ON THE NUMBER OF DIFFEOMORPHISM CLASSES IN A CERTAIN CLASS OF RIEMANNIAN MANIFOLDS

TAKAO YAMAGUCHI

§ 0. Introduction

The study of finiteness for Riemannian manifolds, which has been done originally by J. Cheeger [5] and A. Weinstein [13], is to investigate what bounds on the sizes of geometrical quantities imply finiteness of topological types, —e.g. homotopy types, homeomorphism or diffeomorphism classes— of manifolds admitting metrics which satisfy the bounds. For a Riemannian manifold M we denote by R_M and K_M respectively the curvature tensor and the sectional curvature, by Vol(M) the volume, and by diam(M) the diameter.

Cheeger's finiteness theorem I [5]. For given n, Λ , V > 0 there exist only finitely many pairwise non-diffeomorphic (non-homeomorphic) closed $n(\neq 4)$ -manifolds (4-manifolds) which admit metrics such that $|K_{M}| \leq \Lambda^{2}$, diam $(M) \leq 1$, $Vol(M) \geq V$.

He proved directly finiteness up to homeomorphism for all dimension, and then for $n \neq 4$ used the results of Kirby and Siebenmann which show that finiteness up to homeomorphism implies finiteness up to diffeomorphism. For n=4, he put a stronger bound on $\|VR\|$, where VR denotes the covariant derivative of curvature tensor R. For given n, Λ , Λ_1 , V > 0, we denote by $\mathfrak{M}^n(\Lambda, \Lambda_1, V)$ a class of closed n-dimensional Riemannian manifolds M which satisfy the following bounds;

$$|K_{\scriptscriptstyle M}| \leq \varLambda^{\scriptscriptstyle 2}, \quad \| \overline{V}R_{\scriptscriptstyle M} \| \leq \varLambda_{\scriptscriptstyle 1}, \quad {
m diam}\,(M) \leq 1, \quad {
m Vol}\,(M) \geq V,$$
 and set $\mathfrak{M}(\varLambda, \varLambda_{\scriptscriptstyle 1}, V) = \bigcup_{\scriptscriptstyle R} \mathfrak{M}^{\scriptscriptstyle R}(\varLambda, \varLambda_{\scriptscriptstyle 1}, V).$

Cheeger's finiteness theorem II [5]. For given $n, \Lambda, \Lambda_1, V > 0$, the number $\sharp_{\text{diff}} \mathfrak{M}^n(\Lambda, \Lambda_1, V)$ of diffeomorphism classes in $\mathfrak{M}^n(\Lambda, \Lambda_1, V)$ is finite.

In the proof of the Cheeger finiteness theorem and our results as

Received March 27, 1984.

well, an estimate of the injectivity radius i(M) of the exponential map on M plays an important role. But since in his proof Ascoli's theorem is used essentially, it seems to us that it is impossible to bound the number $\sharp_{\text{diff}} \mathfrak{M}^n(\Lambda, \Lambda_1, V)$ explicitly from above by using the proof as in [5]. The main purpose of this paper is to show the existence of an upper bound for $\sharp_{\text{diff}} \mathfrak{M}(\Lambda, \Lambda_1, V)$ and express upper bounds for $\sharp_{\text{diff}} \mathfrak{M}^n(\Lambda, \Lambda_1, V)$ and $\sharp_{\text{diff}} \mathfrak{M}(\Lambda, \Lambda_1, V)$ explicitly in terms of a priori given constants. For a Riemannian manifold we denote by d the distance function induced from the Riemannian metric.

We obtain the following theorems.

