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ON A CLASS OF NUMBERS GENERATED

BY DIFFERENCIAL EQUATIONS RELATED

WITH ALGEBRAIC GROUPS
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Introduction

In this paper we propose a new category Q° of complex numbers which con-

tains π, e and the set of algebraic numbers. In fact this category contains most of

the numbers studied so far in number theory. An element of the category is here

called a classical number. The category of the classical numbers forms an algeb-

raically closed field and consists of countably many numbers. The definition de-

pends on algebraic differential equations related with algebraic groups. Through-

out the paper unless otherwise stated, we deal with functions of one variable and

a differential equation is an ordinary differential equation. We are inspired of the

Leςons de Stockholm of Painleve [P]. His objective was to discover new transcen-

dental functions defined by algebraic differential equations generalizing the Weier-

strass P -function. To this end there are two major tasks to be done. The first is

to find candidates of algebraic differential equations which may define new func-

tions. We are concerned with the second which is to check whether the candidates

really define new functions. So he introduced a class of functions inductively de-

fined from the field CCr) of the rational functions by admissible operations. In

[U4], [U6] we analyzed his operations and introduced the permissible operations

(0), (PI), ( P 2 ) , . . . ,(P5) (cf. §1). We proved that allowing the permissible opera-

tions is equivalent to admitting G-primitive extensions of differential fields in the

language of Kolchin. We defined the field of the classical functions as a field of the

meromorphic functions obtained from the field CCr) of the rational functions by a

finite iteration of permissible operations (cf. [U4]). All the functions related with

differential equations in [WW] are classical in this sense, for example e x p x ,

logx, the hypergeometric functions, the elliptic functions and so on. The irreduci-

bility theorem says that we can not solve the first differential equation of Painleve

starting from the field CCX) of the rational functions by any finite iteration of the
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permissible operations or equivalently no classical function is a solution of the

first differential equation of Painleve ([U2]).

It is more natural however to start from QCr) rather than from CCr) and

allow in each step of the inductive construction, the classical functions dependent

on an algebraic group over a field of so far known numbers ( = inductively so far

introduced constant functions) whose Laurent coefficients with respect to x — a

are known numbers. Here the number a is a suitable so far known number

(Definition (2.4)). For example, at the first step of construction, we allow intuitive-

ly an extension field QCr, v)/Q(x) of functions satisfying the following condi-

tions: (i) There exists an algebraic group G defined over Q such that v is

G-primitive over QCr); (ii) There exists a rational number a such that every func-

tion in QCr, υ) has a rational Laurent coefficients with respect to a local para-

meter x — a. In particular if we take the multiplicative group G W Q as the algeb-

raic group G, it yields a quite concrete example which illustrates our defininion.

In this case the following extension field QCr, v)/Qix) of functions is allowed as

a first step: (i) The function v = υ(x) satisfies a differential equation v'(x) —

aix)υix) for a suitable rational function a(x) ^ QCr) (ii) There exists a rational

number a such that the rational function a(x) is regular at the point x— a and

such that the value via) of the function v(x) at a is rational. Among the

Q-classical functions, those which are constant seem to be important and are cal-

led classical numbers. The algebraic numbers are classical (Theorem (3.1)). π and

e are classical (Examples (2.12) and (2.14)). More generally for any rational num-

ber r, exp r and log r (r Φ 0) are classical (Examples (2.12) and (2.14)). Another

interesting example is given by an elliptic curve E defined over Q. Let ty(x) be

the Weierstrass t? -function giving E. Then P (r) is a classical number for any

r ^ Q if r is not a pole of $Cr) (Example (2.15)). Similarly we can construct clas-

sical numbers using the hypergeometric functions. The most general assertion is

that the composite of two Q-classical functions is Q-classical and hence in par-

ticular for a Q-classical function / and Λ classical number a, the value fid) is a

classical number if the function / is regular at a (Theorem (3.7) and Theorem

(3.15)).

Γb

We show that if a, b are classical numbers, the definite integral I f(x)dx of

a Q-classical function fix) is a classical number (Theorem (3.8)). As a corollary

of this we show in §5 that a period / a) is classical for a 1-form co on
Jγ

an algebraic variety V defined over a field K of classical numbers and for r ^

, Z).
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It is J. Liouville (1844) who first recognized transcendental numbers. He was

interested also in the generation of functions or the construction of functions from

the known functions by admissible operations from the field C(x) of rational func-

tions. He considered generating functions as an analogue of the resolution of algeb-

raic equations by radicals. Thus he introduced the rigorous defininion of

elementary functions and proved among other things that the elliptic integral is

not elementary ([L] and [R2]). In this definition too it is more natural to start from

QCr) than from CCr). Thus we arrive at the notion of Q-elementary functions. A

constant Q-elementary function is called an elementary number. The field of

elementary numbers is denoted by Q e . We prove that a Q-elementary function is

Q-classical (Theorem (4.10)) and hence in particular Q e c Q . Every algebraic

number, π and e are elementary. We have no example of a classical number which

is not elementary (Problem (4.5)).

Extensive examples of Q-classical functions are given in §6. Namely the

hypergeometric functions, the Bessel functions, the Legendre functions, the Weier-

strass functions and the Jacobian theta functions of 2 division points are

Q-classical under certain conditions. The most interesting example is the gamma

function Γ(x) (Example (6.13)). Because as is well known, the gamma function

does not satisfy any algebraic differential equation over C(x) and hence is not

classical. But following an idea of Gauss [G], we show that the values Γ(r) is clas-

sical for r ^ Q if r Φ 0, — 1, — 2, Those examples illustrate our idea but

they are not thoroughly analyzed and many natural questions arise from them

such as whether the value Γ(u) is classical for every classical number u if u Φ 0,

- 1, - 2 , . . . (Problem (6.14)).

The most important problem is a construction of non-classical numbers,

which seems difficult. If the field Q does not contain all the interesting numbers,

it is because the algebraic differential equation is not the unique way of defining

functions. The other possible definitions are for example, transcendental differen-

tial equations (une etude generate de telle equation serait prematuree, Leςons de

Stockholm, 1985, Painleve), difference equations, more generally functional equa-

tions and Taylor expansions or definition by series.

We would like to say a word about the relations of this paper with the works

of precedent authors. We heard that once Mikio Sato had an idea of generating

numbers by successive substitutions of known numbers in good functions. Noriko

Hirata kindly indicated us the work of Mordukhai-Boltovski: Hypertranscendental

functions and hypertranscendental numbers, Dokl. Akad. Nauk SSSR, 64 (1949),

21-24. In this article he introduced a notion of hypertranscendental numbers in

order to classify transcendental numbers. A complex number is said to be hyper-
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transcendental if it can not be a value at an algebraic point of a function which is

a solution of algebraic differential equation with coefficients in Z[x] and with

algebraic initial conditions.

Our frame work is more natural and a systematic study is done. We restrict

ourselves to algebraic differential equations related with algebraic groups. We

generate functions and get as a natural object, the set of constant Q-classical

functions or the classical numbers rather than the values of thus obtained func-

tions (Definition (2.10)). And later we study values of functions (Theorem (3.7)).

Our theory is developed in the frame work of algebraic geometry. It requires

only basic knowledge of algebraic geometry which is found in [S] or [H]. We hope

however that our paper will interest number theorists and consider that there may

be readers who are not familiar with algebraic geometry. So we added an Appen-

dix in which we explained for non-specialists terminologies of algebraic geometry.

§1. Primitive extensions

We work in a differential field of the meromorphic functions over a domain D

of C. Let x be a coordinate system on C fixed once for all. In our papers [U2] and

[U4], we introduced the permissible operations (0) , (PI) , (P2), . . .,(5). They are

the operations allowed to use when we introduce a new meromorphic function on

D from a set of given meromorphic functions on D. Let us recall their definition.

(0) Differentiation d/dx. Given a meromorphic function on D, we can diffe-

rentiate it.

(PI) Four rules of arithmetic; addition, subtraction, multiplication and divi-

sion. Given two meromorphic functions /, g on D, we can form f + g, f ~ g, fg

and f/g if g Φ 0.

(P2) Solution of an algebraic equation. If n meromorphic functions alf

a2,.. .,an on D are given, we can introduce every solution /of an algebraic equa-

tion

+ aj + a2f + + an = 0.

(P3) Quadrature. Given a meromorphic function / on D, we can find every

indefinite integral / fdx or we can solve a differential equation y' = fix).
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(P4) Solution of a linear ordinary differential equation. Given n meromorphic

functions alf a2, . . . ,an on D, we can introduce every solution / of a linear dif-

ferential equation

{{d/dx)n + aM/dxT'1 + + an)f= 0.

(P5) Substitution in abelian function. Let Γ c C ^ b e a lattice such that Cn/Γ

is an abelian variety. We denote the projection Cn —> Cn /Γby p. Let φ be a mero-

morphic function on C /Γ so that φ°p : C •—» C is an abelian function by de-

finition. (We use a dotted arrow for a meromorphic map.) Suppose now that n

meromorphic functions fv f2,. . . ,fn on D are given. So we get a meromorphic map

F : D - '—+Cn sending x to (f1(x)t f2(x),... ,fn(x)). We are allowed to introduce

a composite function D * •—» C —* C / F # * •—» C which is a meromorphic func-

tion on D. Namely we may substitute the given functions flf f 2 , . . .,fn in the abelian

function φ°p to introduce the new meromorphic function φ°p°F on D. Here we

must assume that the image of p ° F is not contained in the polar divisor of the

meromorphic function φ so that the composite function φ°p°F is defined.

Strictly speaking in the permissible operation (P2), we assume that the solu-

tion / is meromorphic on D. Since we are interested in the field extension, we may

replace D by a smaller domain U if necessary, so that all the solution of the

algebraic equation are meromorphic on Df. For this reason we need not be too

nervous of the domain D. The same remark should be done for the operations (P3)

and (P4).

We introduced a group theoretic operation (Q) in [Ul]. Let us recall the de-

finition of the operation (Q). For our purpose, we had better review the definition

of G-primitive extension whose particular case is the operation (Q).

A differential field is a field L together with derivation 5 : L~+ L. So we have

δ(a + b) = δ(a) + <5(δ), δ(ab) = δ(a)b + aδ{b) for a, b e L We assume that

the field L is of characteristic 0. We assume that the field L is of characteristic 0.

We sometimes denote δa and δδa — δ2a by ar and a" respectively. More generally

δna will be denoted by a n for n G N. We say that an element c of L is constant

if δa — 0. The field of the constants of L is denoted by CL.

Let (L, δ) be a differential field and C a subfield consisting of constants of

L Let G be an algebraic group defined over C and Spec L~~> GL= G ®CL be an

L-rational point. (We refer the reader to (A3), (A4) in Appendix if he is not famil-

iar with algebraic geometry). We often confuse υ with its image. Let U be an affine

neighbourhood of the image point SpecL—• GL~* G on G. Then U®CL c G®CL
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is an affine neighbourhood of the L-rational point υ.

Let f :GL-^ G be the morphism of field extension (cf. (A3)). The image / h is

an element of Γ(UL, Θv) for h <E Γ(U, ΰυ) and hence the value (f*h)(υ) of the

function at v is in L. (Here Θ denotes the structure sheaf of G and Γ(U, Θv) is a

group of the sections of ϋυ over U (cf. (Al) and (A2)). Hence we can apply δ on

(/ h)(v) ^ L. Considering the sequence of mappings Γ(U, uv) —• Γ(UL, 6υ^) —*

eυ/mv = Uυ) - L-t+L, let us put δ(v)(f) = δ((/**)(t/)) (cf. (A2) and (A4)). Then

the mapping Γ(U, 6V) ~*L sending/ to δ(v)(f) is a C-derivation. This can be ex-

tended to a unique L-derivation Γ(U, Θ^ ®CL = Γ(UU ΘUL) —>L at the point υ

which we denote also be δ(v) : The map 5(f) is L-linear and δ(v)(fg) =

δ(v)(f)g(v) +f(v)δ(v)(g) for f,g& Γ(UL, OΌ). T h u s δ(v) is extended to a uni-

que element of DerL(ΘGLV, L(v))f which is again denoted by δ(v), WGLV is the fibre of

the structure sheaf ΘG at υ (cf. (Al)). Namely the derivation δ(v) is a tangent vector

at # on GL. The above construction shows that the derivation δ(v) : Θv-+ L(v) — L

is independent of the choice of the affine open set U. There exists a unique right in-

variant derivation lδ(v) ^ Lie GL — (Lie G) ®CL on the algebraic group GL whose

value at v is δ(v) (Lie G denotes the Lie algebra of G or Lie G is the C-vector space

of the right invariant vector fields on G).

Let D c C be a complex domain, L a field of meromorphic functions on D con-

taining the field C of constant functions and V be an algebraic variety defined over

C. Let υ : Spec L~• V be an L-valued point. Let C/ = Spec C t ^ , u2,. . . ,wj be an

affine neighbourhood of #(SpecL) €= V. Then the point # is defined by a

C-morphism C t ^ , w2> >UJ ~* Liu^ a{ for 1 < i < n) of commutative algebras.

Hence it gives a meromorphic map f(v) :D • Cw, x—*• (^jCx), <22(x),.. .,<zwCr)).

(We denote a meromorphic map by a dotted arrow). The meromorphic map

f(v) factors through Um c Cw and hence we get a meromorphic map F(υ) : D •

f/an c K811. ( ί /^ denotes the analytic space associated with the algebraic variety U.

(For the definition see [S], Chap. V.) The meromorphic map F(v) is defined indepen-

dently of the choice of affine neighbourhood of the point v. Conversely we can recov-

er the point υ from the meromorphic map F{υ).

DEFINITION (1.1). We call the meromorphic map F(v) :D- • V™ the meromor-

phic map associated with the L-valued point v : SpecL—*V.

Remark (1.2). Let D be a domain of C and L a differential field of meromorphic

functions over D with derivation d/dx. Let C be a subfield of L consisting of

constants and G an (absolutely) irreducible algebraic group defined over C. Let
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v : SpecL —•* GL be an L-rational point and U an affine open neighbourhood of

the image point vr : Spec L—> GL—> G. The point vr is determined by a morphism

C[U]—*L of C-algebras. If C[[/] = C[ulf u2,...,un] and if the morphism

C[U] —* L is defined by ut—* #r ^ L (1 < z < n), f defines a meromorphic map

F(ι>) :/)*••—» ( ί / ® c C ) a n , x—* (a^Gc), fl^Gε), >#«(#)) associated with the

L-valued point f. Replacing D by an open set if necessary, we may assume that

F(v) is regular on D. Then the analytic curve F = F(v) \D—+ ( G Θ c C ) a n de-

fines a vector field XF along it:

Fiξ) / J ^ for / e

By right translation RFiξΓι, we get a map /)—*• TGc,lf ξ-+ RF(ξΓι* XFiξ) which can

be identified with lδ(υ) (cf. [U2], p. 784 and [U4J, Part II, §2). Here TGQΛ denotes

the tangent space at 1 ^ Gc.

