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Abstract

Given an infinite family of finite primitive groups, conditions are found which ensure that almost all the
orbitals are not self-paired. If p is a prime number congruent to zfcl(modlO), these conditions apply to
the groups PSL(2, p) acting on the cosets of a subgroup isomorphic to ^5. In this way, infinitely many
vertex-primitive |-transitive graphs which are not metacirculants are obtained.

1991 Mathematics subject classification (Amer. Math. Soc): 20B25, 20B15.

1. Introduction

Let X = (V(X), E(X)) be a simple undirected graph. We call an ordered pair of
adjacent vertices an arc of X. Let G be a subgroup of Aut X. The graph X is said to be
G-vertex-transitive, G-edge-transitive,or G-arc-transitiveif G actstransitivelyonthe
set of vertices, edges, or arcs of X, respectively. Furthermore, X is said to be vertex-
transitive, edge-transitive, or arc-transitive, if it is Aut X-vertex-transitive, AutX-
edge-transitive, or Aut X-arc-transitive, respectively. We call a graph ^-transitive, if
it is vertex-transitive, edge-transitive, but not arc-transitive.

The first examples of ^-transitive graphs were found by I. Z. Bouwer [5] in 1970.
He found an infinite family of them. In 1981 D. F. Holt [7] found an example with
27 vertices. Very recently, B. Alspach, D. MaruSic and L. Nowitz [1] found several
infinite families of these graphs of degree 4: Holt's graph occurs as the smallest
example in one of their families. B. Alspach and the second author [3] determined
all such graphs of order 3p with p a prime number greater than 3. All these graphs
have automorphism groups acting imprimitively on their vertices, and all of them are
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114 D. E. Taylor and Ming-Yao Xu [2]

so-called metacirculants, defined by Alspach and Parsons [2]. In [8] D. Holton asked
if the automorphism group of a \ -transitive graph is necessarily imprimitive, and we
may ask if a —transitive graph is necessarily metacirculant. These two questions have
been answered by Praeger and the second author [11] in the negative. They found
several examples of \ -transitive graphs with order a product of two distinct primes.
In each case the automorphism group is PSL(2, p) acting on the cosets of a maximal
subgroup isomorphic to A5 or 54, and some of them are metacirculants, some are not.

In this paper we exhibit infinitely many vertex-primitive \ -transitive graphs, most
of which are not metacirculants. This also answers the two questions mentioned
above. More precisely, the main result of this paper is Theorem 3.1 in Section 3,
which shows that for some primitive groups almost all orbitals are not self-paired
and their underlying undirected graphs are \ -transitive. As an example, we consider
the (primitive) action of the group PSL{2, p) on the cosets of a maximal subgroup
isomorphic to A5. For each prime p for which A5 is maximal in PSL(2, p) we
calculate the exact number of non-self-paired orbitals. The result is presented in §4.
To do this we use the same ideas and methods used in [11]. We quote some technical
lemmas from [11] in the next section.

The link between groups and graphs that we use is the concept of the orbital graph
of a permutation group.

Let G be a transitive permutation group on £2. Consider the natural action of G on
Q x £2. Assume that r0, Tu ..., Fr_! are the orbits of G on fi x £2, where

We call these orbits the orbitals of G and call Fo the trivial orbital. The number r is
called the rank of G. Each nontrivial orbital F, can be viewed as a G -arc-transitive
directed graph, and if (a, fi) e F, is equivalent to (/}, a) e F, for any a, ft € £2, then
F, can be viewed as an undirected graph, identifying two directed edges (a, fi) and
(ft, a) with one undirected edge a/5. We call this (directed or undirected) graph F,
an orbital graph of G. If the graph is undirected, the orbital is said to be self-paired.
Thus, given G, all G-arc-transitive (undirected) graphs can be found by finding all
self-paired orbitals of G. If the full automorphism group of the underlying undirected
graph of a non-self-paired orbital digraph is G, then this graph is |-transitive.

Take a point a e £2. The orbits of the stabilizer Ga on Q are called suborbits of
G. There is a one-to-one correspondence between the suborbits and the orbitals of G.
For each orbital F,,

A,- = { / i e Q | ( a , / l ) € r ( }

is a suborbit, and for each suborbit A,,

F, = {(a, py\ g € G, p e A,}

https://doi.org/10.1017/S1446788700036090 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036090
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is an orbital of G. Thus the number of suborbits is the rank of G.
It is well known that G is primitive if and only if all orbital graphs of G are

connected. This ensure that all the graphs that we find are connected. The group- and
graph-theoretic notation and terminology used in this paper are standard; the reader
can refer to [9] and [4] when necessary.

