ON MEROMORPHISMS OF ALGEBRAIC SYSTEMS

JUNJI HASHIMOTO
Dedicated to the memory of Professor Tadasi Nakayama

1. Introduction

In the present paper by an algebraic system (algebra) A we shall mean a system with a set F of operations $f_{\lambda}:\left(x_{1}, \ldots, x_{n}\right) \in A \times \cdots \times A \rightarrow f_{\lambda}\left(x_{1}, \ldots\right.$, $\left.x_{n}\right) \in A$. A polynomial $p\left(x_{1}, \ldots, x_{r}\right)$ is a function of variables x_{1}, \ldots, x_{r} which is either one of the x_{i}, or (recursively) a result of some operation $f_{\lambda}\left(p_{1}, \ldots\right.$, p_{n}) performed on other polynomials p_{i}. An algebra A may satisfy a set R of identities $p\left(x_{1}, \ldots, x_{r}\right)=q\left(x_{1}, \ldots, x_{s}\right)$, and then A shall be called an (F, R)-algebra.

By a meromorphism between two algebras admitting the same operations, we mean a many-many correspondence of elements which preserves all algebraic combinations. If φ is a meromorphism of A onto B, under which the correspondence of elements shall be written $a \rightarrow b(\varphi)$ or $a \varphi b$, then $a_{i} \varphi b_{i}(i=1, \ldots, n)$ imply $f_{\lambda}\left(a_{1}, \ldots, a_{n}\right) \varphi f_{\lambda}\left(b_{1}, \ldots, b_{n}\right)$. We shall write $b \bar{\varphi} a$ to mean $a \varphi b$, and then $\bar{\varphi}$ becomes a meromorphism of B onto A. Let φ and ψ be meromorphisms from A onto B and from B onto C respectively, and define $a \varphi \psi c$ to mean $a \varphi b$ and $b \nu c$ for some $b \in B$. Then $\varphi \psi$ becomes a meromorphism from A onto C.

Now on a meromorphism of any algebra the following theorem similar to the Homomorphism Theorem holds.

Meromorphism Theorem. Let φ be a meromorphism of A onto B. If we define the relation φ^{*} in A by
$a \varphi^{*} a^{\prime}$ means that for some finite number of elements $a_{0}, a_{1}, \ldots, a_{n} \in A$ and $b_{1}, \ldots, b_{n} \in B$,

$$
a_{0}=a, a^{\prime}=a_{n}, a_{i-1} \varphi b_{i}, a_{i} \varphi b_{i} \quad(i=1, \ldots, n)
$$

then φ^{*} is a congruence relation on A, and similarly $\bar{\varphi}^{*}$ is that on B. Further their homomorphic images are isomorphic: $\varphi^{*}(A) \cong \bar{\varphi}^{*}(B)$.

Received June 30, 1965.

If, given $b \in B,\{x ; x \varphi b\}$ is necessarily a congruence class under φ^{*} in the above theorem and, given $a \in A,\{y ; a \varphi y\}$ is necessarily that under $\bar{\varphi}^{*}$, then φ is called a class-meromorphism. As is already known, a meromorphism φ is a class-meromorphism if and only if $a \varphi b, a^{\prime} \varphi b$ and $a^{\prime} \varphi b^{\prime}$ imply $a \varphi b^{\prime}$. When φ and ψ are two meromorphisms of A onto B, we define $\varphi \leqq \psi$ to mean that $a \varphi b$ implies $a \psi b$. Then the above condition that φ be a class-meromorphism is written $\varphi \bar{\varphi} \varphi \leqq \varphi$.

In Shoda's theory for abstract algebraic systems the following condition on an algebra A is often assumed:
(α) Every meromorphism between two homomorphic images of A is a class-meromorphism.

In the present paper we shall deal with meromorphisms of an algebra A onto itself. We shall first show in $\S 2$ that the above condition (α) is equivalent to the condition
(β) Every meromorphism of A onto itself is a class-meromorphism.
A meromorphism φ of A onto itself may be regarded as a relation between elements of A. If φ is reflexive, i.e. $a \varphi a$ holds for all $a \in A$, we shall call φ a quasi-congruence. We shall show that a quasi-congruence on A is a classmeromorphism if and only if it is a congruence relation. We shall inquire in § 2 mainly into the symmetricity and transitivity of quasi-congruences in abstract algebras, and discuss the connections among the transitivity, symmetricity and permutability of quasi-congruences.