We give some examples to illustrate the idea.

EXAMPLES (1.3). Let us take as G the additive group Ga c = Spec C[t] and

let v : SpecL—*G a L — SpecL[ί] be an L-rational point given by L[t] —*L,t—>

τ ^ L. For the definition of the additive group see (A5). Then δ(v)(t) =

δ(v*(t)) =δ(τ). Hence δ(v) = δ(τ) (d/dt)t=T and lδ{v) = δ(τ)(d/df) since

is (right) invariant.

(1.4) Let us take as G the multicative group Gm c = Spec C[t, t~ ] and let

v : S p e c L — > G m L = SpecLU, / ] be an L-rational point given by L[t, t ] —*

L,t-*τ<ΞL (cf. (A5)). Then δ(v)(t) = δ(v*(τ)) = δ(τ). Hence δ(v) = δ(τ)

(d/dt)t=τ considered as a tangent vector at r and

since t-rr is (right) invariant and hence in Lie Gm c.

(1.5) Let us take as G the general linear group GLW c = Spec C[tij9

l/det(tij)]ι^ij^n and let υ : SpecL—^GL n L = SpecL[ί / ;, l/det(/ i 7)] 1^ i- f i<w be

an L-rational point given by t^—^a^. Then δ(v) — ^4\<i,j<na\i^T' o r lδ(v) —

(a't^ia^y ^ 9ίw(L) as we have seen in [U4].
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The following definition of G-primitive extension was introduced by Kolchin.

DEFINITION (1.6). Let L be a differential field and K a differential subfield of

L. Let C be a subfield of K consisting of constants and let G be an algebraic

group defined over C. Let z; : Spec L —* GL be an L-rational point such that

lδ(v) e Lie GL = Lie G <S>C L lies in Lie Gκ = Lie G <g>c K. Let v': Spec L-> G*

be the corresponding L-valued point (vf is a composite of v : SpecL—» GL and the

canonical morphism GL—> Gκ). Then the quotient field Nof the image ΘGκV,—+L is

a differential field extension of K and is finitely generated over K as an abstract

field extension (cf. [K] and [U2]). This extension N/K is called a G-primitive ex-

tension of K.

Here are examples of G-primitive extensions. It is easy to see that the per-

missive operation (P5) is equivalent to allowing G-primitive extension such that

the algebraic group G is the abelian variety C /Γ.

EXAMPLES (1.7). (1) Let L be a differential field and K be a differential sub-

field of L. The differential field K contains the field Q of rational numbers and the

multiplicative group Gm is defined over Q. If L — K(a) and ar ^ K, then L/K is

a GΛ-primitive extension by Example (1.3).

(2) Let L be a differential field and K a differential subfield of L If L =

K(a) with ar/a ^ K, then L/K is Gw-primitive by Example (1.4).

(3) Let L be a differential field and K a differential subfield of L. If L =

K(ai)ι<ij<n w i t n det(# t ;) =£ 0 and if (<z ;) (tf̂  ) " 1 ^ glw(i0, then L / i ί is a

GLM-primitive extension by Example (1.5).

Let us introduce a group theoretic construction of new functions.

DEFINITION (1.8). Let K be a differential field of known functions (by which

we mean given functions) meromorphic over a domain D c C. We assume that the

field K contains the field C of constant functions. Let L ^> K be another differen-

tial field of meromorphic functions over D. If the extension L/K is G-primitive

for an algebraic group G defined over field C, then we say that L is a differential

field of the newly known functions (which mean newly obtained functions) by op-

eration (Q).

The following theorem is very important and has applications for the sovabil-

ity of differential equations (cf. [U2], [U3] and [U4]). In particular it contains a
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classical theorem of Poincare: an algebraic differential equation of first order, free

from movable critical points is solvable by permissible operations (0) ,

THEOREM (1.9). A finite iteration of the permissible operations (0), (PI)

( P 2 ) , . . . , (P5) is equivalent to a finite iteration of the operation (Q) (see [U4]).

The theorem shows that the permissible operations are group theoretic in na-

ture. It is natural to adopt the following definition.

DEFINITION (1.10). A meromorphic function / over a domain D c: C is clas-

sical if the function / is obtained from the field CCr) of the rational functions of

one variable by a finite iteration of permissible operations (0), (P1)(P2), . . . ,

(P5).

So far we worked over a differential field of meromorphic functions on a

domain D c: C with derivation d/dx. More generally we may replace the domain

D by a Riemann surface p : i?—• P c . We are interested in functions on a Riemann

surface over P c . Let us make the definition precise.

DEFINITION (1.11). (i) A Riemann surface is a (connected and Hausdorff) com-

plex manifold of dimension 1.

(ii) A subset U of a Riemann surface 5 is a Zariski open set if the comple-

ment U is a closed analytic subset of S.

(iii) Let p : R —* S be a morphism of Riemann surfaces. We say that p is an

almost covering morphism or R is an almost covering (without making p precise) if

there exist morphisms p{ : /?,-—• Ri+ι, 0 < i < n — 1, of Riemann surfaces such

that Pi(Rj) is a Zariski open set of Ri+1 for all 0 < i < n — 1, p = pn__γ

0' *' °pλ°

p0 and such that R = i?0 and Rn = S.

(iv) The morphism p : R—> S or Riemann surface R is called locally a cover-

ing if the image p(R) does not reduce to a point

It is known that a Riemann surface satisfies the second countability axiom (cf.

[W]).

A subset U of a Riemann surface 5 is a Zariski open set if and only if one of

the following condition is satisfied (i) U = φ, (ii) the complement F = U is local-

ly finite, namely there exists an open covering S = U ieI Vt such that V{ Π F is a

finite (or empty) set any i ^ /.
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As we proved in [U4], the permissible operations are reduced to the two op-

erations; (P4) solution of linear differential equations, (P5) substitution of known

functions into abelian functions. Since the essential singular points of a solution of

a linear differential equation with coefficients meromorphic on a domain flcC,

are included in the set of poles of the coefficients, the set of essential singular

points arising from the operation (P4) is a closed analytic subset of D. Similarly

for the substitution of known functions into abelian functions, essential singular-

ities of a newly known function by the operation (P5) form a closed analytic sub-

set. Therefore for a classical function / meromorphic on a domain D, by analytic

continuation we can find an almost covering p : /? —• P c such that / is meromor-

phic on R. This is proved by induction on the number of times using the permissi-

ble operations to obtain the function /

We consider the projective line P c as a union of Spec C[x] and the point at

infinity, which we denote by oo. We identify the analytic manifold (Spec C M )

associated with Spec C M with the complex plane C. We have a rational vector

field d/dx on the projective line regular over Spec CLr]. Therefore if we consid-

er a field of classical functions meromorphic over a domain and finitely generated

over CCr), we can find an almost covering p : i?—• P c such that the field K is a

field of meromorphic functions over R. When the number of the meromorphic

function is equal to one, this fact follows from the above assertion. The general

case is proved by the same method.

Let p : R—• P c be locally a covering morphism of Riemann surfaces. Let L be

a field of meromorphic functions on R closed under the derivation d/dx. We

assume that L ^> CCr). Then we can speak of successive G-primitive extension of

CCr) in the differential field L and we can define classical functions meromorphic

over R.

Let r : R-* P c , 5 : S—• P c and p : R—• S be locally a covering morphism of

Riemann surfaces with r=s°p and l e t / be a meromorphic function over S. Since

p* : K(S) -+ K(R) (p*g = p°g for g e K{S)) is an (injective) morphism of fields

and since the derivation d/dx is fixed, the function/ is classical if and only if p f

is classical. Here K{X) denotes the field of meromorphic functions over a Riemann

surface X.

Let U, y c C be domains and / , g classical functions meromorphic respec-

tively on U and V. Replacing U and V by subdomains, we may assume that there

exist an almost covering morphism p : R—> P c , holomorphic maps r : U—• R, s :

V—> R with p°r = lάUf p°s = ldv, meromorphic functions /, g such that f°r = f,

g°s = g. Hence we may define the sum /-\- g and the product/# using/ and g.

But the following easy example shows that these are not well-defined. Let U — V
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= C — {a ^ R\a>0} and / = g be a branch of log x with log 1 = 0. Let p : C

—• C be M-* exp u — x. Let us define sections s : [/—• C by rCr) = w and s : V

—• C by s(x) — u + 2πi If we take f = u and g = u — 2πi, then / + g = 2u —

2πi which should be 2u.

The following theorem is proved in [U3].

THEOREM (1.12). /// and g are classical functions, then the composite function

g°f is classical.

In the assertion of Theorem (1.12) the definition of the composite function

should be clarified. Let U, V^ C be domains such that the function/is regular

on U, f(U) c V and such that the function g is regular on V. Then we define g°f
f 8

as a composite U~* V-+ C.

Remark (1.13). At each step of construction of classical functions, the field of

so far defined classical functions is finitely generated over CCr). Therefore if a fi-

nite set 5 of classical functions meromorphic over locally a covering morphism are

given, we can find a differential field K which contains the set 5 and is generated

over CCr) as an abstract field.

We shall be concerned with finite sets, rings and fields of classical functions

finitely generated over a subring of CCr) meromorphic over a Riemann surface.

Therefore we may assume that there exists an almost covering p : R-* P c such

that these functions are meromorphic over R. We recall that the derivation of a

function field is always d/dx. We generalize Definition (1.1) by replacing the do-

main by a Riemann surface.

§2. Q-classical functions

Our idea of defining Q-classical function is to start from QOr) and at each

step of the application of the operation (Q), we assume that the algebraic group G

is defined over a small field of the known constant functions (e.g. in the first step,

over Q) and we admit as newly known functions only those satisfying the rational-

ity conditions (or those whose initial condition on Gc at a rational point of a

Riemann surface is rational). To this end we have to introduce the notion of

rational points of a Riemann surface.
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DEFINITION (2.1). Let p : R—> Pl

c be locally a covering morphism of Riemann

surfaces and K a field of meromorphic functions over R which contains QCr).

Namely we have f°p^K for any rational function / G QCr) on P c with coeffi-

cients in Q. The pair (p : R-* P c , K) will be denoted simply by (R, K). For a

point P of i?t we denote by <9P(iQ a local ring {/^ if I/is regular at P) and by

mP(K) the maximal ideal {/e 6P(K) \f(P) = 0} of the local ring. The residue

field is naturally regarded as a subfield of C by taking the values of functions at

P. Let F be a subfield of C. We say that a point P of R is F-valued point of

(i?, if) if/(P) e Ffor every / e 0,(A).

The notion of F-valued point is a natural generalization of the similar defini-

tion in algebraic geometry.

EXAMPLE (2.2). A point Cr0, j^) of (P 1, QCr)) is Q-valued if and only if

x0 = 0 or Xj_ /x0 lies in Q.

The following Lemma is useful in the sequel.

LEMMA (2.3). Let p : i?~~* P c be locally a covering morphism. Let K Ξ> Q(x) be

a field of meromorphic functions on R. Let P be a point of R such that the morphism p

is not ramified at P. Let C be a subfield of K consisting of the constants. Then the fol-

lowing conditions are equivalent.

(i) The point P is a C-valued point of(R,K).

(ii) Every Laurent coefficient of any function in K at the point P with respect to a

local parameter p (x — a) is in C (If a is the point at infinity, we understand x — a

to mean 1 /x).

Proof. As the case where a is the point at infinity can be treated similarly,

we may assume a €= C. Since the question is local, we may further assume that R

is a domain of C and p is the inclusion R c C. The condition (ii) implies the con-

dition (i) since in the condition (ί) only the Laurent (Taylor) coefficients of con-

stant terms of regular functions at P are involved.

Conversely let us assume that the condition (i) is satisfied. If an element / of K

has a Laurent expansion

/ = Σ an(x — a)n with am Φ 0.
n=m

We show an e C for n > m by induction. Since x ^ UP(K), the value a of the
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function x at a is in C and hence in K. Therefore x — a ^ K and hence fix)

ix — a)~m = am + am+1ix — a) + ^ K.It follows from condition (i) that am

e C. Assume now that ai e C for m < / < k — 1. Then Σ ^ I ^ <2wCr — <z)w is in

K. Hence {/— Σ ^ ^ tf;Cr — a)3} /ix —a) = ak + #Λ + 1Cr — #) + ••• is in K

and hence αft ^ C by condition (i).

We adopt the following inductive definition. The definition will be illustrated

by Examples (2.12), (2.13), (2.14) and (2.15).

DEFINITION (2.4). The field of Q-classical functions are generated inductively

by the following rules.

(1) Let p : R—> P c , q : S—> R be locally covering morphisms of Riemann sur-

faces and let / be a meromorphic function on R. Then / is Q-classical if and only

if f°q is Q-classical.

(2) We start from the field Qix) of meromorphic functions over P c . Namely

any rational function with coefficients in Q over P c (or any element of QCr)) is

Q-classical.

(3) At each induction step, the inductively enlarged set K of Q-classical func-

tions is a field of classical functions finitely generated over Q(r) and closed

under the derivation d/dx. Hence there exists an almost covering^) : R—> P such

that K is a field of meromorphic functions on R as we observed at the end of §1

(notice that the field of constants of K is also finitely generate over Q by [K] Chap.

II, 11, Corollary 1.)

(4) Let K be the differential field of so far defined Q-classical functions. It

follows from (3) that there exists locally a covering morphism p \R—»Pc such

that the field K is a field of meromorphic functions on R. Let $( be a differential

subfield of K containing QCr), and G an algebraic group defined over the field

C — 0% of constants of $ί. We allow a G-primitive extension of K rational with

respect to # in the following sense. Let q : S—> R be locally a covering morphism

of Riemann surfaces. Let L be a differential field of meromorphic functions over S

with derivation d/dx such that the field K is identified with a differential sub-

j L be an L-rational point of GLfield of L by q . Let υ : SpecL—* GL be an L-rational point of GL satisfying the

following conditions (A) and (B).

(A) There exists a Riemann surface Sr and a point P of S' such that

(1) S is an open subsurface of S',

(2) p°q : S-^ R-^Pς is extended over S': r : S ' - ^ P ^ ,

(3) the extended morphism r is not ramified at the point P,

(4) any element of # is meromorphic over S\
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(5) the point P is a C-rational point of (S', $0,

(6) the meromorphic map F{υ) : S' * —• G c associated with the L-valued

point υ is regular at P (cf. Definition (1.1)),

and such that

(7) the point F(P) ^ Gc comes from a C-rational point of G.