THEOREM 1. For given $n, \Lambda, \Lambda_1, R>0$ there exist $\varepsilon_1 = \varepsilon_1(n) > 0, r_1 = r_1(n, \Lambda, \Lambda_1, R) > 0$ such that if complete n-dimensional manifolds M and \overline{M} satisfy the following conditions, then M is diffeomorphic to \overline{M} ;

- 1) $|K_M|$, $|K_{\overline{M}}| \leq \Lambda^2$, $||\overline{V}R_M||$, $||\overline{V}R_{\overline{M}}|| \leq \Lambda_1$, i(M), $i(\overline{M}) \geq R$,
- 2) for some $r, r \leq r_i$, and $\varepsilon, \varepsilon \leq \varepsilon_i$, there exist $2^{-(n+\delta)}r$ -dense and $2^{-(n+\delta)}r$ -discrete subsets $\{p_i\} \subset M$, $\{q_i\} \subset \overline{M}$ such that the correspondence $p_i \to q_i$ is bijective and $(1+\varepsilon)^{-1} \leq d(q_i, q_j)/d(p_i, p_j) \leq 1+\varepsilon$ for all p_i, p_j with $d(p_i, p_j) \leq 20r$. ε_i and r_i can be written explicitly; e.g.

$$egin{aligned} arepsilon_1 &= 10^{-20} (n+1)^{-8} (n!)^{-2} 2^{-(2n^2+41n)} \,, \ r_1 &= \min \left\{ R/140, \, arepsilon_1/20 A, \, \sqrt[8]{10^{-3} n^{-5} 2^{-((n^2+17n)/2)} A_1^{-1}}, \, (10(2n^2 A^2+1))^{-1}
ight\} \,. \end{aligned}$$

For a metric space X a subset A is δ -dense iff for any $x \in X$, $d(x, A) < \delta$. A subset A is δ -discrete iff any two points of A have the distance at least δ .

Let ω_n denote the volume of the standard unit n-sphere. If we set $R = \min \{\pi/\Lambda, (n-1)V/(2\omega_{n-2}e^{(n-1)A})\}$, then R gives a lower bound of the injectivity radii i(M) for all M in $\mathfrak{M}^n(\Lambda, \Lambda_1, V)$, and every M in $\mathfrak{M}(\Lambda, \Lambda_1, V)$ has the dimension at most n_0 , where $n_0 = 2 \max \{[\log (k^{k+2}/k! \ V)], k\} + 3$, $k = [\pi e^{2A+1}] + 1$, (§ 1. Lemma). Let $\varepsilon_1 = \varepsilon_1(n)$, $r_1 = r_1(n, \Lambda, \Lambda_1, R)$ be as in Theorem 1.

THEOREM 2.

$$egin{align} & \# & \mathbb{M}^n(arLambda, \ arLambda_1, \ V) \leq (2^{2n+17} / arepsilon_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \# & \mathbb{M}(arLambda, \ arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arepsilon_1 r_1^2)^{inom{N_0}{2}+1} N_0, \ & \# & \mathbb{M}(arLambda, \ arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arepsilon_1 r_1^2)^{inom{N_0}{2}+1} N_0, \ & \# & \mathbb{M}(arLambda, \ arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \# & \mathbb{M}(arLambda, \ arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \# & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \# & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \# & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \# & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \# & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \# & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^{n_0} (2^{2n+17} / arLambda_1 r_1^2)^{inom{N_0}{2}+1} N_0 \,, \ & \mathbb{M}(arLambda_1, \ V) \leq \sum_{n=0}^$$

where, $N_0 = [e^{\Lambda(n-1)}/(\Lambda 2^{-(n+9)}r_1)^n].$

Here we descrive another application of Theorem 1. For a bi-Lipschitz map $f: X \rightarrow Y$ between two metric spaces X and Y, set

$$l(f) := \inf \{L; L^{-1} \le d(f(x), f(y)) / d(x, y) \le L \text{ for all } x, y \in X\}.$$

Definition. Define $\rho(X, Y)$ by

$$\begin{cases} \inf \{ \log l(f); f: X \rightarrow Y \text{ is bi-Lipschitz map} \} \\ \infty \quad \text{if any bi-Lipschitz map does not exist.} \end{cases}$$

It is clear that ρ is symmetric and satisfies the triangle inequality. In the case X and Y are compact, Ascoil's theorem implies

$$\rho(X, Y) = 0$$
 iff X is isometric to Y.