In the next section we give some group-theoretic lemmas which will be used later.
In Section 3, the main theorem of the paper is proved. An example is given in
Section 4.

2. Preliminary lemmas

Since the 2-dimesional projective linear groups PSL(2, p) and PGL(2, p) over
the field with p elements are the background of our investigation in this paper, we need
information about the subgroup structure of these groups. The following theorem is
due to Dickson; the reader may refer to [9, II, §8] or [6] for a proof.

THEOREM 2.1. Assume that p is a prime number greater than 11. Then

(a) the maximal subgroups of PSL(2, p) are:

(i) One class of subgroups isomorphic to Zp : ZEZI, where A : B denotes
the semidirect product of A and B and Zn denotes the cyclic group of
order n.

(ii) One class of subgroups isomorphic to Dp_{ and one class isomorphic to
Dp+X, where Dn denotes the dihedral group of order n.

(iii) Two classes of subgroups isomorphic to A5, if p = ±1 (mod 10). (They
are conjugate in PGL(2, p).)

(iv) Two classes of subgroups isomorphic to S4, if p = ±1 (mod 8).« (They
are conjugate in PGL(2, p).)

(v) One class of subgroups isomorphic to A,, if p = 3, 13, 27, or 37
(mod 40).

(b) the maximal subgroups of PGL{2, p) are:

(i) One class of subgroups isomorphic to Zp : Zp_j.
(ii) One class of subgroups isomorphic to D2(P-\) and one class isomorphic

(iii) One class of of subgroups isomorphic to S4.
(iv) PSL(2,p).

To determine suborbits for primitive groups we need the following result of Man-
ning ([11, Lemma 2.1]).
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LEMMA 2.2. Let G be a transitive group on ft, let H = Ga for some a e ft, and
let K < H. Suppose that the set of G-conjugates of K which are contained in H form
t conjugacy classes of H, with representatives K\,K2, ..., Kt. Then K fixes

: NH(K,)\

points ofQ. In particular, ift = l, that is if every G-conjugate ofK in H is conjugate
to K in H, then K fixes \NC(K) : NH(K)\ points ofQ.

Given a subgroup K of a group H, there is a natural action of H on the set [H : K]
of right cosets of K. If H acts on ft, let /A* (ft) be the number of //-orbits of ft
isomorphic to [// : K] and let Fi\n(K) be the set of fixed points of K in ft. Then
ft = Uz. /ttL(ft) [H : L], and therefore

(2.1) |Fi

where the union and summation range over a set of representatives for the conjugacy
classes of subgroups of H.

WehaveFix[W;Z,,(A') = {Lh | hKh~x c L } and therefore | ¥w[H.L]{K)\ = Ounless
L contains a conjugate of K. Thus ((2.1)) is essentially an upper triangular system
of equations and it is easily solved for the /if.(£2). The coefficients | Fi\[H.L](K)\ are
given by Lemma 2.2, namely

I Fix[W:L](/O| = ^ \NH(Kt) : NL(Ki)l

where [Ku K2,..., K,} is a set of representatives for the conjugacy classes in L
of the //-conjugates of K that are contained in L. In particular, |Fix[W:^](^T)| =
\NH{K)/K\.

In the case of a group acting on the cosets of a subgroup isomorphic to A5, these
general considerations yield the following lemma (proved in [11]).

LEMMA 2.3. ([11, Lemma 2.2]) Let G be a primitive permutation group on ft, and
let H = Ga for some a e ft. Suppose that H = A5 and let Ku ..., Af7 be seven
subgroups of H satisfying K\ = A4, K2 = Di0, K3 = D6, K4 = Z5, Ks = Z3,
K6 = D4 and K1 = Z2. Let kt be the number of points in ft fixed by Kit for
i = 1, 2 , . . . , 7. Then G has 1 suborbit of length 1, kt — 1 suborbits of length 5, k2 — 1
suborbits of length 6, k3 — 1 suborbits of length 10, |f&4 — fc2) suborbits of length
12, j(&5 - 2/t! - k3 + 2) suborbits of length 20, ±(&6 - A;,) suborbits of length 15,
| (^7 — 2k2 — 2k-$ — k6 + 4) suborbits of length 30, and a// f/ie otfier suborbits have
length 60.
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To determine which suborbits are self-paired, we need two other lemmas from [11].