In $\S 3$ and $\S 4$ we shall deal with quasi-congruences on some real algebraic systems. Especially we shall discuss in $\S 3$ the conditions that quasi-congruences on a semigroup be symmetric and in $\S 4$ that quasi-congruences on a lattice be transitive. The lattice of quasi-congruences on a lattice is not necessarily distributive. We shall lastly give some sufficient conditions for that lattice to be distributive.

2. Meromorphisms of an abstract algebra onto itself

Let φ and ψ be homomorphisms of A and θ a meromorphism between $\varphi(A)$ and $\psi(A)$. If we define $a \Theta b$ to mean $\varphi(a) \theta \psi(b)$, then it is easy to see that Θ is a meromorphism of A onto itself. Suppose that $\varphi(a) \theta \psi(b), \varphi\left(a^{\prime}\right) \theta \psi(b)$ and $\varphi\left(a^{\prime}\right) \theta \varphi\left(b^{\prime}\right)$. Then $a \Theta b, a^{\prime} \Theta b$ and $a^{\prime} \Theta b^{\prime}$; hence if Θ is a class-meromorphism
we get $a \Theta b^{\prime}$ and $\varphi(a) \theta \psi\left(b^{\prime}\right)$, which shows that θ is a class-meromorphism between $\varphi(A)$ and $\psi(A)$. Thus we have

Theorem 2.1. Every meromorphism between two homomorphic images of an algebra A is a class-meromorphism if and only if every meromorphism of A onto itself is a class-meromorphism.

Meromorphisms of A onto itself form a partially ordered semigroup $M(A)$ under the multiplication and the ordering defined in §1:
$a \varphi \psi b$ means that $a \varphi c$ and $c \psi b$ for some $c \in A$;
$\varphi \leqq \psi$ means that $a \varphi b$ implies $a \psi b$.
Further, it is rather evident that $\varphi \leqq \varphi_{1}$ and $\psi \leqq \psi_{1}$ imply $\varphi \psi \leqq \varphi_{1} \psi_{1}$.
A meromorphism θ of A onto itself is regarded as a relation in A, and it becomes a congruence relation if it is reflexive, symmetric (symbolically $\bar{\theta} \leqq \theta$) and transitive $\left(\theta^{2} \leqq \theta\right)$. A quasi-congruence on A is a meromorphism of A onto itself which is reflexive. The set $Q(A)$ of quasi-congruences on A becomes a subsemigroup of $M(A)$ mentioned above and a complete lattice under the ordering defined in $M(A)$. In $Q(A) a \rightarrow b\left(\Lambda_{\alpha} \theta_{\alpha}\right)$ means that $a \theta_{\alpha} b$ for all θ_{α}.

Now let P be a set of ordered pairs (a, b) of elements of A, and define the relation θ in the following way :
$u \theta v$ means that a polynomial $p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ exists such that

$$
\begin{array}{r}
u=p\left(a_{1}, \ldots, a_{m}, c_{1}, \ldots, c_{n}\right) \text { and } v=p\left(b_{1}, \ldots, b_{m}, c_{1}, \ldots, c_{n}\right) \\
\\
\text { for some }\left(a_{i}, b_{i}\right) \in P .
\end{array}
$$

Then it is easily seen that θ becomes a quasi-congruence, which is the least of elements φ of $Q(A)$ satisfying $a \varphi b$ for every pair $(a, b) \in P$. This θ is called the quasi-congruence generated by P and denoted by $\theta(P)$. It follows that $\theta(P)=V_{i a, b j \in P} \theta(a, b)$, where $\theta(a, b)$ is the quasi-congruence generated by one pair (a, b).

We intend to discuss the symmetricity and transitivity of quasi-congruences. We first show

Theorem 2.2. Let $\left\{\theta_{\alpha}\right\}$ be a set of quasi-congruences on an algebra A. Then $\overline{\Lambda_{\alpha} \theta_{\alpha}}=\Lambda_{\alpha} \bar{\theta}_{\alpha}$ and $\overline{V_{\alpha} \theta_{\alpha}}=V_{\alpha} \bar{\theta}_{\alpha}$; accordingly symmetric quasi-congruences form a closed sublattice of $Q(A)$.