(B) lδ(v) which is an element of Lie G <£> Z, lies in Lie G <E)C:#.

Then M=K({f*F(v) \f^K(Gκ)}) =K({f°F(v) | / e C(G)}) which is a

differential subfield of L is a newly defined Q-classical functions meromorphic

over S.

Remarks (2.5). The necessity of condition (A.3) will be discussed in §7.

In (4) of Definition (2.4), at each step of the inductive construction, the field

K oί so far defined Q-classical functions is finitely generated over QCr) as an ab-

stract field. Hence the subfield # is finitely generated over QCr) too.

It follows from the definition that the set of Q-classical functions is a sub-

field of the field classical functions. Let S be a finite set of Q-classical functions.

Then there exists a differential field of Q-classical functions which contains the

set S and is finitely generated over Q.

The logarithmic derivative lδ(υ) e L i e G Θ c L lies in Lie G<8> c 6P(tf) by

conditions (A.5) and (B) of Definition (2.4). In fact the L-rational point v : Spec

L—>GL arises from an 0P(L)-valued point ϋ: Spec ΰP(L) —* GL by condition

(A.5). The point ϋ defines the 0P(L) -valued point v : Spec 0P(L) —• G0p(L). Since

ΰP(L) is closed under d/dx, we get a tangent vector δv on G0p(L) at ϋ by the

argument of the definition of lδ(v). Therefore we can find a right invariant vector

field Iδϋ ^ Lie G ®c 0P(L). Since the construction is functorial, lδ(v) coincides

with lδ(υ) in Lie G (£>c L Namely lδ(v) e Lie G (g)c UP(L). We conclude lδ(υ) e

Lie G 0 C ^(ΛT) since 0P(L) C) ft = 0P(tt).

If r(P) coincides with the point at infinity of P c , we can moreover show that

lδ(v) e Lie G ® cz
20P(%), where z = x'1 (we notice z^rnP(tt)). In fact

we have — z2~ir — ~J~ and hence the image of δ(ΰ) : ̂ P (L) —»^P(L) is contained

in 2 0P(U. Let D^ Z) 2,.. .,Z)rf be a basis of the C-vector space Lie G. Let

(2.5.1) lδ(v) = ΣUigA w i t h gt e W

and MX, u2,. . . ,ud a regular system of parameters at the point P oί G (F(P) is a

C-rational point). Thus we have det(Di(Uj))1<ij<d does not vanish at F{P).

Namely
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(2.5.2) de t (A ( ^ ) ) ° ^ ω e βP(L) is a unit in ΘP(L).

Operating (2.5.1) to w; ^ C(GC) c L(GL), we conclude

(2.5.3) ΣgAiUj) = W(t;)(«y)f

which is an equality of rational functions on Gz. Taking F(#) or considering the

values of rational functions on GL of (2.5.3) at the L-rational point υ, we get

(2.5.4) Σ gfiM!) (v) = δ(u,>F(υ)) = 4- {Uj°F{υ))
1 **•*

It follows from (2.5.2) and (2.5.4) gt e *20P(Z,) Π

LEMMA (2.6). £/sm# ί/ι<? notation in (4) of Definition (2.4) i/tί^ £M£ Jί

F(v) 1/ e X(Gχ)}) = # ( { / ° F(rf | / e C(G)}, ί/ι̂ n ί^ /winί P w α C-valued

point of (S\ M).

Proof. In fact let Dlf D2,. . . ,Dd be a basis of the C-vector space of the right

invariant derivations over Gc and D be a neighbourhood of the point P. First we

assume that r(P) €= C, r being the morphism in (A2). Since the question is local

and since the morphism r is unramified at the point P, we may identify D with a

domain of C. We may assume that there exists an affine open set U = Spec C[ulf

u2,.. ,,un] of G such that the restriction F(v) \ D : D—> G™ of the meromorphic

map F(v) associated with υ is regular and the image of F(v)(D) is in Uc — Ό ®

c C. Let us denote the restriction F(v) \ D again by F(v) so that we have F(v) : D

—»• (C/(S)cC)a n c G^n. If we put fi — u^Fiv), then/) is a holomorphic function on

2) (1 < i < n) and the holomorphic map F(υ) :D-> ( ί / Θ c C ) a n = (SpecCt^,

M2, . . . ,wj)an c= C* is defined by χ-+ (f^x), f2(x), . . . , /„(#)) '^C*. Since

lδ(υ) e Lie G®CΘP(${) as we noticed above, we have lδ(v) — Σ<i=1giDi with

r̂. G 6P(J(). If we evaluate this equality at the point υ' : S p e c L - ^ C^ induced

from the L-valued point v : Spec L—•* G^f we get

(2.7) <5ω = ΣgΛiv).
i=l

The latter is an equality in the vector space Όeτc^(ϋGχVft L) of tangent vectors at

υf on G^. If we apply the derivations in (2.7) to ui G C[ulf U21 . . . ,MJ C ̂ G ^ ,

we get
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d

δiυ) (u}) — Σ giDjiv) (up.

Therefore

d

fi = Σ gβi (Uj) (v).
ί = l

Since Ό{ is defined over C and regular on U, there exist polynomials A{j with

coefficients in C such that D^u/) = Atj(uv u2,. . . ,wn) for 1 < ί < d, 1 < < n.

Hence

(2.8) f;=Σg,ΣA,J(f1,f2,...Jl).

This shows flip) e C for 1 < j < n since the gt's and the //s are regular at P

and since their values at P are in C. Differentiating (2.8), we get

/ / = polynomial in gv g\ (1 < i < d) and fk, f'k (1 < 1 < k < n) with coeffi-

cients in C.

Using again (2.8), we get

(2.9) / / = polynomial in gf and g[ (1 < i < d) and/Λ (1 ^ k < n).

Hence by (2.9) //(P) is in C. Repeating this procedure, we conclude that the

Taylor coefficients of the f/s at P with respect to the local parameter x — P are

all in C. Since the point P is a C-rational point of (S', $0, by Lemma (2.3) the

Laurent coefficients of any element of # at P with respect to the local parameter

x — P are in C. Since the f/s (1 < j ^ /?) generate the field *i/ over # , for any

function / ^ # every Laurent coefficient of / is in C Therefore the point P i s a

C-valued point of iS', M). If the point r(P) coincides with the point at infinity of

P c , we can argue similarly using the fact that Iδiυ) ^ Lie G ®c z ΘPW).

DEFINITION (2.10). A Q-classical function which is constant is called a clas-

sical number. The field of the classical numbers is denoted by Q c .

There are not too many Q-classical functions as the following proposition

shows.

PROPOSITION (2.11). The field of Q-classical functions consists of countable ele-

ments. In particular the field Q of the classical numbers is countable.
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Proof. In fact we prove at each step of inductive construction the choice is

countable. We start from the field QCr) consisting of countable elements. We

choose an algebraic group G defined over Q. This choice is countable since the set

Q is countable. We construct a G-primitive extension satisfying the rationality

condition of Definition (2.4.4). The extension is determined by lδ(v) ^ Lie G ® Q

QCr) and the field QCr) is countable. Therefore the choice of lδ(v) is countable.

The differential equation for v such that lδ(v) is equal to a given element in Lie G

® Q Q W determines an almost covering p : i?—>P C unramified over a Zariski

open set of P c . Among such covering we consider only those whose image p(R) is

maximum. Among those covering, there exists the universal one which we denote

by p : R—*PC by abuse of notation. Since furthermore the choice of Q-rational

points P on the Riemann surface R and that of Q-rational points on G are count-

able. Therefore the field of Q-classical functions obtained by the first step con-

sists of countable elements. We can apply this argument for the further step of in-

ductive construction if we observe the following.

(1) Since # = QCr)</> ( = QCr, / , / / , / ( 2 ) , . . .)) for a suitable / e # by

[K], Chap. II, 8, Proposition 9, the choice of the differential subfield # is count-

able.

(2) Since r : Sf —»Pc is not ramified at P, we may assume that S' is a do-

main of C. Hence there is no choice of S' but a choice of C-valued point P of

(S'f $(). In particular P is a C-valued point of (S\ QCr)). The choice of P as a

C-valued point of (S\ QCr)) is countable. The extension of C-valued point of

(S'f QCr)) to a C-valued of (S', # ) is countable since the number of branches of

a Riemann surface over which X is meromorphic is at most countable.

Now we give several examples to illustrate our idea. The most general form of

Examples (2.12), (2.14), (2.15) is given by Theorem (3.7) in §3.

EXAMPLE (2.12). Let us consider the first step in Definition (2.4) as follows.

Since we start from QCr), necessarily K—iK — QCr), C = Q. We choose R = S

= S' = C c: P c (p : C —> P c being the inclusion). As an algebraic group G we

take G W Q = SpecQtί , Γ1] and L — QCr, expx). We consider an L-valued

point v : Spec Z,—• GmL = Spec L[t, f ] defined by t—*expx. The associated

meromorphic map, which is holomorphic in this case, F(v) : C —* G w c — C = C

— {0} is given by .r—• exp x. We take P = 0 in (2.4.4.A) which is a Q-rational

point of (C, QCr)). Then as we have shown in Example (1.3), lδ(v) = t-ττ hence

lδ(v) e L i e G m Q . Moreover at the Q-rational point P of (C, QCr)), F(v) =
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expx : C—• G™c = C * c: C takes the value l e Q which is a Q-ratίonal point

°f G w Q Therefore we get a field of Q-classical functions K(t ° exp x) =

K(expx) = QCr, expx).

Now let us pass to the following second step. We take in Definition (2.4), K —

Q(x, expx), X = Q(x), L = Q(x, expx, expCr + 1)) so that C = C^ = Q. Again

we take R=S=S':=C(^ P c . Let v : L—* GmL be an L-rational point defined

by t—+ expCr + 1). The associated holomorphic map F(v) : C —• G ^ c = C c: C

is given by .r—• expCr + 1). We take as a Q-rational point of (C, QCr))

P = — 1. We see /δ(ι ) = ί-IT which in Lie Gm Q c Lie Gm ̂ . The point P is a

C = Q-rational point of (C, # ) and at this point the associated holomorphic map

F(v) — expix + 1) : C - ^ G ^ n

c takes the value 1 e GmC which is a Q-rational

point of GmC. Therefore M— K(exp(x + 1)) is a field of Q-classical functions

obtained in this second step. Since exp.r is in K and hence in M, e = exp(x +

1) (exp x) is a Q-classical function and hence is a classical number. This argu-

ment shows that for any rational number r ^ Q , the number e is classical.

EXAMPLE (2.13). e is a classical number for n ^ N (see Theorem (3.1) in

§3), where i — y/— 1. Consequently any element of a cyclotomic field is classical.

In fact we consider the following first step. We take necessarily K = X =

QCr) and C = C# = Q. As an algebraic group we choose Gm c . Consider a cover-

ing p : R = C* -+ C* c Pc defined by *-> / = x. We take S = S' = R and L ;

= QCr, zexp(— 2πij/n)) for 0 < j < n — 1. Since dz/dx = z/nx, L} is a dif-

ferential field. Let 0y: SpecZ,y—• G w L . = SpecL ; |7, Z"1] be an Lrvalued point

defined by /—• zexp(— 2πij/ή). As for the point P of Definition (2.4.4) (A.5), de-

pending on j we take P3 — exp(2πij/n) e (C , p QCr)), which is a Q-rational

point of ( C * , / Q W ) . By Example (1.7) lδ(vj) = [dz exp(- 2πij/n)/dx] /

Uexp(— 2πij/n)] t~r7 = ~~~T~t~Ίi = ~~t~rft G L ieG w Q . The associated mero-

morphic map F{υ) :C —* G^n

c, -ε-^^exp(— 2πij/n) takes at P ; ^ (C ,

^ Qte)) the value 1 ^ G m C which is a Q-rational point. Therefore K(z exp

(— 2πij/n)) is a field of Q-classical functions. Arguing as in the preceding ex-

ample, we conclude that exp(2πi/n) = 2exp(— 2πij/n) /[zexp(— 2πi {j + 1)/

n] is a Q-classical function and hence a classical number.

EXAMPLE (2.14). The circular constant π is a classical number. Let us consid-

er the following first step of Definition (2.4). Necessarily K = # = QCr) so that
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C = Oχ = Q. We take G = Ga Q . We choose S = S' = R = C with morphism

p : C = R—^ C cz P c , z—• exp £ = ,r. Namely the Riemann surface R is isomor-

phic to C but it covers C c P^. Let L = QCr, 2). The field L is closed under the

derivation d/dx since dz/dx — x . We choose an L-valued point v : L~* Ga c

— Spec L[t] defined by t-^z so that the associated meromorphic map F(v) : R —

C -> G™c is defined by z-» z. We take as P a Q-rational point 0 of (R, p*Q(x)). It

follows from Example (2.13) that lδ(v) = -j- ~τi = —~τ. G Lie Gβ Q ( x ) . At P = 0

the map F(#) : i?—•* GaC is regular and takes the value 0 which is a Q-rational

point of GaQ. M = K(t ° f(x)) = K(z) is the field of Q-classical functions

obtained by the first step.

Now we pass to the second step. We take in Definition (2.4) K — QCr, z), $(

= QCr) so that C = Cκ = Q Let S = S' = R = C be as above, L = QCr, z, z

+ 2πi),G = GaQ. Let υ : Spec L-+ GaL = Spec /,[/] be defined by ^-^z +

2ττί. We take as P a Q-rational point z = 2πi of (i?, ^ QCr)) so that the associ-

ated holomorphic map F(v) : R —* G^n

c is defined by z—> z + 2πi. Then by

Example (2.13) /δ(t ) = — - ^ e Lie Gβ ® Q # . At the point P the map F(v) : /?->

G^n

c takes the value 0 which is a Q-rational point of GαQ. Therefore M— K(z

+ 2τπ) = Q(x, z, z -\- 2πϊ) is a field of Q-classical functions obtained by the

second step. Therefore 2τci — z + 2πi ~ z is a classical number. Since z is a clas-

sical number by Example (2.13), the circular constant π is a classical number.

Remark (2.14.1). The argument of Example (2.14) shows that logx,

logO r) = log r + logx and hence log r are Q-classical for r e Q.

So far we treated the linear algebraic groups Gβ and Gm. The following exam-

ple illustrates the case of elliptic curves.

EXAMPLE (2.15). Let G be an elliptic curve defined over Q. Hence G is iso-

morphic to a projective curve in P c defined by

XX = IXl - g2XX - gX, g2, g3 e Q.

We take (0,0,1) as the origin of the elliptic curve. In the affine form G is defined

by

w = 4u — g2u — g3, u — Xλ /Xo, w = X2 /Xo.