For a positive integer n we denote by \mathfrak{A}^n a class of complete n-dimensional Riemannian manifolds M with

$$|K_M| < \infty$$
, $\|\nabla R_M\| < \infty$, $i(M) > 0$.

Of course \mathfrak{A}^n contains all compact Riemannian manifolds of dimension n. Conversely, according to [7] every noncompact n-manifold admits a metric which belongs to the class \mathfrak{A}^n . A theorem of Shikata [12] states that there exists an $\varepsilon(n) > 0$ depending only on n such that if compact n-dimensional Riemannian manifolds M and N satisfy $\rho(M, N) < \varepsilon(n)$, then they are diffeomorphic. We do not know whether ρ is distance on \mathfrak{A}^n , but can extend the Shikata theorem to the class \mathfrak{A}^n . Let $\varepsilon_1 = \varepsilon_1(n)$ be as in Theorem 1 again.

COROLLARY 3. If M and $N \in \mathfrak{A}^n$ satisfy $\rho(M, N) < \log (1 + \varepsilon_1)$, then they are diffeomorphic.

Recently M. Gromov [8], [9] states without giving detail of the proof that a similar result to Theorem 1 holds without the assumption for $\|VR\|$. But our Theorem 1 is still valid for noncompact manifolds. However the assumption for $\|VR\|$ is essential in the proof of our Theorem 1. Our proof is of course different from Gromov's one. The main tool of our proof is a technique of center of mass which is developed in [2].

The remainder of the paper is organized as follows: Assuming Theorem 1, the proofs of Theorem 2 and Corollary 3 are given in Section 1. Theorem 1 is proved in Section 2-Section 4.

The author wishes to thank Professor K. Shiohama for his advice and encouragement.

§ 1. Proofs of Theorem 2 and Corollary 3

For a $\delta > 0$, a system of points $\{x_i\}$ in a metric space X is called a δ -maximal system of X if $\{x_i\}$ is maximal with respect to the property that the distance between any two of them is greater than or equal to δ . $\{x_i\}$ is a δ -maximal iff it is a δ -dense and δ -discrete subset. We show that there exists a δ -maximal system of every Riemannian manifold M. Take a sequence X_i of compact subsets of M such that $\bigcup_i X_i = M$, $\mathring{X}_{i+1} \supset X_i$, where \mathring{A} denotes the interior of a set A. We denote by $i(X_k)$ the infimum of the injectivity radius of the exponential map at points of X_k , and set $r_k := \frac{1}{2} \min{\{\delta, i(X_k)\}}$. Take a δ -maximal system $\{p_i^1\}_{1 \leq i \leq N_k}$ of X_i . Notice that since the balls $B(p_i^1, r_i)$ have compact closure, they are contained in some X_{k_1} , and together with the fact that $B(p_i^1, r_i)$ are disjoint, this implies

$$N_1 \leq \operatorname{Vol}(X_{k_i})/\min \operatorname{Vol}(B(p_i^1, r_i))$$
.

By induction, it is possible to take a δ -maximal system $\{p_i^k\}_{1 \leq i \leq N_k}$ of X_k such that $p_i^k = p_i^j$ for every j < k and every $i, 1 \leq i \leq N_j$. Then the system $\bigcup_{k=1}^{\infty} \{p_i\}_{N_{k-1}+1 \leq i \leq N_k}$ is a δ -maximal system of M, where $N_0 := 0$.