Proof. It is clear by the meaning that $\overline{\Lambda_{\alpha} \theta_{\alpha}}=\Lambda_{\alpha} \bar{\theta}_{\alpha}$. Let P be a set of ordered pairs (a, b) of elements of A and put $\bar{P}=\{(b, a) ;(a, b) \in P\}$. If $u \rightarrow v(\theta(P))$, then a polynomial p exists such that $u=p\left(a_{1}, \ldots, a_{m}, c_{1}, \ldots, c_{n}\right)$, $v=p\left(b_{1}, \ldots, b_{m}, c_{1}, \ldots, c_{n}\right)$ and $\left(a_{i}, b_{i}\right) \in P$. Then $\left(b_{i}, a_{i}\right) \in \bar{P}$ and hence we infer $v \rightarrow u(\theta(\bar{P}))$, which shows $\overline{\theta(P)}=\theta(\bar{P})$. Now put $\theta_{\alpha}=\theta\left(P_{\alpha}\right)$. Then $V_{\alpha} \theta_{\alpha}=\theta\left(V_{\alpha} P_{\alpha}\right)$, where $V_{\alpha} P_{\alpha}$ is the set-sum of P_{α}. So we can deduce

$$
\overline{V_{\alpha} \theta_{\alpha}}=\overline{\theta\left(V_{\alpha} P_{\alpha}\right)}=\theta\left(\overline{V_{\alpha} P_{\alpha}}\right)=\theta\left(V_{\alpha} \bar{P}_{\alpha}\right)=V_{\alpha} \theta\left(\overline{P_{\alpha}}\right)=V_{\alpha} \bar{\theta}_{\alpha},
$$

completing the proof.
If quasi-congruences θ_{α} are transitive, then $\Lambda_{\alpha} \theta_{\alpha}$ is also transitive but $V_{\alpha} \theta_{\alpha}$ is not necessarily transitive; hence the set $\Theta(A)$ of congruences on A is meetclosed in $Q(A)$ but not always a sublattice of $Q(A)$.

Now let S be a subalgebra of an algebra A and every quasi-congruence on S be transitive. Suppose $x, y, z \in S, x \theta y$ and $y \theta z$ under a quasi-congruence θ on A. Since θ can be regarded as a quasi-congruence θ_{0} on S, provided the range of elements is restricted in S, and θ_{0} is transitive, we infer $x \theta_{0} z$ and $x \theta z$. So we have

Theorem 2.3. Quasi-congruences on an algebra A are transitive if every triple $\{x, y, z\}$ is contained in a subalgebra $S=S(x, y, z)$ on which quasi-congruences are transitive.

And similarly,
Theorem 2.4. Quasi-congruences on an algebra A are symmetric if every pair $\{x, y\}$ is contained in a subalgebra $S=S(x, y)$ on which quasi-congruences are symmetric.

Two quasi-congruences φ and ψ are called permutable if and only if $\varphi \psi=$ $\psi \varphi$. We see some connections among the transitivity, symmetricity and permutability of quasi-congruences.

Theorem 2.5. If the join $\varphi \cup \psi$ of two quasi-congruences φ and ψ is transitive, then $\varphi \psi=\psi \varphi=\varphi \cup \psi$.

Proof. When φ and ψ are quasi-congruences on $A, a \varphi b$ implies $a \varphi b \psi b$; hence we have $\varphi \leqq \varphi \psi, \psi \leqq \varphi \psi$ and $\varphi \cup \psi \leqq \varphi \psi$. So we can deduce from $(\varphi \cup \psi)^{2}$ $\leqq \varphi \cup \psi, \varphi \psi \leqq(\varphi \cup \psi)^{2} \leqq \varphi \cup \psi \leqq \varphi \psi$.

Theorem 2.6. If quasi-congruences φ, ψ and $\varphi \psi$ are symmetric, then φ and ψ are permutable.

Proof. It is easily seen that $\overline{\varphi \psi}=\bar{\psi} \bar{\varphi}$. Hence the symmetricity implies $\varphi \psi$ $=\overline{\varphi \psi}=\bar{\psi} \bar{\varphi}=\psi \varphi$.

Next we deal with congruence relations regarded as quasi-congruences. Given a quasi-congruence θ, it follows from the Meromorphism Theorem mentioned in $\S 1$ that $\theta^{*}=V_{n}(\theta \bar{\theta})^{n}$ is a congruence, which is called generated by θ, and if θ is originally a congruence, $\theta^{*}=\theta$.

Theorem 2.7. A quasi-congruence is a class-meromorphism if and only if it is a congruence.