We have Q(G) = Q(w, w). Let I be a lattice of C with 6 0 Σ ω e Z / ω~4 = g2 and
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140 Σ ω e z / ω~e = g3 where L = L - {0}. Let

P Or) = P Or L) = x'2 + Σ (Or ~ ω)~2 - ω"2}
ωe£/

be the Weierstrass ^-function. Then the ^-function satisfies the differential

equation

ft

so that we can define a holomorphic map

A Q-derivation (5 : Q(M) —* Q(w, W), U-^> W can be extended uniquely to a

Q-derivation which we denote by the same letter δ. Using this convention we can

show by a simple calculation that the Q-derivation δ = V~Ύ~ Q(^> w) —>Q(w, w),

which can be considered as a rational vector field on G, is everywhere regular on

G. Since G is complete, G operates on H (G, θ) trivially, where Θ is the tangent

bundle of G. In particular the vector field w-r- is G-invariant. We consider a

Q(¥>, P0-valued point t/': Spec Q ( £ \ D -> G defined by u-> P, «;-> P'. For

the corresponding Q ( ϊ \ H-rational point υ* : S p e c Q ( P , P0 -• G Θ Q Q C P , H ,

we get from the definition of (5(f), δ(v)(u) = P ' . Since ( M ; "^~)^) ~

P r, we have /δ(#) = ^"T~ e Lie G cz Lie G Q C r ) . Since a Q-rational point 0 of

(C, QCr)) is mapped to the origin 1 ^ G c of the elliptic curve, P (x L) = u°π

and P'Or L) = w°π are Q-classical functions if ^ 2 (^) a n ^ ft(^) are rational

numbers. Now the argument of Examples (2.12) and (2.13) shows that ί? (x + r :

L) and P'Cr + r : L) are Q-classical functions for r e Q. On the other hand by

the addition theorem of the ^-function, ίP (r) and P'ί^) are rationally expressed

by POr), V'(x), V (x + r) and P '(x + r) with coefficients in Q. Hence V (r :

L) and ί?'(r ^) are classical numbers for r e Q if g2{L) and ^ 2 ^ ) a r e i n Q

A natural generalization of Example (2.15) is as follows.

EXAMPLE (2.16). Let p : i?—> P c be locally a covering morphism of Riemann

surfaces and K 3 QOr) be a differential field of Q-classical functions meromor-

phic over R. Let us assume that the field K is finitely generated over QOr). Let C

be the field of the constants of K. Hence the field C consists of classical numbers.
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Let A be an abelian variety defined over C and Dv D2, . . . ,Dn ^ Lie A —

{invariant vector field on A defined over C) be a basis of the C-vector space

Lie A. Then there exists a universal covering π : C —*G4®cC)an such that

π^id/dXj) — Df for 1 < i < n. Let D c i? be an open set which is mapped iso-

morphically onto a domain of C c P c . Let ZF \D~*C be a holomorphic map

sending x to (/xCr), f2(x), . . . Jn(x)). We put F = 7Γ°S .̂ Let us assume further

that there exist a field C1 of classical numbers finitely generated over Q and a

Cx-valued point P of (D, K) such that π°F(P) is a Q -valued point of A. Then

for any φ ^ CC4), φ°π°F is Q-classical. In fact, let us denote by C(D) the dif-

ferential field of meromorphic functions on D and let υ : Spec C(D) —> AC(D) be a

C(Z))-valued point corresponding to the holomorphic map π°F : D—*AC (cf. §1).

Since for φ <Ξ C(A) c ϋΓC^) we have

δ(v) = ΣlJi'Di

and hence /<5(f) = Σn

i=1fi

fDi lies in LieΛ^. Adding a finite number of classical

numbers to C l f we get a field C2 of classical numbers finitely generated over Q

such that the point π°F(P) £Ξ Ac comes from a C2-valued point of Ac. Therefore

if we put K — KC2, then K is a differential field of Q-classical functions mero-

morphic over D, the field K is finitely generated over Q(x), the point P is a

C2-rational point of (Z), A) by Lemma (2.3) and ττ°F(P) is a C2-rational point.

Therefore for any φ^C(A) c C2(ΛC2), φ°π°^ is Q-classical by Definition (2.4).

§3. Theorems on Q-classical functions

The following result generalizes Example (2.13).

THEOREM (3.1). Any algebraic number is Q-classical.

Proof. Let fl G C be an algebraic number and Fit) — f + aj*1' + +

an G Q[t] be the irreducible polynomial with Fid) = 0. We may assume that a is

not a rational number. If we take a small circle ίί centered at a, then we have an

integral representation

l r
a 2πi L

xF'ix)
F(x) dx
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(see [DJ, Chap. VIII, §6 for example).

Let us consider a differential equation

Let Hix) be a solution of the differential equation ( * ) and p :R~»Pc be a

Riemann surface over which Hix) is singled valued. The map p is not ramified

over 1 €= C ^ P c since F ( l ) ^ 0. We take a path joining 1 and % which does not

encounter any root of Fix) — 0. We get a loop Ψ starting from 1 and coming

back to 1.

Let Px be a point of R lying over 1, the loop Ψ is lifted over R as a path joining

Λ and P2 both lying over 1. As we have iHix) - HiP,)) - iHix) - HiP2) =

HiP2) - HiP,) = f^-^jp^dx = l^ϊp^-dx = a, it is sufficient to show

that Hix) - HiPi), i = 1,2 is a Q-classical function. We prove that H(x) -

HiP^ is a Q-classical function. For by the same method we can show that

Hix) - HiP2) is Q-classical.

It follows from Example (2.14) that there exists a differential field K —

Q(2ττz, x, \ogx) of Q-classical functions known by the two steps consisting of

meromorphic functions on a small disc R centered at 1 ^ C c: P c . Here we mean

by logx a branch over R with log 1 = 0. Let us consider a section q : R~+ R

such that #(1) = Pv In Definition (2.4) we take K — K— Q(27Π, x, logx) and

# = Q(2τπ, x), L = Kiq*Hix - HiPJ), R = R= S= S'. Then we have C#

xFr(x)
= Qi2πi) and 2%iχFix) e ^' W e c h o o s e G = G βQ^» = Spec Q(2τrO [/]. Let

us consider an L-rational point v : L—*GaL = SpecL[f] defined by t—^ Hix) —

HiP,) (= ?*#(*) - ^(Λ))- The associated holomorphic map F(t ) : i?-^G^n

c is

given by x—^ i/Cr) — HiP^. As a C^-rational point P of (i?, # ) we take 1. We

have Iδiv) = ^ ^ = g^ip^) rfjf G L i e G« ®Q(ar«^. A t t h e Q(2τrz)-rational

point P = 1 the associated holomorphic map Fiv) : R —• G^"c takes the value

F(ri( l) = HiPj - HiP,) =0 which is a Q(2τπ)-rational point of GaQ{2πi).

Therefore Hix) — HiPJ = £°F(iO is a Q-classical function.
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We can prove by the same argument

COROLLARY (3.2). Let aίf a2,. . . ,an be classical numbers. If a complex number b

is algebraic over Q,(av a2>.. . , # w ) , then b is classical.

The following corollary is a cosequence of Corollary (3.2).

COROLLARY (3.3). The field Q of classical numbers is algebraically closed.

LEMMA (3.4). Let p : R-^ P c be locally a covering morphism of Riemann sur-

faces and K ^ Q(x) a differential field of meromorpic functions on R with derivation

-Γ-. Let C c: K be a subfield of constants of K. If the field K is generated by a finite

number of elements av a2, . . . ,an over C as an abstract field, then there exists a

non-empty Zariski open set W such that if Q G W, then (1) p(Q) is not the point at

infinity ofPc, (2) the morphism p is not ramified at Q so that x — p(Q) is a local pa-

rameter at Q, (3) the a{'s are regular at Q and we have (4) {f(Q) \ /€= OQ(K)} =

C(ai(Q),a2(Q),...,an(Q)).

Proof We may assume that R is a domain of C since the conditions (1) and

(2) are satisfied on a non-empty Zariski open set. Since the field K is closed under

the derivation d/dx, there exist polynomials Ait B e C[Xlf X2,.. .,Xn] such that

(3.4.1) dai/dx = Ai(a1, a29.. .,an) /B(av a2,...,an)

for 1 < i < n. Let W= (Q e R \ the a^s are regular at Q and Bia^Q), a2(Q),

. ..,an(Q)) Φ 0}. Then if Q e Wt then it follows from (3.4.1),

a\(Q) =Ai(aι(Q), a2(Q),...,an(Q))/B(a1(Q), a2(Q),.., ,an(Q)).

Differentiating (3.4.1), we get

a'l — (polynomial in the a/s and the (α/)'s with

coefficients in C) /B(av a2,.. .,an) .

Using again (3.4.1), we obtain

(3.4.2) a![ — (polynomial in the a/s with coefficients in C) /B{av a2J.. .,an) .

Therefore by induction,
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(3.4.3) a\k) = C[av a2,...,an]B

for 1 < i < n. Evaluating (3.4.3) at x — Q, we get

af\Q) e C(ax{Q), a2(Q),...,an(Q)).

Namely every Taylor coefficient of the a/s (1 < i < n) with respect to the local

parameter x — Q is in da^Q), a2(Q), . . . ,an(Q)). Since the a-s generate the

field K over C, for any / e K every Laurent coefficient of/with respect to x — Q

is in CίfliίQ), 02(Φ)> >#«(£)) (cf. Lemma (2.4)). Since each condition (1), (2),

(3) is Zariski open, the lemma is proved.

If we understand x — a to mean 1 /x, it is not necessary to exclude the case

where p{Q) coincides with the point at infinity. But for our purpose the assertion

of the lemma is sufficient.

LEMMA (3.5). Let p : R—• P c be locally a covering morphism and K a differen-

tial field of Q-classical functions meromorphic on R. We assume that the field K is

finitely generated over QCr). Then there exists a non-empty Zariski open set W of R

such that for any Q -valued point Q of (W, Q(x)), (1) p(Q) is not a point at infinity

of PQ, (2) the morphism p is not ramified at Q, (3) for any function f ^ ΘQ(K), the

value f(Q) is classical and such that (4) the residue field 0Q(K) /mQ(K) is finitely

generated over Q.

Proof Since conditions (1), (2), (4) are Zariski open by Lemma (3.4), it is

sufficient to find a non-empty Zariski open set Ŵ  satisfying (3). As the question is

local, we may assume that R is a non-empty open set of P c . The argument of this

case works for the general case. We prove the lemma by induction on the number

of G-primitίve operations to obtain K. If K — QCr), we can take W — R. Now we

use the notation of Definition (2.4) and assume there exists a non-empty Zariski

open set W of S' such that the lemma holds for (S\ $0 . We may assume here

S' c P c . For a moment let us further assume that the point P of Definition (2.4.4)

does not coincide with the point at infinity. The point P is a C^-rational point of

(S\ $0 and hence (the coordinate of) P is a classical number. Multiplying a power

of x — P if necessary, we may assume that/Or) is regular at P. In fact if H(x) =

(x - P)mf(x) is regular at Q and if H(Q) = (Q - P)mf(Q) is a classical num-

ber, then f(Q) is a classical number since we may take W so that Q Φ P and

since P — Q is a classical number. Let M - tt({φ°F(v) \ φ e C(G)}). Let U be

an affine open set of G such that UL is a neighbourhood of the point υ. We show
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that for any φ e C[U], and for a Q-valued point Q e (S', Q(r)) which does not

coincide with the point at infinity, (φ°F(v))(Q) is Q-classical. In fact we have

f ( Q ) =

for small circle *6 centered at Q. If we put N = M(πi, Q), then N is a differential

field of Q-classίcal functions finitely generated over Q(r) and the point P is a

C^-valued point of (S'f N) by Lemma (2.7), where CM denotes the field of con-

stants of M. Now we consider a differential equation for g(x)

fix)
< 3 - 5 1 > Z'{x) = 2m{χ-Q)

with initial condition g(P) — 0. Then the solution g(x) is Q-classical. In fact

we take as an algebraic group G the additive group Gfl which is defined over Q

hence over CM. We consider M(g) -valued point v : Spec M{g) —» Ga M(g) =

Spec N(g)[t\ defined by t—>g. Then the meromorphic map f(υ) : Sf —> G*n = C

associated with the <N{g) -valued point v is given by x~+ g(x). The point Q is a

C^-rational point of (Sf, J\ί), F(v)(P) = ^(P) = 0 e G β C v and lδ(v) =

^"'(x) -j— e Lie G® N. Precisely speaking we must consider a covering q : S~^

S' so that the function g(x) is single valued and the initial condition g(P) should

be read giP-) — 0 for a point Pλ ^ S lying over P (see Proof of Theorem (3.1)).

We can replace the path % by a path if starting from P and ending at P as in the

proof of Theorem (3.1). Then f{Q) = [g'(x)dx= f gf(x)dx = g(P2) -

= g(P2) with a suitable point P 2

 e ^ lying over P. We consider another

solution g(x) of (3.5.1) with g(Q2) — 0. Then g(x) is Q-classical too. Therefore

the difference c = g'Cr) — ̂ (x) is Q-classical and constant. The number c =

g(P2) — g(P2) — g(Pz) = f(Q) is classical. Now let us briefly treat the case

where the point P of Definition (2.4.4) coincides with the point at infinity. For any

Qcl-valued point Q of (S\ Q(x)) with Q Φ 0, °o , we show that f(Q) is

Q-classical. In fact f(Q) — ̂ — I —__ ., / n dz where f is a small circle
Δ7CI J(βr Z 1 / v

centered at z= 1/Q. The argument is similar to the preceding case. We can

replace the contour % by another contour Ho' starting from z = 0 and ending at

z = 0. We consider a differential equation

dz {z) " 2πi(z-
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which is equivalent to

fix)
" 2πi(l/χ- 1/0)

if we put h(x) — g(z) and x — l/z. Hence the differential equation (3.5.2) is

equivalent to

,Λ ~, dh , x
( 3 5 3 ) ώ ( x ) ~ 2πι{χ-Q)χ-

The integral f(Q) = ̂ — / — _ -, / n <fe is equal to the difference g(z) —
ΔTZl J(gr Z 1 / V

g(z) of integrals g(z), g(z) of (3.5.2) and hence to that of the integrals h(x),

Mx) of (3.5.3) satisfying rationality conditions at 00 . Since ^—γ—Z~n\— * s

Q-classical and regular at 00 which is a CM-valued point of (S', N), the argu-

ment of the preceding case proves that/(Q) is classical.