LEMMA 2.4. ([11, Lemma 2.2]) Let D = (a, b) = Dln, n > 2, be a permutation

group o«f i = [ l , 2 n], where

a = (1,2, •••,/!) <z/irf 6 = ( 1 ) ( 2 , » ) ( 3 , / I - 1 ) - . - ( / , « + 2 - I ) . . -

Then the nontrivial orbitals of D are A, = (1, i)D = (1, « + 2 - i)D,for 2 < i <
|(n + 2). Eac/i of these orbitals is self-paired. Moreover, for all points i, j , with
i ^ j , there is an involution in D which interchanges i and j .

The next lemma is a generalization of [11, Lemma 2.4].

LEMMA 2.5. Let G be a transitive group on Q and let H = Ga for some a e Q.
Assume that G has t conjugacy classes of involutions, say C\, ..., C,. Take a
representative Uj in Cj. Assume that Uj has Nj cycles of length 2. For a nontrivial
self-paired orbital A and a pair (a, /i) € A, let inv(A) be the number of involutions
in G with a 2-cycle (a, yS). Then

y=i CJ

where Cj is the order of the centralizer ofUj.

PROOF. We count the elements of the set

M = { (M, {a, /S}) | M is an involution and (a, /S) is a 2-cycle of u }.

On the one hand

On the other hand we can classify the pairs [a, /6} according to the (self-paired) orbital
to which they belong. For each self-paired orbital A there are

pairs {a, fi) such that (a, /J) e A and each of these has inv(A) associated involutions.
Thus

and the result follows.

\M\ =
A=A'
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3. Main theorem

THEOREM 3.1. Let H be a finite group, and let V be an infinite set of positive
integers. Assume that { G(p) | p G V) is an infinite family of finite primitive groups
acting on a finite set £2(p), and that for every p, the stabilizer of a point a e Q(p)
is a maximal subgroup of G(p) identified with H. Then the degree d{p) of G(p)
is \G(p)\/\H\. Let m{p) be the maximum order of the normalizers of nontrivial
subgroups of H in G(p), and let c(p) be the minimun order of the centralizers of
involutions in G(p). Let r(p) be the rank of G(p), and let h(p) be the number of
non-self-paired orbitals ofG(p). Assume that G(p) has t(p) classes of involutions,
and that t(p) < t for every p. Suppose that limp_>o0(|G(p)|/w(p)) = oo and
linip^oo c(p) = oo. Then almost all orbitals ofG(p) are not self-paired, that is,

hm —— = 1.
P->°° r(p)

Furthermore, ifG(p) is a maximal subgroup of the symmetric group Sym(Q(p))for
every p, then the underlying undirected graphs of the non-self-paired orbital digraphs
are ^-transitive andpairwise non-isomorphic.

REMARK. The conditions of Theorem 3.1 are satisfied in the following cases:

(a) H = A5, V is the set of all prime numbers congruent to ±1 (mod 10), and
G{p) = PSL(2, p);

(b) H = S4, V is the set of all prime numbers congruent to ±1 (mod 8), and
G(p) = PSL(2,p);

(c) H = S4,V is the set of primes greater than 5, and G(p) = PGL{2, p).

PROOF OF THEOREM 3.1. Let Ku K2,..., Ks be representatives for the conjugacy
classes of nontrivial subgroups of H, let /A,-(p) be the number of //-orbits in which
the stabilizer of a point is conjugate to Kt, and let fx(p) be the number of regular
//-orbits (i.e., for which the stabilizer of a point is trivial).

Then /i,-(p) < | Fixn(p)(A',)| and by Lemma 2.2, | F\xQip)(Kj)\ < sm(p), whence

IXi(p) < sm{p).

We have

\H\fi(p) = d{p) - V / i , ( p ) ^ > ^ - s2m(p),
~( &i \H\

and as limp^oo \G{p)\/m{p) = oo, it follows that

, , n .. Vi(p) n „
(3.1) hm = 0 lor every/.
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In addition,

(3.2) r(/>)

and therefore
(3.3) lim f ^ l = ,.