Proof. If θ is a congruence on A, then $\theta=V_{n}(\theta \bar{\theta})^{n} \geqq \theta \bar{\theta} \theta \bar{\theta} \geqq \theta \bar{\theta} \theta$, whence θ is a class-meromorphism. Conversely if $\theta \bar{\theta} \theta \leqq \theta$, then $\bar{\theta} \leqq \theta \bar{\theta} \theta \leqq \theta$ and $\theta^{2} \leqq \theta \bar{\theta} \theta \leqq \theta$; hence θ is a congruence.

The set $\Theta(A)$ of congruences on A is not always a sublattice or a subsemigroup of $Q(A)$. We shall give below some conditions for $\Theta(A)$ to be so.

The product $\varphi \psi$ of two congruences φ and ψ becomes a congruence if and only if they are permutable; hence

Theorem 2.8. Congruences on an algebra A form a subsemigroup of $Q(A)$ if and only if they are permutable.

Let φ and ψ be congruences on A and $\varphi \vee \psi$ the congruence generated by $\varphi \psi$. Then $\varphi \cup \psi \leqq \varphi \psi \leqq \varphi \vee \psi$. Hence we can infer from Theorem 2.5,

Theorem 2.9. If quasi-congruences on an algebra A are transitive, then congruences on A form a sublattice of $Q(A)$. If congruences on A form a sublattice of $Q(A)$, then they are permutable.

As shown above the transitivity or symmetricity of quasi-congruences implies the permutability of congruences. Hence if quasi-congruences are class-meromorphisms, then congruences are permutable. But the converse is not true. On the other hand Malcev [2] has proved the following theorem.

Theorem 2.10 (Malcev). If congruences on every (F, R)-algebra are permutable, then there exists a polynomial $p(x, y, z)$ such that $p(x, y, y)=x$ and $p(x, x, y)=y$.

If such a polynomial $p(x, y, z)$ exists, then $a \varphi b, a^{\prime} \varphi b$ and $a^{\prime} \varphi b^{\prime}$ imply $a=$ $p\left(a, a^{\prime}, a^{\prime}\right) \varphi p\left(b, b, b^{\prime}\right)=b^{\prime}$. Hence

Theorem 2.11. If congruences on every (F, R)-algebra are permutable, then meromorphisms of every (F, R)-algebra onto itself are class-meromorphisms.

3. Quasi-congruences on a semigroup

We intend to obtain the condition for a semigroup G that every quasicongruence on G be a congruence. We have succeeded to solve this problem for a commutative semigroup.

Theorem 3.1. For a commutative semigroup G the following conditions are equivalent:
(1) every quasi-congruence on G is symmetric,
(2) G is a group in which every element has a finite order.

Proof. (1) \rightarrow (2). Let a be any element of G. If we define $x \theta y$ to mean either $x=y$ or $x=y a^{n}$ with $n=1,2, \ldots$, then it is easy to see that θ is a quasi-congruence on G. Since $a^{2} \theta a$ and θ is symmetric, we get $a \theta a^{2}$ and $a=$ $a^{n+1}(n=1,2, \ldots)$. Put $e=a^{n}$. If $n=1$, then $e^{2}=a^{2}=a=e$, and if $n \geqq 2$, then $e^{2}=a^{n+1} a^{n-1}=a a^{n-1}=a^{n}=e$. Since ex θx, we have $x \theta e x$, that is either $x=e x$ or $x=e x a^{n}$, and then we can show $e x=x$ by $e^{2}=e$; namely e is an identity. Similarly, given $b \in G$, we can find $e^{\prime}=b^{m}$ such that $e^{\prime} x=x$ for all $x \in G$, and then we have $e^{\prime}=e e^{\prime}=e^{\prime} e=e$ and either $b=e$ or $b^{m-1} b=e$; so b has an inverse and a finite order.

Now the implication (2) \rightarrow (1) can be shown without the commutativity of G. Namely

Theorem 3.2. If G is a group in which every element has a finite order, then every quasi-congruence θ on G, regarded as a semigroup, is a congruence.

Proof. $a \theta b$ and $b \theta c$ imply $a b^{-1} b \theta b b^{-1} c$, that is $a \theta c$. Hence every quasicongruence on a group is transitive. Suppose that $a \theta b$ and the order of $c=a b^{-1}$ is n. If $n=1$, then $a=b$ and $b \theta a$. If $n \geqq 2$, then $c=a b^{-1} \theta 1$ implies $c^{-1}=$ $c^{n-1} \theta 1$ and $b a^{-1} \theta 1$; whence we get $b \theta a$. Thus θ is a congruence.