We have M = KM and the field M is the quotient field of M[{φ°F(v) \ φ e

C(G)}]. Therefore there exist fl9 f2, . . . Jm e X and ^ x , φ^-.^Ψn^ c(® s u c h

t h a t / i , / 2 , . . .,/w and /̂ ! = φ^Fiv), h2 = φ2°F(v),.. ,yhn — φn°F(v) generate the

field M over the field CM of constants of M. We know that there exist a

non-empty Zariski open set Voί S' such that/i, / 2 , . . .,/m, AL, A2,.. .,hn are regu-

lar at Q and/^Q), / 2 ( Q ) , . . .,fm(Q), hx(Q)9 h2(Q),...,hn(Q) are classical for any

Q c -valued point Q ̂  (V, Q(x)). Now the lemma follows from Lemma (3.4).

COROLLARY (3.6). Let p : R—+ P c be a locally a covering morphism of Riemann

surfaces. Let K be a differential field of"Q- classical functions meromorphic over R such

that the field K is finitely generated over Q(x) (as an abstract field). Let av a2,. . .,

an ^ K. Then there exists a non-empty Zariski open set of R such that for any

Q° -valued point Q of (R, QCr)), there exists a constant field C consisting of classic-

al numbers and finitely generated over Cκ (and hence over Q) such that (1) p(Q) is

not the point at infinity of P c , (2) the morphism p is not ramified at Q, (3) Q is a

Cf-rational point of (R, KCr) and such that (4) alt a2J... yan are regular at Q.

Proof. The intersection of the following three Zariski open sets satisfies our

requirement if we take C = if(Q) I / e OQ(K)) :

(1) Zariski open set satisfying the condition (4) of the corollary,

(2) Zariski open set of Lemma (3.4),

(3) Zariski open set of Lemma (3.5).
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THEOREM (3.7). Let p : R—* P c be locally a covering morphism of Riemann sur-

faces and let f be a Q-classical function meromorphic over R. Let a ^ R be a

Q -valued point of (i?, Qix)). /// is regular at a, then f (a) is a classical number.

Proof Let us first prove the theorem under the additional assumption that

the morphism p : i?—* P is not ramified at the point a. We may assume that R is

a non-empty open set of P c and the morphism p is the inclusion R c C. Let us

assume for a moment that the point a does not coincide with the point at infinity

of P c . Then we have

- 1 f /to) ,
~ 2πiLx-adx>

where % is a small circle centered at a. It follows from Corollary (3.6) that there

exist a differential field K finitely generated over Qix) consisting of Q-classical

functions meromorphic over R and C^-rational point Q Φ a of (/?, K) such that

fix) fix)
— a) ^ ^ a n c * s u °k ^ a t 2πi(τ — a) *

contour ^ by a path starting from Q and ending at Q. Then the theorem for this

case follows from the argument of Examples (2.13) and (2.14) and the proof of

Lemma (3.5).

If a is the point at infinity of P c , then fid) — -^—- j — _ ^ dz = -^—r,

Γ fix)
I dx, where Ψ is a small circle centered at a = oo. Hence we can argue as

Jcβr X

above.

To treat that remaining case where the morphism p : 7?—• P c is ramified at

the point a, we need

SUBLEMMA (3.7.1). Let p : R-*PC be locally a covering morphism of Riemann

surfaces and f is a Q-classical function meromorphic over R. Then a meromorphic func-

tion y/f or any solution of an algebraic equation yn — f — 0 is Q-classical.

Proof of Sublemma. The function yff is a solution of a linear differential equa-

tion nfy' — f'y — 0. Then by Corollary (3.6), there exist a Q° -valued point Q of

Cff, Qix)) and a field K of Q-classical functions meromorphic over R such that

(1) the field K is finitely generated over Qix), (2) f^K, (3) / i s regular at Q,

(4) piQ) is not the point at infinity of P c , (5) the morphism p is not ramified at Q,

(6) Q is a Cκ-valued point of iR, K) and such that fiQ) Φ 0. If we consider a
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solution g of nfyf — f'y — 0 such that g(Q) — Vf(Q), which is a classical num-

ber by Corollary (3.2) is in Cκ, then g(x) is Q-classical. This proves the sublem-

ma (cf. Examples (1.7.2) and (2.13)).

Let us come back to the proof of the theorem when the morphism p is rami-

fied at the Qc-rational point a. Let us put b = p(a). We may assume that b is not

the point at infinity of P c since the case where the point b coincides with the

point at infinity is treated similarly. Then p (x — b) vanishes with order n > 2

at the point a. We denote simply p (x — b) by x — b. Since x — b is regular and

vanishes with order n, replacing R by an open neighbourhood of the point a, we

may assume that there exists a holomorphic function z on R such that z — x — b.

Then z is Q-classical by Sublemma (3.7.1) and is a local parameter at the point a.

Hence the function / on R is a function g(z) of z around the point a. Therefore

f ^ = Ίΐϊn J 2 — 0 ^Zj w n e r e ^ i s a small circle centered at a. On the other

hand

dz 1 fg(z) 1 f g((x - b)vn)dz = i
where %' is the image of # under p. Now g((x — b) n) as a function of x is no-

thing but/Cr) and is Q-classical. Therefore

/ 1 \ nxn-ιf(x)
\2πi) {x-bγ'"

is Q-classical. The argument of unramified case shows that the value

J
f / 1 \ -f ( \

I / -L \ Aίf»A/ / \X>)

^ \X 0)
is classical.

THEOREM (3.8). Let p : i? —• P c be locally a covering morphism of Riemann sur-

faces. Let fix) be a Q-classical function meromorphic on R such that a I-form

p*f(x)dx is regular on R. Let a, b e R be Qcl-valued points of (i?, Q(x)) of P 1 .

Then the definite ntegral I f(x)dx is a classical number for any path joining a and b.

Proof. It follows from Corollary (3.6) that there exist a differential field K ^

QCr) of Q-classical functions meromorphic over R and a C^-valued point P of

(R, K) such that the function / belongs to K, morphism p is not ramified at P ,

p(P) is not the point at infinity of P , p fdx is regular at P and such that the
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field K is finitely generated over QCr). Since I f(x)dx = \ f(x)dχ —

I f(x)dx, we may assume b — P. Let q : S—» i? be the universal covering space

of 7?. Let Px ^ S be a point lying over P. Consider a differential equation #'(.r) =

fix) with initial condition gΌP^ — 0. Then g(x) is Q-classical (cf. Example

rb

(2.14)). There exists a point Q e S such that I f(x)dx = g(PJ ~ g(Q) =

g"(Q) which is classical by Theorem (3.7).

Here are applications of Theorem (3.8).

EXAMPLES (3.9.1). The period K which appears in the theory of elliptic func-

tions is classical if tc is classical. Namely K is defined by the following formula

1 Γ1

2 J o

ήr

The function [x(l — x) (1 — fc x)] of x is Q-classical by Sublemma (3.7.1) if tc

is a classical number. If we consider an elliptic curve R : y2 = x{\ — x) (1 —

dx
k x), then —- is regular on R and we can apply Theorem

Lr(l x)(l - fc2χ)Ϋ2

(3.8).

(3.9.2) The Eulerian integral B(m, n) = / χm~ι{\ - x)n~ιdx which is
Jo

equal to -ψr7—r^—γ~ is Q-classical for m, n ^ Q, m, n > 0, where Γ(x) denotes

the gamma function. Here χm , (1 — x) are understood to mean values of

n > 1 and put r / ί = m — 1, s/ί = n — 1 with r, s, ^ N , ί > l and (r, 5,

0 = 1. The polynomial yf = χ r ( l — x) s is irreducible in C[x, z/]. Let p : i?—* P c

be the Riemann surface of y — χr{\ — x) . Then p χm (1 — x)n dx is regular

on R = p~\C). It follows from Theorem (3.8) that B(m, n) is classical for m, n

e Q if m, « > 1. Since we have B(p, q) = JB(ί, />) and β(/>, ^ + 1) = Λ

B(p, q) for p, q <^ C with /?(/)), jf?(^) > 0 where R(z) denotes the real part of a

number z (cf. [WW] Chap. XII, 12.4). Hence B(m, n) is classical if m, w ^ Q and

m, n > 0 (see §6, (6.13) where the values of the gamma function are discussed).
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In view of Example (3.9.2) it is natural to ask the following question.

PROBLEM (3.9.3). // mf n are positive classical numbers, B(rn, ή) is classical?

We show that the field of Q-classical functions is algebraically closed. To

this end we need

PROPOSITION (3.10). Let G be an algebraic group defined over a field C of classic-

al numbers. Let D c C be a domain and F\D—*G®CC be an analytic map. For

any ψ €= C(G), φ°F is a Q-classical function if the following conditions are satisfied.

(i) Let υ : Spec CCD) —» GC(D) be a CCD)-valued point of GC(D) corresponding

to F (cf Remark (1.2)). Then lδ(v) e Lie G Θ CC(Z» lies in Lie G ® c K for

suitable differential subfield C c K c C(D) of Q-classical functions with QCr) c K

(C(D) denotes the differential field of the meromorphic functions on D)).

(ii) There exists a field extension C'^> C of finite type in Q and Cr-valued

point P of (D, K) such that F is regular at P and such that F(P) e G ® C C arises

from a Q c -rational point of G 0 C Q .

Proof In fact we may assume that the field K is finitely generated over

QCr) so that also the field C is finitely generated over Q. If these conditions are

satisfied, then by Lemma (2.3) we can find a differential field extension $( ^ K in

C(D) obtained by an adjonction of a finite number of classical numbers to K such

that G is defined over the field C^ of the constants of X, lδ(v) e Lie G ®Cifli
 p

is a C^-valued point of (D, %) and such that F is regular at P and F(P) ^ G

(8)C^C arises from a C^-valued point of G. The field ΛΓ is finitely generated over

QCr) and consists of Q-classical functions meromorphic over D. Hence by step (4)

of Definition (2.4), φ°F is Q-classical.

COROLLARY (3.11). Let D c C be a domain and M be a differential field of

Q-classical functions meromorphic over D. We assume that the field M is finitely

generated over QCr). Let av a2,. . . ,an ^ M and let us consider a linear differential

equation

Let P ^ D be a CM-rational point of (Z), M) such that the a{'s are regular at P for

1 < i<n and let f be a solution of ( * ). Iff(P), / f(P),...,/ (w~υ (P) are classical

numbers, then f, f',...,f are Q-classical functions.
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Proof. Let us put

A =

- an - an_x •" ~ aιλ

Then a function g(x) is a solution of ( * ) if we have

in)

g

— A
g

(n-l)

g

We can find C-linearly independent solutions f(x), fλ(x),... Jn-ι(x) of ( * ) such

that the Wronskian

/ Λ

r (n-l) r (n-l)

J 7l

/„'-!
Φ 0

and such that

flk)<J>) is Q-classical for 1 < j < n - 1, 0 < k < n - 1.

We thus get a map F : D—+ GLW,

fix) fλ(x) ••• fn-ι(x)

/
(n — 1) / \ /- (w—1) / \ /- (n—1) / \

U) fx (x) - - fn_x (x)

Let v : Spec C(D) —•* GL w C ( Z ) ) be the corresponding CCD)-rational point. Then we

know /<5O) = F' F~ι = A It follows from Proposition (3.10), for K = M and C

~ C M (/ ; (ί>))0<;,/ί<«-i if we take as φ ^ C(GL w C ) a regular function

Ψijda^)) — #/jf of taking the value of (ij)-component of the matrix (a^). Here we

understand f0 — f for 0 < k < n — 1. Then φ ° F is Q-classical. In particular

ΨJO°F — f J is Q-classical for _/ ̂  N.

PROPOSITION (3.12). Let alf a2,. . . ,βM 6g Q-classical functions. Then a solution

f of an algebraic equation f + aj + * * * + an — 0 is Q-classical.
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Proof, We may assume that the polynomial H(X) = X + αxX
w + +

an e QCr) <^x, a2i . . . ,αw>[X] is irreducible (QCrXfli, a2, . . . ,ab) — QCr, av

d2y - - - >an> aΊ> a2> - - >#«> #i> β2» •) by definition). As H(X) is the minimal

polynomial of / over Q(x)<alf a2,...,au>, H'(f) =fn'1 + (n - \)aj{n~2) +

+ #„_! =£ 0. Then (QCr) <#!, a2,. . . ,αΛ> (/) : QCz) <<̂ i, Λ2» >Λn^) = n- Since /

is algebraic over Q(x)(av a2,. . . ,0Λ>, QteX^! , a2> iar) (/) ^s a differential

2,
field. Therefore f,f\. . . ,/ are linearly dependent over QCr) <Λ1, a

there exist 60, bv...,bn^ Q(x) (av a2,. . . ,#w> such that 6/ ( w ) + 6 / ί Λ " υ +

+ bnf= 0 with (60, blf...,bn) Φ 0. Let

be a linear differential equation satisfied by / with e{ €= Q(x) (alt a2>. . . ,#„> for

1 < ί < m. It follows from Lemma (3.5) and Corollary (3.6) that there exist a do-

main D of C, a differential field if 3 QCr) of Q-classical functions meromorphic

on D and a C^-valued point P ^ (Z), if) such that (1) if is finitely generated over

QCz), (2) the fl/s (1 < i < n) belong to if, (3) the at's and the e/s are regular at

P for 1 < i < n, 1 < j < m, (4) 0*/*"1 + (n - l ) a / w " 2 + + an_,) (P) Φ 0

and such that (5) the subfield ΘP(K) /mP(K) c C consists of Q-classical num-

bers. The value/(P) is algebraic over Q(P)(<21(P), a2(P),. . . ,an(P)) and hence

classical by Corollary (3.2) and Theorem (3.7). Since (nfn~ + (n — l)ajn~ +

* * * + an_1)f'+fn + a'jn-γ + + < = 0,

r + ̂  + +a;
w/ + (w - l ) α / + + an_γ

and hence

f'{p)

(n -

p P (cC).

Hence f'(P) is classical. For the similar reason / Λ / ( P ) , / ( 3 ) ( P ) , . . . <= eP(K) /

mP(K)[f(P)] and are classical. Therefore by Corollary (3.11), f(x) is Q-classical.

We recall the following lemma which we use in the proof of Theorem (3.14).

LEMMA (3.13). Let L be a differential field, C a field of constants of L and G an

algebraic group defined over C. Let u and υ be L-rational points of GL— G®CL.
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Then we have

(*) Iδ(uv) = lδ(u) +Lu*lδ(v),

where uv ^ GL is the product of the L-valued points u and v by the group law of GL

and Lu is the left translation GL~^ GL by the L-rational point u.

Lemma (3.13) is proved in [U2] (Lemma 16).

Remark. The equality ( * ) shows that the map Iδ : GL(L) —• Lie GL, u~*

lδ(u) satisfies the 1-cocycle condition if we regard the vector space Lie GL as a

GL(L)-module by the left translation ( = the adjoint representation).

