1[l

and

0 for a<r<i,
olr) =
logr for 1=<r<+ o,

where @ is an arbitrary negative number. We have ¢(») ~ + o as r 7 400,

ExampLE 3. Let f be an analytic function on R such that w= f(2)
takes only the values in the angular domain: |argw|<é (0 <4 <=z). Then,
for any constant p, where 0 <p <=z/2d, the function f is in the Hardy
class H,(R). This can be proved as follows.®> By

f(2) = | f(z)|etaref(®

we have

Lfa))? = B RS

cos (p arg f(2)) cos pd

if 0<p<=z/26. Hence f is in H,(R) so that the subharmonic function |f|?
is quasi-bounded on R for any p, 0 <p <=/28. Therefore this is a special
case of Example 1.

ExamprLE 4. Let f(2) = u(2) + iw(z) be an analytic function in the open
unit disc U: |z|] <1 such that the real part u(z) of f(z) can be extended
continuously to the closed disc U: |[z]<1. Then, by Smirnov’s theorem

3) V.I. Smirnov [6] proved the case: 6=x=/2 (cf. [5]).
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(61, cf., e.g., [2], p. 401, Theorem 7), the analytic function ¢/ is in the
Hardy class H,(U) for any p>0, or |ei/|? =e-" is a quasi-bounded sub-
harmonic function on U for any » >0. In this case,

v=w
and

olr) =e-?r  for — oo <y <+ oo,
Obviously ¢(r) /1 + o as r\ — .

ExampLE 59 A bounded Jordan domain G in the plane with rectifi-
able boundary is said to be a Smirnov domain if for some (and hence for
any) one to one conformal mapping ¢(z) from the open unit disc U: [z] <1
onto G, the harmonic function log|e’| is represented as the Poisson integral
of its boundary values on the unit circle: [z| =1, or equivalently, it is a
quasi-bounded harmonic function on U ([6], cf., e.g., [2] and [5]). We know
that a bounded Jordan domain G in the plane with rectifiable boundary is
a Smirnov domain if and only if for some (and hence for any) one to one
conformal mapping ¢ from U onto G, the analytic function 1/¢’ is in the
class S(U) (cf., e.g., [7]), or equivalently, the subharmonic function log*|1/¢’|
is quasi-bounded on U. In this case,

v =g
and
¢(r) = log*(1fr) for 0 <r < + oo,
We have ¢(r) /4 o as » (0.
We give
Proof of Corollary 2. This is an immediate consequence of (1) => (2)
of Theorem. In fact, by (2) in Theorem, we obtain a strongly convex

function @ depending on the quasi-bounded subharmonic function ¢(v) such
that

lim (D(a) 1L(¢v(v); a)(t) =0

o —>-00

4 Tumarkin and Havinson [7] defined Smirnov domains of finite connectivity and obtained
some analogous results as in the case of simply connected Smirnov domains.

https://doi.org/10.1017/5S0027763000024454 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024454

HARMONIC AND ANALYTIC FUNCTIONS 87

for some (and hence for any) point ¢ in R. Let g be near a (resp. d).
Then by property of the function ¢(r) we have the assertion.
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