As is already known, a congruence θ on a group G regarded as a semigroup becomes that on G regarded as a group; namely preserves the operation $f(x)$ $=x^{-1}$. On the other hand every meromorphism between groups, preserving
$f(x)=x^{-1}$, is a class-meromorphism. Hence Theorem 3.1. shows that a quasicongruence on a group G regarded as a semigroup is not necessarily that on G regarded as a group and further the permutability of quasi-congruences on a semigroup does not imply the symmetricity of those.

4. Quasi-congruences on a lattice

In the present section we intend to discuss the properties of quasi-congruences on a lattice with the operations U and \cap. A semilattice on which quasi-congruences are symmetric is trivial. For every element of a semilattice L, regarded as a commutative semigroup under the multiplication U, is idempotent, and so L can contain no element other than one element 1 if it forms a group. This follows also from the fact that the relation \leqq becomes a quasicongruence in a semilattice or a lattice; hence

Theorem 4.1. Some quasi-congruence on a lattice (semilattice) L is not symmetric, provided L contains two or more elements.

Then we consider the transitivity of quasi-congruences on a lattice L.
Lemma 4.1. Let θ be a quasi-congruence on a lattice L. If the implication $a \theta b \theta c \rightarrow a \theta c$ holds for the cases $a \leqq b \leqq c$ and $a \geqq b \geqq c$, then $\theta^{2}=\theta$.

Proof. $a \theta b \theta c$ implies $a \cup a \theta a \cup b, a \cup b \cup b \theta a \cup b \cup c$ and $a \theta a \cup b \cup c$, since $a \leqq$ $a \cup b \leqq a \cup b \cup c$. Similarly $a \cup b \cup c \theta b \cup c \theta c$ implies $a \cup b \cup c \theta c$. Then we have $a \cap(a \cup b \cup c) \theta(a \cup b \cup c) \cap c$, that is $a \theta c$.

Now we call an element m of a lattice modular if $x \leqq y$ implies $x \cup(m \cap y)$ $=(x \cup m) \cap y$.

Theorem 4.2. Let m be a modular element in a lattice L. If all intervals containing m are complemented, then quasi-congruences on L are transitive.

Proof. We shall show for $a \leqq b \leqq c$ that $a \theta b \theta c$ implies $a \theta c$. Let x be a relative complement of $b \cup m$ in the interval $[a \cap m, c \cup m$] and y that of $(b \cup x) \cap m$ in $[a \cap m, m]$. Then we get

$$
\begin{aligned}
& a=a \cup(a \cap m)=a \cup(x \cap(b \cup m)) \theta b \cup(x \cap(c \cup m))=b \cup x, \\
& y=(a \cap m) \cup y \theta((b \cup x) \cap m) \cup y=m
\end{aligned}
$$

and

$$
\begin{aligned}
& a=a \cup(a \cap m)=a \cup(y \cap((b \cup x) \cap m))=a \cup(y \cap(b \cup x)) \theta \\
& (b \cup x) \cup(m \cap(c \cup x))=(b \cup x \cup m) \cap(c \cup x)=(c \cup m) \cap(c \cup x) ;
\end{aligned}
$$

accordingly $c \cap a \theta c \cap(c \cup m) \cap(c \cup x)$, that is $a \theta c$.
Dually we can show that $a \geqq b \geqq c$ and $a \theta b \theta c$ imply $a \theta c$. Hence it follows from Lemma 4.1 that θ is transitive.

A lattice with 0 in which all intervals $[0, x]$ are complemented is called section-complemented. For a lattice L without 0 we shall define L to be sectioncomplemented when every element of L is contained in a section-complemented principal dual ideal. If a lattice L is section-complemented, then any triple $\{x, y, z\}$ is contained in a section-complemented dual ideal $S=[a)$, in which the condition in Theorem 4.2 holds; hence by Theorem 2.3 we infer

Corollary 1. In a section-complemented lattice every quasi-congruence is transitive.

Further, by Theorem 2.5 we can assert the following propositions in our previous paper [1].

Corollary 2. If all intervals of a lattice L containing a modular element m are complemented, then congruence relations on L are permutable.

Corollary 3. On a section-complemented lattice congruence relations are permutable.

Next we shall inquire into the structure of the lattice $Q(L)$ of quasicongruences on a lattice L. It is well-known that congruence relations on a

FIg. 1
lattice form a distributive lattice. However the lattice $\left.Q^{(} L\right)$ is not necessarily modular. Indeed if we set in the lattice of Fig. 1

$$
\theta=\theta(0, b), \varphi=\theta(b, c) \text { and } \psi=\theta(a, c),
$$

then $\varphi \leqq \psi$ and $a \rightarrow c((\varphi \cup \theta) \cap \psi)$ holds nevertheless $a \rightarrow c(\varphi \cup(\theta \cap \psi))$ does not hold.