THEOREM (3.14). In Definition (2.4) of Q-classical functions, we may assume

that G is either the general linear group GLW (n > 1) or an abelian variety.

Proof. The proof is based on the same idea as in [U4] where we introduced

the classical functions and proved a similar assertion for the classical functions.

Since a linear algebraic group defined over a field A: is a closed subgroup of the

general linear group GLnk, it is sufficient to prove that we may assume G is

either a linear algebraic group or an abelian variety. We start from QCr). Let K

be a field of Q-classical functions which are already defined by induction. We

assume that the theorem holds for K or K is contained in successive G-primitave

extensions of Definition (2.4) where G is either a linear algebraic group or an abe-

lian variety. There exists locally a covering morphism p : R-* P c of Riemann sur-

faces such that field K is a field of meromorphic functions on R. Let C be the field

of the constants of K, # a differential subfield of K with # 3 QCr) and # => C

and G an algebraic group defined over C. Let q:S—>R be locally a covering

morphism of Riemann surfaces. Let L be a differential field of meromorphic func-

tions over S with derivation d/dx such that the field K is identified with a dif-

ferential subfield of L by q . Let υ : Spec L—> GL be an L-rational point of GL

satisfying the following conditions (a) and (b).

(a) lδ{v) which is an element of Lie G®CL lies in Lie G ®c # .

(b) There exist a Riemann surface Sf and a point P of S' such that (1) S' con-

tains S as an open subspace, (2) any element of % = q # is meromorphic on S',

(3) the point P is a C-valued point of (S\ # ) , (4) the meromorphic map F(v) : S'

• —• G <S)C C is regular at P and such that (5) the image F(v) (P) is a

C-rational point of G. Then L = K(φ°F(υ) \ φ e= K(GK)}) = K({φ°F(υ) \ φ <=

C(GC)}), which is a differential subfield of L, is a newly defined Q-classical func-
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tions. We show that the field L is obtained by a composite of //-primitive exten-

sions with rationality conditions where the algebraic group H is either a linear

algebraic group or an abelian variety. We may assume that G is neither a linear

algebraic group nor an abelian variety. By a theorem of Chevalley (see [Rl],

Theorem 16), there exists a closed linear normal subgroup N defined over C of G

such that the quotients! = G/Nis an abelian variety:

The composite f*L ° v : Spec L —•> GL —+ AL is an L-rational point of AL. Since

/'Jδ(v) = /δOVϋ) by Lemma 15 in [U2] and since lδ(v) G Lie G<g) c #, lδ(/<L°v)

lies in \AeA®c${. /f

c°F(v)(P) G Ac comes from a C-rational point of A since the

point F(v)(P) and the morphism /* are defined over C. Therefore M — K({φ °

/ C ° F W I φ G ifίAjf)}) = % V ? c ° W I Φ G CCA*)}) is a differential field of

Q-classical functions constructed by the abelian variety A. Let us denote F(v) simply

by F and put M = ti(φ°/'c°F\ φ G #(A^)}) = tt(φ°/>c°F\ φ G C ( Λ C ) } ) . Since

Jί is an A-primitive extension of # , Jί is a differential subfield of L (cf. [U2], Re-

mark 18.1). The point P G S' is a C-rational point of (S7, JO by Lemma (2.6). Let

us assume for a moment that / has a C-rational section s : A * G :/* °s = \άA.

We show that an extension Z/ => M is defined by linear algebraic groups. We may

assume by Corollary (3.3), whose proof involves only the additive group Ga that

(3.14.1) we can replace the field C of the constants of K by a finite algebraic ex-

tension.

By (3.14.1) and by considering a translation by a C-rational point, we may assume

that s is regular at / °υ(Spec L). Let Fι: S • G™ be a meromorphic map associ-

ated with υx = s° / °v : SpecL-^ G so that we have F1 = s° /> °F. Then twj"1 is a

L-rational point of NL and / °F1 = /' ° F. We may assume by a translation by a

C-rational point that Fx is regular at P. For any φ G C(GC), φ°F1 = φ°(s° /* °F)

= (φ ° s)°(/ ? F) is in i ί since (φ ° s) G CG4C). 0 = Iδiυ^v,) = Iδiv^1) +

Lv-ι*(lδ(v^)) by Lemma (3.13) and hence Iδiv^1) G Lie G ® c J ί since ^ is a

Jί-valued point. We have /δ(ι>J~ f) = /δί^" ) + Lv-\*lδ(v) by Lemma (3.12) and

hence Iδiv^v) G Lie GC®M. The point F : (P) and hence the point F^PΓ'FiP)

come from C-valued points of Gc and by Lemma (2.6), P is a C-valued point of (S\

M). Since Iδiv^v) G Lie G®CM Π LieΛ^ΘcL = LieN® C M, the extension // =

ίΓ(t ) = /^(^, i j" ^) = /ί(fL) (f j~ f) 3 M = /f(#L) is an iV-primitive extension satis-

fying the condition (4) of Definition (2.4) and the theorem is proved in this particular

case.

Let us now consider the general situation where there is no C-rational section

s :A - —• G. In this case we can find a finite algebraic field extension Cr of C, a fi-
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nite C'-morphism q : A —• Aσ of algebraic varieties and a C-rational map s':

A - - - —• Gc, such that /' σ°s' = q. We may assume C = C by Corollary (3.2) since

its proof involves only a linear algebraic group. We have an L-rational point /' L°v :

SpecL—» GL^>AL. For the same reason as in the preceding case, M— K({φ°p°F\

φ G K(Ak)}) ^ K is a differential field of Q-classical functions constructed from

if by the abelian variety A Similarly if we put Λί = X({φ°p°F\ φ G C(A)}) =>

# , Λ£ is a differential field of Q-classical functions. Since q :A—*AC, is finite,

there exist a finite algebraic field extension M^> M and a morphism w : Spec M

—• A such that the diagram

S p e c M »A

is commutative. Here the left vertical arrow is induced from the inclusion M^> M.

The restriction v | Spec M is denoted again by υ. M consists of Q-classical func-

tions obtained from M by a linear algebraic group by Proposition (3.12). We may

assume that since the extension M 3 M is finite algebraic, M is a subfield of L, s'

is regular at w (SpecM) and that q \ A—* Ac, is unramified over / ° F(P) as in

the preceding case. Hence we may assume that M is a field of meromorphic func-

tions over a small disc on Sf centered at P. Let us define vγ by composite ϋx :

Spec L—+ Spec M—• A —> G. The corresponding L-rational point SpecZ,—»

GL is denoted by vv We may assume that Fiv^ : S' * —* G c is regular at P. The

point P ^ S', M) may not be C-rational. In that case by adding classical numbers

to M by Corollary (3.2) which involves only a linear algebraic group, we may

assume that P is a C^ -rational point (we notice that ΘP(M) /mP(M) is a finite

algebraic extension of ΘP(M) /mP(M) (cf. [Z] Ch. VI, §6, Corollary 2)). It is suffi-

cient to show that the extension L = M(v) 3 M is iV-primitive satisfying the

rationality conditions of Definition (2.4). Now we have 2 L-rational points υ and

υx of GL. lδ(v) e Lie G ® $ί by induction hypotheses and hence is an element of

Lie G ® M ^ Lie G®M. Since vγ comes from an M -rational point of G j ,

lδ{v^) G Lie G® M. Therefore by the argument of the preceding case, we can

prove

Iδiv^'1) G Lie G®M.

Since the point P G (S', M) is Cj^ -rational, the extension L = M(v) = M(v,

v! ) = M(vϊ υ) ^> M is an iV-primitive extension satisfying the condition (4) of

Definition (2.4) and the theorem is proved.

Let Dlf D2 be domains of C and / , g Q-classical functions meromorphic on D
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and E. If / is regular on Dv fiDJ c D2 and if the image f{D^) is not contained

in the pole of g, we can speak of the composite function g°f.

THEOREM (3.15). If f and g are Q-classical, then the composite g°f is Q-classical.

Proof. We may assume by Theorem (3.7) t h a t / is not constant. We prove the

theorem by induction on the number of steps to obtain g. If g is in QCr), the

theorem holds. By Theorem (3.13) it is sufficient to check the theorem for a

G-primitive extension under the assumption that G is either the general linear

group or an abelian variety.

(3.16) G is the general linear group GLW. In this case the field extension is

given by an adjonction of a Q-classical solution F(x) = (/ ;Cr))i<i,j<n °f a linear

differential equation

F'ίz) = A(x)F(x)

with A(x) = (<2ί7Cr)) ^ Mn(K) where K is a field of known Q-classical functions

meromorphic over D2 and K is finitely generated over QCr). We assume that the

(Λ°/)'s are Q-classical for h e K and we have to prove that the / ί ; (/) ' s are

Q-classical. Since ftj(fY — f(j(f)f\ we have

(*) F(f)'=f'A(f)F(f).

We put L = QCrX/, aij(f)9fij(f)>1^u^Λ9K=Q(x)<f9 ^ ; (/)> 1 < ? ,; <w. Namely

L (resp. K) is the differential field generated by /, the # ί ; (/) ' s and the /,,(/)'s

(resp. b y / a n d the α o (/) ' s ) over QCr). By Lemma (3.5) there exist a Qc-valued

point P of (£>!, QCr)) such that / and the ai}(fYs are regular at P , F(f(P)) e

GLW(C) and such that if we put C = {h(p) \ h e 0PCK)}, then the field C con-

sists of classical numbers and is finitely generated over Q. We put # = Cf(x)(f,
aiM^ι<u<n' Then P is a C'-valued point of (Dlf # ) . Since t h e / v ( / ( P ) ) ' s are

classical numbers by Theorem (3.7) and F(f) satisfies the differential equation

(*), therefore t h e / ; (/) ' s are Q-classical by Corollary (3.11).

(3.17) Now we treat an A-primitive extension L/K for an abelian variety A.

Namely K is a differential field of known Q-classical functions meromorphic on

D2 and the field K is finitely generated over QCr). We assume that h°f is

Q-classical for h ^ K. The abelian variety A is defined over the field Cκ of con-

stants of K. Let Xlf X2y. . . ,Xd be C^-linearly independent vector fields on A with

d = dim A There exists a universal covering space π : C —* Ac such that π*(d/

dxt) = X; for 1 < i < d. Let z; : SpecL—>;4L be an L-rational point defining the

A-primitive extension L/K. Let F — F(v) : D2-+ Ac be the associated meromor-
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phic map. We may assume that F is regular, the map F factors through TΓ and that

there exists a regular map 9 : D2 —• C such that π°2? = F. It follows from our

assumption that (1) lδ(v) e LieAL = Lie A <g)cL lies in Lie A ® c if and that (2)

L = K({φ ° F\ φ ^ C(A)}). Let the regular map 2F : D2~^> C be given by .r—•

(gi(x)t g2(<χ)f'*gd^x^' W e n a v e d/dxi{π°φ) — π*(d/dx)(φ) for ^ e C(AC).

Hence

A ( o F ) = A ( o ogn = vrf 9 ^ O 7 Γ ) / = yd , d ( x

Hence /δ(«), = Σ t i ^ and &' e if. We have to check that (φ ° π ° ^ ) ° / is

Q-classical for φ e C(AC). Let us put G = π ° ^ ° / :A -> Z)2 -* Crf -^ Ac. It de-

fines a CίDi)-rational point w : SpecCiDj)-^ Ac(Dι). As we. have seen above

lδ(w) = Σ t i (^i(/))^*(9/9^) = ΣU&ifYXi. Since fe(/)}/ = ^ ( / ) / ' and

since #; e iΓ, {^(Z)}7 is Q-classical. Let us put X = Q(x) <{^ (/)}/>1<ί <rf. Then

by Lemma (3.5) there exist a point P ^ Dx and an extension C of the field C^ of

constants of # such that C consists of classical numbers and finitely generated

over QCr), the {^(/)}'s are regular at P and such that P is a C-valued point of

(Dlf XC). We have φ(G(P)) = (φ°F)(/(P)). By Theorem (3.7)/(P) is a clas-

sical number and hence φ(F(f(P)) — (φ°F)(f(P)) is a classical number for any

φ ^ C(AC) if FCP) is not a pole of φ since φ°F is a Q-classical function. Thus <p°

(π°^)°/is Q-classical for φ e CCAC) by Proposition (3.10). This is what we had

to prove.

COROLLARY (3.18). If a and b are classical numbers, then a is a classical num-

ber.

Proof. The function ex and blogx are Q-classical by Examples (2.12) and

(2.14). Hence the composite eblogx is Q-classical by Theorem (3.15). The value

e 8 of the Q-classical function at the classical number a is classical by Theorem

(3.7) which is equal to a .

§4. Elementary functions

J. Liouville [L] introduced the notion of elementary functions. All the functions

are meromorphic over a domain D of C.

DEFINITION (4.1). The field of elementary functions is generated by the fol-

lowing rules.
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(El) Every polynomial P(x) ^ C M is elementary.

(E2) If / and g are elementary functions, then the sum / + g, the difference

f — g, the product fg and the quotient f/g (if g Φ 0) are elementary.

(E3) Let alf a2J . . . ,an be elementary functions. If a function / satisfies an

algebraic equation / + aj + + an — 0, then / is elementary.

(E4) If/ is elementary, then log/ is elementary.

(E5) If/ is elementary, then e x p / is elementary.

Since logx is not single valued, the operation (E4) should be clarified. We

(1 — xΫ
denote by log x any branch of l o g x = log(l — (1 — x)) = 1 — x H ό *~

• * * (| 1 — x I < 1). If / is holomorphic on D c C, we replace Z) by a subdomain

Dr such that the branch logx is regular on f(D'). Then log/ is composite log 0 /

which is regular on D'.

Remark (4.1.1). It follows from the nature of the operations (E3), (E4) and

(E5) that if/ is an elementary function, then there exists almost a covering morph-

ism p : R—* P c of Riemann surfaces such t h a t / is single valued and meromorphic

over R.

EXAMPLES (4.2). The functions cos x = (etx + e~tx)/2, sin x = (etx — e~tx)/

1 i — x
2i and arc tan x = ~τy log ~^-τ_— are elementary. By similar formulas, arc sin x

and arc cos x are elementary.

LEMMA (4.3). If f is elementary, thenf is elementary.

Proof. The lemma is proved by induction on the number of operations to

obtain / from COr). For example if av a2i. . . ,an are elementary functions, / is

algebraic over C(av a2,.. .,#n) and if a[, af

2i.. .,af

n are elementary functions, then

/ ' is in C ( / , alf a2,. . . ,an, a[, a'2,. . . ,a'n) and hence elementary by (E2). Other

cases are treated as easily as the above case and hence we omit the proof.

PROPOSITION (4.4). An elementary function is classical.