Now suppose that there are a(p) self-paired regular //-orbits. Then from Lem-
ma 2.5 we have

—o(p) < > ^ <
2 y

and so
o{p) < d(p) t
r(p) r(p) c(p)

On the other hand, it follows from equations (3.1), (3.2) and (3.3) that lim/,_,.0O

d{p)/r{p) = \H\. Therefore lim^ooo(p)/r(p) = 0 because, by assumption,
lim^o,, c(p) = oo.

Since r(p) > h(p) > fi(p) — a(p) we have

and so

1 > hm > lim hm = 1.
P->oo r(p) p^-oo r(p) />-><» r(p)

hm — - = 1.
P-+OC r(p)

We are assuming that G(p) is a maximal subgroup of the symmetric group
Sym(£2(p)) and therefore it is the full automorphism group of every orbital graph, hi
particular, it is the full automorphism group of every non-self-paired orbital digraph
and of the underlying undirected graph. Thus these underlying undirected graphs are
^-transitive.

Finally, we shall show that the orbital graphs and digraphs are pairwise non-
isomorphic. If a is an isomorphism between two of the orbital graphs, Ai and A2,
then a lies in the normalizer in Sym(£2(/>)) of their common automorphism group
G(p). Since G(p) is maximal in Sym(£2(p)), it is self-normalizing, and so a € G(p),
whence A, = A2, a contradiction. This completes the proof of the theorem.

4. An example

THEOREM 4.1. Suppose thatp = ±1 (mod 10) andthatG — G(p) = PSL(2, p)
acts on the set£2 = Q (p) = [G : / / ] of right cosets of a subgroup H = A5. Then
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(a)

(b)

(c)

We have d = dip) = \Q\ = (p3 - p)/llO,the rankofGip) is r = rip), and G
has 1 suborbit of length 1, xxip) suborbits of length 5, x2ip) suborbits of length
6, x3ip) suborbits of length 10, x4ip) suborbits of length 12, x$ip) suborbits
of length 20, x6ip) = 0 suborbits of length 15, x-iip) suborbits of length 30,
and xip) suborbits of length 60. All the suborbits of G of length less than 60
and yip) of the suborbits of length 60 are self-paired. The numbers x{ = xtip)
are given in Table 4.1 and the numbers r = rip), x = xip), y = yip) and
h — hip) = x — y are given in Table 4.2.

The underlying undirected graphs of the h non-self-paired orbital digraphs are
^-transitive graphs. These graphs are pairwise non-isomorphic. All have auto-
morphism group PSLil, p).
Almost all orbital graphs of PSLil, p) give ^-transitive graphs. That is,

v h{p) ihm = 1.
P^OO rip)

PROOF OF THEOREM 2.1. Proof By Theorem 2.1, PSL(2, p) has only one class of
involutions and the centralizer of an involution is Dp+i or Dp_i, depending on whether
4 divides p + 1 or p — 1. Every maximal subgroup of PSLil, p) has order at most a
quadratic polynomial of p, and so the conditions of Theorem 3.1 are satisfied. Thus
conclusions ib) and (c) hold.

Next we shall calculate the exact values of *,, x, y and h for Gip) = PSLil, p)
and H = A5. We must have p = ±1 (mod 10) and the calculations fall naturally
into 16 cases according to the value of p (mod 120), namely p = ±1 , ±11, ±31,
±41, ±61, ±71, ±91, or ±101 (mod 120). We give details of the proof for the
cases p = ±1 (mod 120). The proofs for the other cases are entirely similar and are
omitted.

There are 7 conjugacy classes of nontrivial subgroups of H = A5, with represent-
atives Kx = A4, K2 = Dw, K3 = D6, K4 = Z5, K5 = Z3, K6 = D4 and K-, = Z2

as in Lemma 2.3. We have the following table, the last line of which comes from
Lemma 2.2.

/

K,
NniKi)

NdKd
* , = |Fixn(/s:,.)|

1
A4

A4

54

2

2
Dw

Dio

D20

2

3

D6

D6

DX2

2

4

z5
O,o

5

z3
D6

6

£»4

A4

54
2

7

z2
£>4

By Lemma 2.3, G has 1 suborbit of length 1, 1 of length 5, 1 of length 6, 1 of
length 10, ±{p qp 1) - 1 of length 12, ±(p ^ 1) - 2 of length 20, none of length 15,
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[9] Vertex-primitive half-transitive graphs 121

5 (P T 1) - 3 of length 30, and x of length 60, where

1 1
60x = — ( p j - p) - 1 - 5 - 6 - 10 - 12 • ( - ( p T D - D120

- 20 • ( i
20

I1) - 2) - 30 • (I(p T 1) - 3).