Lemma 4.2. If we define in a lattice L a ω b to mean $a \leqq b$, then ω is a quasicongruence on L and a lower distributive element in $Q(L): \omega \cap(\varphi \cup \psi)=(\omega \cap \varphi)$ $\cup(\omega \cap \psi)$ for all $\varphi, \psi \in Q(L)$.

Proof. Put $\rho=\omega \cap(\varphi \cup \psi), \varphi_{0}=\omega \cap \varphi, \psi_{0}=\omega \cap \psi$ and $\sigma=\varphi_{0} \cup \psi_{0}$. It suffices to show $\rho \leqq \sigma$. As is mentioned in $\S 1$, $x \rho y$ implies that a lattice polynomial p exists such that

$$
\begin{aligned}
& x=p\left(a_{1}, \ldots, a_{l}, s_{1}, \ldots, s_{m}, u_{1}, \ldots, u_{n}\right), \\
& y=p\left(a_{1}, \ldots, a_{l}, t_{1}, \ldots, t_{m}, v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

and $x \leqq y, s_{i} \varphi t_{i}, u_{j} \psi v_{j}$. Then since $s_{i} \varphi_{s_{i}} \cup t_{i}$ and $u_{j} \psi u_{j} \cup v_{j}$, we get $s_{i} \varphi_{s^{\prime}} \cup t_{i}$ and $u_{j} \psi_{0} u_{j} \cup v_{j}$. Hence if we put

$$
z=p\left(a_{1}, \ldots, a_{l}, s_{1} \cup t_{1}, \ldots, s_{m} \cup t_{m}, u_{1} \cup v_{1}, \ldots, u_{n} \cup v_{n}\right),
$$

then we get $x \leqq y \leqq z, x \sigma z$ and $x=x \cap y_{\sigma} z \cap y=y$, proving $\rho \leqq \sigma$.
Dually we define $a \omega^{\prime} b$ to mean $a \geqq b$. Then we can show
Lemma 4.3. If $\theta \cap(\varphi \cap \psi)=(\theta \cap \varphi) \cup(\theta \cap \psi)$ holds for the cases $\theta, \varphi, \psi \leqq \omega$ and $\theta, \varphi, \psi \leqq \omega^{\prime}$ in $Q(L)$, then $Q(L)$ is distributive.

Proof. Let θ, φ and ψ be any quasi-congruences on L and put $\rho=\theta \cap(\varphi$ $\cup \psi), \sigma=(\theta \cap \varphi) \cup(\theta \cap \psi)$. Then by Lemma 4.2 we get $\omega \cap \rho=(\omega \cap \theta) \cap((\omega \cap$ $\varphi) \cup(\omega \cap \psi))$, and by the assumption $\omega \cap \rho=(\omega \cap \theta \cap \varphi) \cup(\omega \cap \theta \cap \psi) \leqq \sigma$. Hence xoy implies $x \cap y \rho y, x \cap y(\omega \cap \rho) y$ and $x \cap y_{\sigma} y$. Dually we can show that $x \rho y$ implies $x_{\sigma} x \cap y$. Then we have $(x \cap y) \cup x_{\sigma} y \cup(x \cap y)$, $x \sigma y$ and thus $\rho \leqq \sigma$.

Theorem 4.3. If all quasi-congruences on a lattice are transitive, then they form a distributive lattice.

Proof. By Lemma 4.3, it is sufficient to prove $\theta \cap(\varphi \cup \psi)=(\theta \cap \varphi) \cup(\theta \cap \psi)$ for $\theta, \varphi, \psi \leqq \omega$. Put $\rho=\theta \cap(\varphi \cup \psi)$ and $\sigma=(\theta \cap \varphi) \cup(\theta \cap \psi)$. Since σ is transitive, we can write $\sigma=(\theta \cap \varphi)(\theta \cap \psi)$ by Theorem 2.5. If $x \rho y$, then we have

$$
x=p\left(a_{1}, \ldots, a_{l}, s_{1}, \ldots, s_{m}, u_{1}, \ldots, u_{n}\right)
$$

$$
y=p\left(a_{1}, \ldots, a_{l}, t_{1}, \ldots, t_{m}, v_{1}, \ldots, v_{n}\right)
$$