Proof Since logx and e x p x are classical by Examples (2.12) and (2.14), the

proposition follows from Definition (1.9) and Theorem (1.12) by induction, start-

ing from CCr) on the number of times using the operations (El), (E2),. . . ,(E5) to
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obtain the elementary function.

The set of elementary functions is closed under the composition.

PROPOSITION (4.5). Let f, g be elementary functions, then the composite function

g°f is elementary.

Proof We prove the proposition by induction, starting from C(x) on the

number of times using the operations (El), (E2),. . . ,(E5) to obtain the function g.

If g £= CCr), then g°f is elementary by (E2). Let us assume that for any element

of a field K of elementary functions h°f is elementary. Let g be algebraic over K

gn + aλg
n~ι + + an = 0 with at<ΞK,l< ι< n. Then (g°f)n + (a^f)ig^

f) + + {an°f) — 0. Since the tf^/'s are elementary by induction hypoth-

esis, g°f is elementary by (E2). If g = log h for h e K, then g°f= (\ogh)°f =

log(h°f) is elementary by induction hypothesis and (E4). If g = exp h for h e K,

then g°f— (exp K)°f— exp(/z°/) is elementary by induction hypothesis and (E5).

In the definition of elementary function, it is natural to start from QCr).

DEFINITION (4.6). The field of Q-elementary functions is generated from

QCr) by the following rules.

(Fl) Any polynomial P(x) ^ QLr] is Q-elementary.

(F2) If / and g are Q-elementary functions, then the sum / + g, the differ-

ence f ~ g, the product fg and the quotient f/gixί g =£ 0) are

Q-elementary.

(F3) Let av a2,. . . ,an be Q-elementary functions. If a function / satisfies an

algebraic equation fn + aλf
n~ + + an = 0, then / is Q-ele-

mentary.

(E4) If/ is Q-elementary, then log/ is Q-elementary.

(E5) If/ is Q-elementary, then exp/ is Q-elementary.

A constant Q-elementary function is called an elementary number. The field

of Q-elementary numbers is denoted by Q .

EXAMPLE (4.7). The functions in Example (4.2) are Q-elementary. e =

exp (1) is an elementary number since exp x is Q-elementary and 1 is an

elementary number. Every algebraic number is elementary by (F3). Let fo(x) and

f^x) be branches of logx regular around 1 with /0(l) = 0,^(1) = 2πi. Then

(/0 — fλ) (1) = — 2πi is elementary and hence π is an elementary number.
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The argument of Lemma (4.1) allows us to prove the following.

PROPOSITION (4.8). If f is a Q-elementary function, then f is a Q-elementary

function.

The following proposition is proved by the same method as Proposition (4.5).

PROPOSITION (4.9). /// and g are Q-elementary, then the composite function g°f

is Q- elementary.

THEOREM (4.10). A Q-elementary function is (^-classical.

Proof. This follows from Theorem (3.15) by induction.

In particular we have

COROLLARY (4.11). The field Q e is a subfield ofQ°.

The following natural question arises.

PROBLEM (4.12). Is the field Q a proper subfield ofQc ? If so, contruct an example.

One can guess that an elliptic integral may give an example.

§5. Periods of algebraic varieties defined over Q

Let K be an algebraic number field and C be an elliptic curve defined over K.

Replacing K by a finite algebraic extensions, we may assume that there exist a

if-morphism / : C—*Y*K of degree 2. Let ω be a non-zero regular 1-form over

C ω G H (C, Ωc/K). If ω' ^ H (C, Ωc/K), then ωί = λω for some λ ^ K since

H°(C, Ωι

c/K) - K. Let γ e Hλ(C®κC, Q). We call fω a period of C over K.
Jr

PROPOSITION (5.1). Every period of an elliptic curve defined over an algebraic

number field is classical.

Proof. We have Q-morphism / : C Q — * P Q of algebraic curves. The set of
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Q-valued points of ( P c , Q(x)) are dense on P c . Therefore I co is expressed by
Jr

a finite sum of integrals (1 < z < n) on an open set of P c .

I h(x)dx
JPi

where Pif Q{ are Q-valued points of ( P c , Q W ) and h(x) is an algebraic func-

tion in Q ( C Q ) . Since h(x) is Q-classical, the above integral

h(x)dx
JPi

is classical by Theorem (3.8).

The above argument shows

PROPOSITION (5.2). Let C be an elliptic curve defined over a field K of classical

numbers. Then every period of C defined over K is classical.

Let now C be a smooth projective curve defined over a field K. Let γ be a

cycle on C (8)κ C. We call I ω a period of C over K. The above argument gives

us.

PROPOSITION (5.3). Let C be a curve defined over a field K of classical numbers.

Then every period of C defined over K is classical.

The most general form of this type of result is as follows.

THEOREM (5.4). Let V be a complete and non-singular algebraic variety defined

over a field of classical numbers. Let ω ^ H°(V, Ωv/K) and γ ^ Hλ(V®KC, Q).

Then the integral \ ω is a classical number.integral I ω is a classical
Jγ

Proof We may replace the field K by a finite algebraic extension by Corol-

lary (3.3). Therefore by Chow's Theorem there exist a non-singular projective

variety V obtained from V by a successive blowing-up p : V—> V. The variety V

and the morphism p are defined over K. We know that the morphism p induces an

isomorphisms p* : H°(VC, Ωyc) - H°(VC, Ωyc) and p* : H.iV^ Q) - H^V^
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Q). Therefore there exists a 1-cycle f on Vc such that p*f = j . Then //> α> =

/ ω — \ ω. Therefore we may assume that V is projective. then by a theorem
JP*r Jr

of Lefschetz there exists a smooth projective curve C on V defined over a finite

algebraic extension of K such that the morphism i% : H^CQ, Q) —* /^(V^,

Q) induced by the inclusion ί : C c V is surjective. Therefore there exist a

1-cycle δ e H^C^ Z) such that z*<5 = 7. Then fω=[ω= [i*ω. The

latter is a classical number by the argument of the proof of Proposition (5.1) and

the theorem is proved.

§6. Examples

EXAMPLE (6.1). The hypergeometric function.

The hypergeometric series F(a, b c x) is defined by

a. b a(a + l)b(b + 1) 2

a(a+ \){a + 2)b{b-
1.2.3. c(c+ 1)0 + 2) * ^

We know that the series is convergent and defines an analytic function for

I x\ < 1 (cf. [WW], Chap. XIV). The function F(a, b c x) is a solution of the

hypergeometric differential equation

2
d y Λ dy

(6.2) x(l — x) — - + ic — (a + b + l)x) -r- — aby = 0.

We show that the hypergeometric function F(α, b c x) is Q-classical as a func-

tion of x when a, b, c ^ Q with δ > 1, c — b > 1. In fact we have

Γ1

(6.3) F(flf ft c x) = Γ ( f e ) Γ ( g - f t ) J o ^ " ' d ~ ^ ^ " ' ( l - uxY'du

by [WW], Chap. XIV, 14.6 Example 1. It is sufficient to show by Corollary (3.11)

that the initial conditions of F(a, b c x) at a Q(/~~Ό-valued point \/~~ 1 of

(C, Q(/—T)Cr)) are classical: namely F(α, & c y/— 1), F ' (α, 6 c V~" 1)

are classical numbers. The integrand u (1 — u) (1 ~~ wx) as a function of

w is Q-classical by Proposition (3.12) and hence by Theorem (3.8) and Example

(3.9.2), the initial conditions
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F(a, b c; \/^T) = C u'^l -
J0

and

r1

(a, b c; y — 1) = / {— v ~ \au (1 —u) (1

are classical numbers.

It is natural to ask the following question.

PROBLEM (6.4). If a, b, c are classical, is the hyper geometric function F(a, b

c x) Q-classical?

EXAMPLE (6.5). The Weierstrass functions.

Let I ^ C be a lattice. We have seen in Example (2.15) that if g2(L) and

g3(L) are rational numbers, then ί? (x L) is Q-classical. The same argument

shows that Φ (x L) is Q-classical if g2(L) and g3(L) are classical. The function

ζCr) = ζ(x L) is defined by

ζCr) — x~ι = — j {& (x) — x~2}dx.
0

Since 0 ^ C is a Q(g2, ^3)-valued point of (C, QCr, %* (x), $'(x)) by Lemma

(2.4), ζ(x) — x is Q-classical and hence ζCr) is Q-classical if ^ 2 ^ a n d

^•3(L) are rational. More generally ζθr) is Q-classical if g2(L) and g3(L) are clas-

sical. The function σ(x) is defined by the differential equation

σ/(x)/σ(x) = ζ(x)

coupled with the condition σ(x) /x is regular at x — 0 and takes the value 1.

Namely

(σ(x)/xY
(σ(x)/x)

Since 0 e C is a Q(g2(L), g3(L))-rational point of (C, Q(£ 2(Z), &(£)) <x,

ζ(x)>), so σ(x) /x and consequently σCr) are Q-classical if g2(L) and ̂ "3(D are

classical numbers. (Q(g2(L), g3(L)){χ, ζ(x)} denotes the differential field gener-

ated by x and ζCr) over Q(g2(L), g3(D).
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More generally we can prove the following result.

PROPOSITION (6.5.1). The following conditions are equivalent.

(1) g2(L) and g3(L) are classical numbers.

(2) P (x L) is Q-classical.

(3) o{x L) is Q-classical.

(4) σ(x L), ζ(x Z,) and P (x Z,) αr<? Q-classical.

Proof. The equivalence of the conditions (2), (3) and (4) is proved by the

above argument. As in Example (2.15) we can prove that the condition (1) implies

the condition (2). Let us prove that the condition (2) implies the condition (1). If

P (x L) is Q-classical, then %?'(x L) is Q-classical too. We have an algebraic

differential equation

(6.5.2) P'Or LΫ = 4 P 0 r L) 3 - £2(L) ί? Cr L) - g3(L).

We can find two rational numbers α, b such that ί? Cr L) is regular at the

points a and £ and such that P (a L) Φ %? (b L) or equivalently

(6.5.3)
Via L) 1 φ Q

f?(b;L) 1

It follows from (6.5.2)

l l \g2(D] \4V(a;LΫ-

&(a; L), Pf(a L), V (b L) and P'ίft L) are classical by Theorem (3.7).

Hence (6.5.4) is a linear equation for g2(L) and g3(L) with coefficients in Q . By

condition (6.5.3), we can solve this linear equation so that g2(L), g3(L) e Q c .

EXAMPLE (6.6). The Legendre functions.

For n ^ C, the Legendre function Pn(x) is defined by

where C is a suitable contour (cf. [WW] Chap. XV, 15.2, p. 302-307). The Legen-

dre function Pn(x) satisfies the differential equation

(6.7) (1 - x2)d2Pn/dχ2 - 2xdPn/dx + n(n + l)Pn = 0.

Therefore if n is a classical number, the Legendre function Pn(x) is Q-classical
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by Corollary (3.11). The Legendre function Qn(x) of the second kind is defined by

Q (X) = ~τ~'—: / dt
n 4ι sin nπ JD 2nU — x)n+1

where D is a suitable contour. The Legendre function Qn(x) of second kind satis-

fies the differential equation (6.7) (cf. [WW], Chap. XV, 15.3, p. 316). By a similar

argument, we can prove that the Legendre function Qn(x) of the second kind is

Q-classical if n is a classical number.

EXAMPLE (6.8). The Bessel functions.

For an integer n, the Bessel function Jn (x) is defined by the formula

where the contour encircles the origin once counter-clockwise. The Bessel func-

tion Jn(x) is a solution of the linear differential equation

(6.9) d2y/dχ2 + (l/x)dy/dx + (1 - n/χ2)y = 0.

Therefore the Bessel function Jn(x) is Q-classical (if n is an integer) by the argu-

ment of Example (6.1). For a complex number the Bessel function Jn(x) is defined

by the equation

The Bessel function Jn(x) is a solution of the linear differential equation (6.9)

([WW], Chap. XVII, 17.2). It is natural to ask the following question.

PROBLEM (6.10). If n is a classical number, the Bessel function Jn(x) is

Q-classical?

EXAMPLE (6.11). The Jacobian elliptic functions.

For a complex number τ with Im τ > 0, we write q = eπtτ. The following four

types of theta functions are introduced. First Θ4(x, τ) is defined by the equation

Λ / \ V"» / i \ « n2 2πnix

Θ4(x, τ) = Σ ( - 1) q e

We put
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Θ3(x, τ) = θ\x + g- π, τj,

θλ(x, τ) = — ietx+ΊictTθ4(x + ^ T Γ Γ , r ) and

Θ2(x, τ) = tf^ r + g- 7Γ, r j .

We sometimes omit τ and write 0,-Cr, τ) — θ{{x) for 1 < z < 4. The relations

with the theta functions with characteristic defined for example in [Ml] are

, τ) = θx λ{x, τ),

Θ2(πx, τ) = θlo(x, τ),

Θ3(πx, τ) = θOQ{x, r ) ,

, τ) = βo l(α:, r ) .

We show that ί^Cr, r) , ^ ^ ^ r)» ^ ( ^ J r)» ^ 4(x, r) are Q-classical if and

only if the theta constants θ2 = Θ2(O, τ), β3 = 0(0, τ), 04 = 04(O, τ) are classical

(0i = 0i(0> τ ) = 0). Let us sketch the proof of this assertion. The only

if part follows from Theorem (3.7). Let us prove the if part. Let us put k =

02(O, r)/0 3(O, τ) and consider an elliptic curve w2 = (1 — w2)(l — /c2^2). If we

0301Cr/03

2)
put y — — . Differentiating the addition theorem and using Jacobi's

θA</θϊ)
derivative formula, we conclude that y satisfies the differential equation

(dy/dx)2 = (1 -y2)i\ ~k2y2)

(cf. [WW], Chap. XXI, 21.6).

The argument in Example (2.15) shows that

030i(^/03) n 1 . 1 w , f θ&ix/θl)
y = — is Q-classical. We denote y = — by sn x according to

0204Cr/03

2) 0 20 4Cz/0 3)
Jacobi. We set

en x =

dn x — —

Then we have

2 , 2 Λ

sn x + en x = 1,

A:2sn2χ + άn'x = 1
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(cf. [WW], Chap. XXII, 22.11).

Hence c n x and d m are Q-classical by Proposition (3.12). We write K =

I (1 — t2)~1/2(l — k2t2)~1/2dt which is classical by Theorem (3.8). Since we

have the equations

dsnx
dx

dcnx

dx

ddnx
dx

— en x dn x,

= -snxdni,

— — k snx cnx,

K= Q(0 2, 03, Θ4)(x, c m , s n i , dnx) is a differential field (see [WW], Chap.