Therefore x = ^ ( p 3 - 723p ± 722) + 2 and hence G has rank

+ 1 + 1 + 1 + (JL(p

+ (i(p T 1) - 3) +

(p3 + 1137/? T 1138).

_ 2)

- 723p ± 722) + 2

7200

Now we show that all the nontrivial suborbits of length less than 60 are self-paired.
The arguments are the same in all cases. For instance, consider a suborbit A (a)
of length 12. For fi e A (a), we have Gap = Z5, and NG(Gap) = DPTl acts on
Fixn(Gap), a set of size ~(p =p 1), as Dai. By Lemma 2.4, some element of NG(Gap)
interchanges a and fi, and so A (a) is self-paired.

Next, we use Lemma 2.5 to determine the number y of self-paired suborbits of
length 60. In the following table y\^a)\ denotes the number of self-paired suborbits of
length | A(a)| and inv(A) is defined in Lemma 2.5.

|A(a)|
>"|A(a)|

Gafi

inv(A)

5
1

A4

SA

6

6
1

Dio

£>20

6

10
1

D6

Dn

4

12

z5
Dw

5

20

£(p=FD-2
z3

3

30

s(P=FD-3
z2

2

60

l

z2
l

Since every involution has ^(p ^f I) fixed points, so every involution has

cycles of length 2. The centralizer of an involution has order p =f I and so, by
Lemma 2.5,

^ - ^ - 1 5 = 5 - l - 6 + 6 - l - 6 + 1 0 - l - 4 + 1 2 - ( ^ ^ - - 1) • 5

+ 20
12

- 2) • 3 + 30 • - 3) • 2 + 60 • y • 1,
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y = (p2- 32/7 + 447)/120

ifp = 1 (mod 120),

i f p s - 1 (mod 120).

p = ±l
(mod 120)

p = ± l l
(mod 120)

p = ±31
(mod 120)

p = ±41
(mod 120)

p-±6\
(mod 120)

p-±71
(mod 120)

p — ±91
(mod 120)

p = ±101
(mod 120)

(

Ki

NH(Ki)

NG(Ki)

ki

Xi

Nc(Ki)

ki

Xi

NG(Ki)

ki

Xi

k
Xi

NG(Ki)

ki

Xi

NG(Ki)

ki

Xi

NG(Ki)

ki

Xi

Nc(Ki)

ki

Xi

1

A4

A4

S4

2

1

A4

1

0

SA

2

1

s4
2

1

A4

1

0

s4
2

1

A4

1

0

A4

1

0

2

O,o

0 i o

D20

2

1

0 i o

1

0

Oio

1

0

020

2

1

020

2

1

0 i o

1

0

0 i o

1

0

020

2

1

3

0 6

D6

Dl2

2

1

D12

2

1

o 6
1

0

D6

1

0

D,2

2

1

£>12

2

1

£>6

1

0

0 6

1

0

4

z5
010

0PT1
Ell

10

Ell _ 1
20 X

0pTl
££l

10

Ell 1
20 2

0PT1

Ell
10

PTi 1
20 2

0PT1
£11

10

Ell _ 1
20 *

0PT1

Ell
10

£ii _ 1
20 '

0PT1

Ell
10

Ell 1
20 2

0PT1

Ell
10

£il _ I
20 2

0pTl
Pji

10

£ii _ 1
20 '

5

z 3
0 6

0PT1
£ii

6

Ell - 2
12 Z

0p±l

£±i
6

E±l 1
12 *

0PT1
£il

6

PTl 3
12 2

0p±l

£±1
6

p±l 3
12 2

0PT1
Ell

6

£ii _ 1
12 *

0p±l

£±1
6

£±1-2
12 Z

0PT1
Ell

6

Ell 1
12 2

0p±l

£±i
6

p±l 1
12 2

7

z 2
0 4

0PT1
£ii

4

££l _ 3
8 J

0p±l

£±1
4

£±i 3
8 2

0p±l
£±I

4
£ ± 1 _ 1

8 '

0PT1
£ii

4

££i _ 28 Z

0PT1
£il

4
££i 5

8 2

0p±l

£±1
4

£±i_28 L

0p±l

£±i
4

£±1 1
8 2

0PT1
£ji

4
PTl 3

8 2

TABLE 4.1. The number x, of non-regular suborbits with stabilizer
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Thus the number h — x — y of non-self-paired suborbits of length 60 is

123

h =
(p3 - 60p2 + 1077p - 15418)/7200

(p3 - 60p2 + 1197p - 13142)/7200

ifp = 1 (mod 120),

ifp = - 1 (mod 120).