with $s_{i} \varphi t_{i}, u_{j} \psi v_{j}$. If we put

$$
z=p\left(a_{1}, \ldots, a_{l}, t_{1}, \ldots, t_{m}, u_{1}, \ldots, u_{n}\right),
$$

then $x \varphi z, z \psi y$ and $x \leqq z \leqq y$, since $\varphi, \psi \leqq \omega$. Since $x \theta y, x=x \cap z \theta y \cap z=z$ and $z=$ $x \cup z A y \cup z=y$. Hence we have $x(\theta \cap \varphi) z, z(\theta \cap \psi) y$ and $x(\theta \cap \varphi)(\theta \cap \psi) y$; namely xoy. Thus $\theta \cap(\varphi \cup \psi)=(\theta \cap \varphi) \cup(\theta \cap \psi)$.

Corollary. The lattice of quasi-congruences on a section-complemented lattice is distributive.

Theorem 4.4. The lattice of quasi-congruences on a distributive lattice is distributive.

Proof. Put $\rho=\theta \cap(\varphi \cup \psi)$ and $\sigma=(\theta \cap \varphi) \cup(\theta \cap \psi)$ for quasi-congruences θ, $\varphi, \psi \leqq \omega$, and assume that $x \rho y$. Then we can write

$$
\begin{aligned}
& x=p(a, s, u)=p\left(a_{1}, \ldots, a_{l}, s_{1}, \ldots, s_{m}, u_{1}, \ldots, u_{n}\right), \\
& y=p(a, t, v)=p\left(a_{1}, \ldots, a_{l}, t_{1}, \ldots, t_{m}, v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

with $s_{i} \varphi t_{i}, u_{j} \psi v_{j}$. We define two weights $w_{1}(p)$ and $w_{2}(p)$ of the polynomial p by $w_{1}(p)=m+n$ and $w_{2}(p)=l+m+n$. We shall prove $x \sigma y$ by induction on $w_{1}(p)$ and $w_{2}(p)$. If $w_{1}(p) \geqq 2$, we can write either $p=p_{1} \cap p_{2}$ or $p=p_{1} \cup p_{2}$ with $w_{1}(p)=w_{1}\left(p_{1}\right)+w_{1}\left(p_{2}\right), w_{2}(p)=w_{2}\left(p_{1}\right)+w_{2}\left(p_{2}\right), w_{1}\left(p_{i}\right) \geqq 0$ and $w_{2}\left(p_{i}\right) \geqq 1$. We may deal only with the case $p=p_{1} \cap p_{2}$.

Case 1. $w_{1}\left(p_{1}\right)<w_{1}(p), w_{1}\left(p_{2}\right)<w_{1}(p)$. Since $x \rho y$ and

$$
x \leqq y \cap p_{1}(a, s, u) \leqq y \cap p_{1}(a, t, v)=y
$$

we get $y \cap p_{1}(a, s, u)_{\rho y} \cap p_{1}(a, t, v)$. Since $w_{1}\left(y \cap p_{1}\right)=w_{1}\left(p_{1}\right)<w(p)$, we get $y \cap p_{1}(a, s, u)_{\sigma y} \cap p_{1}(a, t, v)=y$, by the hypothesis of induction, and similarely $y \cap p_{2}(a, s, u)_{\sigma y}$. Then

$$
x=\left(y \cap p_{1}(a, s, u)\right) \cap\left(y \cap p_{2}(a, s, u)\right)_{\sigma y} .
$$

Case 2. $w_{1}\left(p_{1}\right)=w_{1}(p), w_{1}\left(p_{2}\right)=0$. If we put $b=p_{2}(a)$, then $x=p_{1}(a, s$, $u) \cap b, y=p_{1}(a, t, v) \cap b$ and hence $x=p_{1}(a, s, u) \cap y, y=p_{1}(a, t, v) \cap y$. We can write either $p_{1}=p_{3} \cap p_{4}$ or $p_{1}=p_{3} \cup p_{4}$ in the same manner as above. If $p_{1}=p_{3} \cap p_{4}$, then by regarding p_{3} and $p_{4} \cap b$ as p_{1} and p_{2} we can reduce to either Case 1 or the case $p_{1}=p_{3} \cup p_{4}$. Hence we may assume that $p_{1}=p_{3} \cup p_{4}$.