XXII, 22.12) and 0 e C is a Q(θu 02, 03)-valued point of (C, i θ by the

Γ x 2

argument of Lemma (3.4). Hence the function E(x) — \ dn xdx is Q-classical.

We set K—~wd3 and £ = E(K). Then if is classical by assumption and by Ex-

ample (2.14) and hence E(K) is classical by Theorem (3.7). If we put θ(x) =

Θ4(xθ~2) and Z(x) = θ 'Cr)/θCr), then we know Z(x) = E(x) - xE/K and

Θ4(xθ~2) = θ4 Γ Z(x)dx by [WW], Chap. XXII, 22.731. Therefore Z(x) is

Q-classical and hence Θ4(xθ3 ) is Q-classical and consequently Θ3(xθ3 ),

θλ(xθ3 ), θ2(xθ3~ ) are Q-classical since we have seen s n x , d m , c m are

Q-classical. Since we assume that the theta constant θ3 is classical, by Theorem

(3.15) θ^x), 02Cr), Θ3(x), Θ4{x) are Q-classical.

It is natural to expect a generalization of what is proved above.

PROBLEM (6.12). Let 5 cz R be a carefully chosen set of theta characteristics so

that x—± (θm(x, τ))m(Es e P (N = I 5 I ~" 1) gives an embedding of elliptic curve

C/(Z + Zτ). Then the θm(x, r) 's are Q-classical if and only if the theta constants

0m(O, T) are classical?

EXAMPLE (6.13). The Gamma function.

Gauss defines the function Π(x) by

i L . Z . ό . . . . K x

X k
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ΛOO

and shows that ΠCr) = I e fdt, ΠCr) is a meromorphic function over C with

poles at Z_ = {» e Z I w < 0}. We have

(6.13.1) ΠCr + 1) = (x + l)ΠGr)

and Π(0) = 1. It follows ΐl(x) — x\ for a positive integer x. We notice that the

Gamma function introduced in [W.W] is equal to our ΠCr — 1). The notation of

[W.W] is standard but we use the notation of Gauss since we owe him much. It is

well known that the function ΠCr) satisfies no algebraic differential equation over

COr) or ΠCr), IT Or), Π ( 2 ) 0r) , . . . are algebraically independent over CCr). In par-

ticular ΠCr) is not classical. The value Π(r) of the Gamma function is, however,

classical for any rational number r if x — r is not a pole of ΠCr). In fact

ΐl(r) is related with periods of algebraic curves. The following marvelous idea is

due to Gauss [G].

He proved in article 24 of [G]

/ C 1 Q O , „, , -v Π(c - l)Π(g - a ~ b - 1)
(6.13.2) F(a, b,c;l) = Π ( * - α - 1 ) Π < * - 6 - 1)

if the real part R(c — a — b) > 0.

On the other hand it is easy to see

(6.13.3) t = sin t. F(^, \, \ sin2f).

Substituting t = y π in (6.13.3), we get

1/2)± n 1_ 3_ _1 \ Π
2 π ~ t\21 2' 2 ; 2/ Π(0)Π(0)

Since Π ^ j = "2 Π ( ~ 2) b? (6.13.1), we get π = Π ^ - -gj and hence

(6.13.4) Π ( - ^ ) = i/τr and π ( ^ ) = |

Substituting t — ~κ it in a similar formula

sin nt —n sin £. Fίy w + y, ~ y w + y, y, sin2π
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which is also easy to see, we get

. nπ _ nΠ(l/2)Π(-l/2)
_

s m 2 "
2 " Π ( - n/2)Π(n/2) '

If we put n = 2x, then it follows from (6.13.4) and (6.13.5),

(6.13.6)

(6.13.7)

/ 1 \
Now let us show how ΓIhr) is related with the elliptic integral

i 7~7Z ~ A which is a classical number by Theorem (3.8). Let λ, μ be
Jo (X-xY2

positive numbers. Then

( 6 . 1 3 . 8 ) C* λ~ι" u"v* °°

We evaluating (6.13.8) at x = 1, it follows, from (6.13.2)

It follows from (6.13.9) for λ = 1, μ = 4, v = - -^,

(61310) Π(l/4)Π(-l/2)
(6.13.10) A- Π ( - l / 4 )

Since π ( j ) Π ( - j ) = s i ^ ^ / 4 = ̂ /V8 by (6.13.6), we get by (6.13.4) and

(6.13.10)

Therefore Π ( y ) and Π( — -Λ are classical numbers. Now it follows from (6.13.2)

and (6.13.4) that Π(^r) is classical for n €= Z unless -r- is a negative integer.
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Next we show how Π( — -FJ, Π( — -^)f Π( — -jH and Π( — ~^j are related

with periods of an algebraic curve; we set

X' α fxV"
 = c X' α -*xγ> = D X' α TxΎ« = E

Γ—
Λ π —

^ =F.
Jo a-xY5

dx dx dx dx
Since Γ777 , rττ7 , Π77 and 1—77 are regular

α - x 5 ) 1 / 5 (1-xY5 a-χ) a-χY

differential of the first kind on the compactification of an algebraic curve p : i? —*

C, where R = {(x, y) e C2 | / = 1 - x5} and p(x, y) = x by definition, C, Z),

£\ F are classical numbers by Theorem (3.8). It follows from (6.13.2) and (6.13.8)

Π ( l / 5 ) Π ( - 3 / 5 ) Π ( l / 5 ) Π ( - 3 / 5 )

c i i α / 5 n u ι/b),υ π ( - i / 5 ) tJi π ( - 2 / 5 )

_,_ Π(l/5)Π(-4/5)
Γ —

Π ( - 3 / 5 )

By (6.13.1) π(g-j = g-Π ( - y j and hence we have

Π ( - 1/5) = [5C\DEF)]1/5, Π ( - 2/5) = [25C3D3/(E2F2)ι/\ Π ( - 3/5) =

[125C 2 ΰ 2 £ 2 /F 3 ] 1 / 5 , Π ( - 4/5) = (625CDEF)1/5.

It follows from (6.13.1) that Π(-F) is classical for n e Z except for w = — 5,

— 10, — 15,. . ., where ΠCr) has poles. For the same reason Π(r) is classical for

a rational number r unless r is a negative integer.

PROBLEM (6.14). For a classical number r not equal to a negative integer, is

U(r) classical?

The logarithmic derivative IT(x) /ΐl(x), which we denote by Ψ(x), is also an

interesting function. The value ¥(0) is the minus of Euler's constant:

- ?τ(0) = lim ( Σ I/A - log n).
n-*oo k=l

(cf. Article 30, Gauss [G]).
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It is natural to ask

QUESTION (6.15.1). Is Euler's constant classical?

Or more generally

Q U E S T I O N ( 6 . 1 5 . 2 ) . Is Ψ(r) c l a s s i c a l for a r a t i o n a l n u m b e r r ( r Φ — l ,

- 2 , . . . ) ?

Gauss proved that for integers m, n with 0 < n < m, ¥(— n/m) is a

Q-linear combination of

πcotilm/n), log 2, logn and cos(lm/n)\og(2 — 2 cos(lπ/n)),

I being integers satisfying 1 < / < n — 1. So it follows from the well-known for-

mula

Ψ(x+l) = Ψ(x) +1/(1 +x)

and Theorem (3.7) that Question (6.15.2) is reduced to Question (6.15.1).

§7. Concluding remarks

We can dispense with condition (A.3) of Definition (2.4). In fact this condition

is superfluous. Dropping this condition from Definition (2.4), we can arrive at

really a natural definition of Q-classical functions. Let us call thus obtained clas-

sical functions generalized Q-classical functions. All the results of this paper re-

main valid for generalized Q-classical functions. But their proofs are rather mes-

sy and if we present the whole theory in logical order, it would not be comprehen-

sive.

For this reason we want to clarify only two crucial points. In the course of

the explanation, disadvantage of arranging the theorems in logical order will be

apparent. Let us assume that the morphism r : S'' —> P c is ramified at the point

P G S' in Definition (2.4). We argue for simplicity under the hypothesis that

r(P) is not the point at infinity. We may replace S' by a disc D on S' centered at

P so that r:S' = D~>C c P ^ is defined by z-+ z = x - r(P), z being the

coordinate on the disc D. The number r(P) is a classical number and x — r(P) is

a Q-classical function since P is a C^-valued point of (D, # ) and QCr) c $1,

The function z is a Q-classical function by Proposition (3.12) for Q-classical

function. In other words we have to use Proposition (3.12) and it should be
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proved beforehand.

Now Lemma (2.3) holds if we replace QCr) by QCr, z) and x— a by z.

Namely we consider Laurent expansion with respect to z.

Now that Lemma (2.3) is modified, generalized Lemma (2.6) follows under the

assumption QCr, z) c X. The problem is how to prove that we may assume QCr,

z) c X, In fact since z is algebraic over X, OP(X(z)) /mP(X(z)) is finite algeb-

raic over ΰp{$ί) /mp(X) by [Z], Ch. VI, §6, Corollary 2 and hence consists of clas-

sical numbers by the argument of Corollary (3.2). We replace X of Definition (2.4)

by

X = X(z, ep(X(z)/mp(X(z))),

where we identify Op(X(z)) /mp(X(z)) canonically with a subfield of C. Then X

consists of generalized Q-classical functions and is finitely generated over QCr).

The point P is a C*(= 6P(X(z)) /mP(X(z))-rational point of CD, X) by the

generalized Lemma (2.3).

Once these lemmas are generalized, other results follow by a similar method.

When we defined Q-classical functions, we allowed all the algebraic groups.

Instead of doing this, we may restrict ourselves to one of the following categories

of algebraic groups:

(1) the linear algebraic groups;

(2) the commutative linear algebraic groups;

(3) the commutative algebraic groups;

(4) the abelian varieties.

The corresponding fields of constants are denoted by Q 1, Q c o h , Q c o and Q a v.

These are subfields of Q°. The first three fields Q 1, QC 0 1 and Qc° are algebraical-

ly closed by the proof of Theorem (3.1) since in these cases the additive group

Ga Q is contained in the categories.

The last remark is that we can start from any subfield F of C and define F°,
r\\i recoil j-»co , j-^av

F , F , F and F .

The following problem seems interesting in view of the solution of the algeb-

raic equation by Theta constants (cf. [Ul]) and Problem (6.12).

PROBLEM (7.1). Is Q or more generally F algebraically closed?
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Appendix

This part is added to help the reader who is not familiar with algebraic

geometry. Our aim here is not review rigorous definitions but to explain the termi-
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5 4 HIROSHI UMEMURA

nology of algebraic geometry in a down-to-earth language.

(Al) We begin with conventions in algebraic geometry. Let X be an algebraic

variety defined over a field k. (If one wants to be rigorous, one should say that X

is a /c-scheme of finite type ...etc.) We denote the structure sheaf of X by Θx or

simply by 0. So for a point x ^ X the fibre 6X is a local ring of the rational func-

tions on X which are regular at the point x of X (cf. [S], Chap. V). We denote by

mx the maximal ideal of the local ring ϋx so that τnx

=if^θx\ the rational func-

tion / , which is regular in a neighbourhood of x, vanishes at x). We set k(x) =

ΰx/mx so that k{x) is an over-field of k and we call k{x) the residue field of x

(cf. [H], Chap. II, Exercise 2.7).

(A2) Keeping the notation of (Al), we denote the λ -vector space of the sec-

tions of 6 on U by Γ(U, 6) or by H°(U, 6) for an open set U of X so that

Γ(U, 0) — H°(U, 6) is the ring of the rational functions of X which are regular

on U. Let / : X—* F b e a morphism of algebraic varieties over k. So / induces a

Λ -linear map Γ ( F , ΰγ) —* Γ(X, ΰγ) which we denote b y / .

(A3) Let X be as above. For a field extension K/k, the fibre product X
x spec A Spec K will be denoted by X®k K or by Xκ (cf. [S], Chap. 7, §4, where a

fibre product is simply called a product). So there is a canonical morphism Xκ~>

X. If f̂ is an affine variety so that A' is a closed subset of the affine space A* de-

fined by a set of polynomials fi(xv x2, . . . yXj e M ^ , «z2> > ^J> 1 — z — m

Since A: c: K, fi(xv x2, - > > ,«£«) e K[xlt x2,.-> ,xj and hence we can regard that

X c A^ which is intuitively nothing but Xκ. This alternative looks easy to under-

stand but unfortunately is not convenient if we want to treat the varieties syste-

matically. For this reason we have to define Xκ as X x S p e c k Spec K.

(A4) Let X and K/k be as above. A if-valued point of X is a /c-morphism

Spec K—* X of schemes.

(A4.1) We have a 1:1-correspondence between the elements of the following

sets:

(i) The set of the ϋΓ-valued points of X\

(ii) The set of the pairs (x, φ), where I is a point of X and φ is a

/c-morphism Ox/mx = k(x)-+K oί fields (cf. [H], Chap. II, Exercise 2.7).

Let v : Spec K —* X be a if-valued point so that a pair of a point .r £= X and

a /c-morphism <p : ux/rnx—* K corresponds. Let/ be a rational function regular at

x, i.e. / ^ ϋx. Then we denote <p(/) by f(v) and call it the value of the function /

at the if-valued point v, where/ i s the class of/ in ϋx/mx.

If these two equivalent conditions are difficult to understand, we can rephrase

the definition as follows. Since the question is local, we may assume that X is an

affine variety so that X is a closed subset for the Zariski topology of the affine
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space Ak. Then giving a if-valued point is equivalent to give a point x — (xlf x2i

. . . ,xn) e X c An

k whose coordinates xt (1 < i < n) are in K since k(x) = k(xlf

X2> - - - jχr) We prefer however the previous definition because it is more conve-

nient.

(A4.2) It follows from the definition of the fibre product Xκ that we have a

canonical bijection between the elements of the following sets:

(i) The set of the K-valued points of X\

(ii) The set of the /£-rational points of Xκ.

(cf. [S], Chap. V, §4 and [M2], Chap. II, §6).

(A5) There are a certain fixed notation for algebraic groups such as the

general linear group is denoted by GLW k when it is considered as an algebraic

group defined over a field k. The affine line Ak with group law of adding the coor-

dinates is called the additive group and denoted by Ga k. The affine line Ak minus

the origin with group law of multiplying the coordinates is called the multiplica-

tive group and denoted by Gm k so that GL : k = Gm k. When there is no danger of

confusing the reference field /c, GLW k, Ga kJ Gm k are simply denoted by GLW, Ga,

Gm. We refer the reader to Chap. I. of [BJ.

(A6) A rational map or a meromorphic map is denoted by a dotted arrow.

(A7) For an algebraic variety X defined over C, the associated analytic

space is denoted by Xan (cf. [S], Chap. VIII).
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