Proof of Corollary 3 assuming Theorem 1. By the assumption there exists a bi-Lipschitz map $f: M \to N$ such that $l(f) < 1 + \varepsilon_1(n)$. We may assume

$$|K_{M}|, |K_{N}| \leq \Lambda^{2}, \|VR_{M}\|, \|VR_{N}\| \leq \Lambda_{1}, \quad i(M), i(N) \geq R,$$

for some Λ , Λ_1 , R > 0. Let $r_1 = r_1(n, \Lambda, \Lambda_1, R)$ be as in Theorem 1, and take a $(1 + \varepsilon_1)2^{-(n+\theta)}r_1$ -maximal system $\{p_i\}$ of M. Since f is bi-Lipschitz, it is surjective. Therefore it is easy to show that $\{f(p_i)\}$ is $2^{-(n+\theta)}r_1$ -dense and $2^{-(n+\theta)}r_1$ -discrete. Q.E.D.

To prove Theorem 2 we recall an injectivity radius estimate. From now on, for given n and $\delta > 0$, let $v(\delta)$ (resp. $\tilde{v}(\delta)$) denote the volume of a δ -ball in the n-dimensional hyperbolic space with constant curvature $-\Lambda^2$ (resp. n-sphere with constant curvature Λ^2). The following lemma is a dimension independent version of [5], [10] and [11].

LEMMA. For given Λ , V > 0, there exist $n_0 = n_0(\Lambda, V)$ and $R_0 = R_0(\Lambda, V)$ > 0 such that if M is an n-dimensional compact Riemannian manifold such that $|K_M| \leq \Lambda^2$, diam $(M) \leq 1$, Vol $(M) \geq V$, then

- (1) $n = \dim M \leq n_0$,
- (2) $i(M) \ge \min \{\pi/\Lambda, (n-1)V/(2\omega_{n-2}e^{(n-1)\Lambda})\} \ge R_0$

where n_0 and R_0 can be written explicitly as

$$n_0 = 2 \max \{ [\log (k^{k+2}/k! \, V)], \, k \} + 3, \quad k = [\pi e^{2A+1}] + 1, \ R_0 = \min_{2 \le n \le n_0} \{ \pi/\Lambda, \, (n-1) \, V/(2\omega_{n-2} e^{(n-1)A}) \} \, .$$

Proof. For (1), the Rauch comparison theorem yields

$$V \leq \operatorname{Vol}(M) \leq v(1) \leq \omega_{n-1} e^{(n-1)A},$$

where

$$\omega_{n-1} = egin{cases} 2\pi^m/(m-1)! & (n=2m) \ 2(2\pi)^m/(2m-1)(2m-3)\cdots 3\cdot 1 & (n=2m+1) \,. \end{cases}$$

Notice that

$$\lim_{n\to\infty}\omega_{n-1}e^{(n-1)A}=0.$$

It is an easy calculation to estimate such an n_0 that $\omega_{n-1}e^{(n-1)A} < V$ for all $n > n_0$. For (2), it suffices to bound the lengths of closed geodesics from below. Suppose that there is a closed geodesic with length l. The Rauch comparison theorem implies that $\operatorname{Vol}(M)$ is not greater than the volume of the tublar neighborhood of radius 1 of a geodesic segment with length l in the n-dimensional hyperbolic space with constant curvature $-\Lambda^2$. Therefore we get

$$egin{align} \operatorname{Vol}\left(M
ight) & \leq l \cdot \omega_{n-2} \int_0^1 \left(\sinh arLambda t/arLambda
ight)^{n-2} \cosh arLambda t \, dt \ & = l \cdot \omega_{n-2} (\sinh arLambda)^{n-1}/(n-1) arLambda^{n-1} \ & \leq l \cdot \omega_{n-2} e^{(n-1)arLambda}/(n-1) \, . \end{split}$$

Hence
$$l \ge (n-1)V/(\omega_{n-2}e^{(n-1)A})$$
, and this yields (2). Q.E.D.