Now PSL(2, p) has two conjugacy classes of subgroups isomorphic to A5 and
these are interchanged by PGL(2, p). Hence PGL(2, p) has no subgroup of index
d, and by the result of Liebeck, Praeger and Saxl [10], there are no simply primitive
groups properly containing PSL(2, p). From these observations it follows that each
of the above orbital graphs and digraphs has automorphism group PSL(2, p).

Finally, the same argument as in the proof of Theorem 3 shows that the orbital
graphs and digraphs are pairwise non-isomorphic. This completes the proof in this
case.

p
(mod 120)

1

- 1

11

-11

31

31

41

41

61

-61

71

-71

91

91

101

101

X

p3-723p+15122
7200

p3-723p+13678
7200

p3-723p+6622
7200

p3-723p+7778
7200

p3-723p+7022
7200

p3-723p+7378
7200

p3-723p+11122
7200

p3-723p+10478
7200

p3-723p+U522
7200

p3-723p+10078
7200

p3-723p+10222
7200

p3-723p+11378
7200

p3-723p+3422
7200

p3-723p+3778
7200

p3-723p+7522
7200

p3-723p+6878
7200

r

p3+1137p-1138
7200

p3+1137p+1138
7200

p3+1137p+562
7200

p3+1137p-562
7200

p3+1137p-238
7200

p3+1137p+238
7200

p3+1137p-338
7200

p3+1137p+338
7200

p3+1137p-1138
7200

p3+1137p+1138
7200

p3+1137p+562
7200

p3+1137p-562
7200

p3+1137p-238
7200

p3+1137p+238
7200

p'+1137p-338
7200

p3 + 1137p+338
7200

y
p2-30p+509

120

p2-32p+447
120

p2-32p+231
120

p2-30p+269
120

p2-32p+271
120

p2-30p+269
120

p2-30p+389
120

p2-32p+367
120

p2-30p+389
120

p2-32p+327
120

p2-32p+351
120

p2-30p+389
120

p2-32p+151
120

p2-30p+149
120

p2-30p+269
120

p2-32p+247
120

h
p3-60p2+1077p-15418

7200

p3-60p2+1197p-13142
7200

p3-60p2+1197p-7238
7200

p3-60p2+1077p-8362
7200

p3-60p2+1197p-9238
7200

p3 -60p2+1077p-8762
7200

p3-60p2+1077p-12218
7200

p3-60p2+1197p-11542
7200

p3-60p2+1077p-11818
7200

p3-60p2+1197p-9542
7200

p3-60p2+1197p-10838
7200

p3-60p2+1077p-11962
7200

p3-6Op2+1197p-5638
7200

p3-60p2+1077p-5162
7200

p3-60p2+1077p-8618
7200

p3-60p2+1197p-7942
7200

TABLE 4.2. The number h of non-self-paired regular sub-orbits.
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For the other cases, we list the results in Tables 4.1 and 4.2.
Table 4.1 refers to the action of PSL(2, p) on the cosets of A5. In the table Kt is

a subgroup of A5, kt = | Fixn(Kt) |, and x{ is the number of the suborbits with a point
stabilizer isomorphic to Kt. In all cases x6 = 0.

Table 4.2 gives the number x of regular suborbits of PSL(2, p) acting on cosets of
A5, the rank r, the number y of self-paired regular suborbits, and the number h = x — y
of non-self-paired regular suborbits. The number of 2-cycles in each involution is
^(p3 — 31p + 30e), where e = ±1 and p = e (mod 4).

COROLLARY 4.2. Let G and H be the same as in Theorem 4.1. Assume that A is
an orbital graph ofG,or the underlying undirected graph of a non-self-paired orbital
digraph. If p > 61, then A is not a metacirculant.

PROOF. If A were a metacirculant, then G would have a metacyclic subgroup M,
which is transitive. It follows that d = -^ (p3 — p) would divide the order of M. If
p > 61, Theorem 2.1 tells us that the only such subgroup of G is G itself. But G is
not metacyclic, a contradiction.
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