Case 2.1. $w_{1}\left(p_{3}\right)<w_{1}\left(p_{1}\right), w_{1}\left(p_{4}\right)<w_{1}\left(p_{1}\right)$. Since $x \rho y$ and

$$
x=\left(p_{3}(a, s, u) \cap y\right) \cup x \leqq\left(p_{3}(a, t, v) \cap y\right) \cup x \leqq y
$$

we get $\left(p_{3}(a, s, u) \cap y\right) \cup x \rho\left(p_{3}(a, t, v) \cap y\right) \cup x$ and $\left.w_{1}{ }^{\prime}\left(p_{3} \cap y \cup \cup x\right)=w_{1}^{\prime} p_{3}\right)<$ $w_{1}(p)$. Hence we have $x_{\sigma}\left(p_{3}(a, t, v) \cap y\right) \cup x, x_{\sigma}\left(p_{4}(a, t, v) \cap y\right) \cup x$ and $x_{\sigma}\left(p_{3}(a\right.$, $t, v) \cap y) \cup x \cup\left(p_{4}(a, t, v) \cap y\right) \cup x=\left(p_{1}(a, t, v) \cap y\right) \cup x=y$ by the distributivity.

Case 2.2. $\quad w_{1}\left(p_{3}\right)=w_{1}\left(p_{1}\right), w_{1}\left(p_{4}\right)=0$. Then we can write, putting $p_{4}(a)=c$,

$$
\begin{aligned}
& x=\left(p_{3}(a, s, u) \cup c\right) \cap y=\left(p_{3}(a, s, u) \cap y\right) \cup(c \cap y) \\
& y=\left(p_{3}(a, t, v) \cup c\right) \cap y=\left(p_{3}(a, t, v) \cap y\right) \cup(c \cap y)
\end{aligned}
$$

and $x=\left(p_{3}(a, s, u) \cap y\right) \cup x, y=\left(p_{3}(a, t, v) \cap y\right) \cup x$, since $c \cap y \leqq x$. We may assume $p_{3}=p_{5} \cap p_{6}$ without loss of generality. Then since $x \rho y$ and

$$
x \leqq\left(p_{j}(a, s, u) \cap y\right) \cup x \leqq\left(p_{5}(a, t, v) \cap y\right) \cup x=y
$$

we have $\left(p_{5}(a, s, u) \cap y\right) \cup x_{\rho}\left(p_{5}(a, t, v) \cap y\right) \cup x$. Since $w_{2}\left(\left(p_{5} \cap y\right) \cup x\right)=$ $w_{2}\left(p_{\overline{5}}\right)+2$ and $w_{2}\left(p_{\overline{5}}\right)<w_{2}\left(p_{3}\right)<w_{2}\left(p_{1}\right)<w_{2}\left(p^{\prime}, w_{2}\left(\left(p_{5} \cap y\right) \cup x\right)<w_{2}(p)\right.$. Hence we can infer $\left(p_{\overline{5}}(a, s, u) \cap y\right) \cup x \sigma\left(p_{\overline{5}}(a, t, v) \cap y\right) \cup x=y$, by the hypothesis of induction, and $\left(p_{\dot{6}}(a, s, u) \cap y\right) \cup x \sigma y$. Then

$$
\begin{aligned}
x & =\left(p_{\mathbf{5}}(a, s, u) \cap p_{6}(a, s, u) \cap y\right) \cup x \\
& =\left(\left(p_{\overline{5}}(a, s, u) \cap y\right) \cup x\right) \cap\left(\left(p_{\dot{j}}(a, s, u) \cap y\right) \cup x\right)_{\sigma} y
\end{aligned}
$$

completing the proof.
It seems the distributivity of $Q(L)$ may be deduced from more weaker conditions on L. For instance we guess that $Q(L)$ may be distributive for a modular lattice L. Further we intend to inquire into the structure of a lattice L by the investigation of $Q(L)$ but we have obtained no useful result on it.

References

[1] J. Hashimoto: Congruence relations and congruence classes in lattices, Osaka Math. J. 15 (1963).
[2] A. I. Malcev: On the general theory of algebraic systems, Mat. Sb. N. S. 35 (77) (1954), Amer. Math. Soc. Transl. (2) 27 (1963).
[3] T. Nakayama: Sets, topologies and algebraic systems (Shugo, Iso, Daisukei in Japanese), Tokyo, 1949.
[4] K. Shoda: Universal theory for algebra (Daisugaku Tsuron in Japanese), Tokyo, 1947.
[5] K. Shoda: Uber die allgemeinen algebraischen Systeme I-VII, Proc. Imp. Acad. Tokyo 1720 (1941-4).

Department of Mathematics
Kobe University