Proof of Theorem 2 assuming Theorem 1. For each $M_{\alpha} \in \mathfrak{M}^{n}(\Lambda, \Lambda_{1}, V)$, take a $2^{-(n+8)}r_{1}$ -maximal system $\{p_{i}^{\alpha}\}_{i}$ of M_{α} . Note that since diam $(M_{\alpha}) \leq 1$,

$$\sharp \left\{ p_i^{\alpha} \right\}_i \leq v(1)/\tilde{v}(2^{-(n+9)}r_1) \leq \left[e^{(n-1)A}/(A2^{-(n+9)}r_1)^n \right] = N_0.$$

Set $m:=\sharp_{\mathrm{diff}}\mathfrak{M}^n(\Lambda,\Lambda_1,V),\ L:=1/(2^{-(n+8)}r_1)$ and $\varepsilon_1':=\varepsilon_1/(2(1+\varepsilon_1)L)$. Suppose that

$$m > (2^{2n+17}/\epsilon_1 r_1^2)^{\binom{N_0}{2}+1} N_0 > ([L/2\epsilon_1'] + 1)^{\binom{N_0}{2}+1} N_0$$
.

Then $\mathfrak{M}^n(\Lambda, \Lambda_1, V)$ contains at least $[m/N_0]$ pairwise non-diffeomorphic manifolds $\{M_a\}_{a\in A}$ with the $2^{-(n+8)}r_1$ -maximal systems whose numbers are all the same, say $N_1, N_1 \leq N_0$. We concider the set

$$\Sigma := \left\{ (i_{\scriptscriptstyle k}, j_{\scriptscriptstyle k}); \ 1 \leq k \leq {N_{\scriptscriptstyle 1} \choose 2} := N_{\scriptscriptstyle 1}' \right\}$$

of all the distinct pairs of the indices of the systems $\{p_i^{\alpha}\}_i$ for $\{M_{\alpha}\}_{\alpha \in A}$. For each M_{α} and M_{β} $(\alpha, \beta \in A)$, and for each $(i_k, j_k) \in \Sigma$, we set $l(\alpha, \beta; k) = d(p_{i_k}^{\beta}, p_{j_k}^{\beta})/d(p_{i_k}^{\alpha}, p_{j_k}^{\alpha})$. Notice that $L^{-1} \leq l(\alpha, \beta; k) \leq L$. We fix some $\alpha \in A$. For $(i_1, j_1) \in \Sigma$ there is a $t_1 \in [L^{-1}, L]$ such that if

$$A_1 := \{ \beta \in A; \ l(\alpha, \beta; 1) \in [t_1 - \varepsilon_1', t_1 + \varepsilon_1'] \}$$

then $\sharp A_1 \ge [m/N_0]([L/2\epsilon_1] + 1)^{-1}$. By induction, for $(i_k, j_k) \in \Sigma$ there is a $t_k \in [L^{-1}, L]$ such that if

$$A_k := \{ \beta \in A_{k-1}; \ l(\alpha, \beta; \ k) \in [t_k - \varepsilon'_1, \ t_k + \varepsilon'_1] \}$$

then $\sharp A_k \geq [m/N_0]([L/2\varepsilon_1]+1)^{-k}$. By the assumption on m, it is possible to take distinct pair β and β' in $A_{N_1'}$. Then $|l(\alpha, \beta; k) - l(\alpha, \beta'; k)| \leq 2\varepsilon_1'$ for all $k, 1 \leq k \leq N_1'$, and this implies $(1 + \varepsilon_1)^{-1} \leq l(\beta, \beta'; k) \leq 1 + \varepsilon_1$. This is a contradiction since by Theorem 1 M_β is diffeomorphic to $M_{\beta'}$. The estimate for $\sharp_{\text{diff}} \mathfrak{M}(\Lambda, \Lambda_1, V)$ is an immediate consequence of the previous lemma (1) and the estimate for $\sharp_{\text{diff}} \mathfrak{M}^n(\Lambda, \Lambda_1, V)$. Q.E.D.

§ 2. Construction of local diffeomorphisms

The rest of this paper is devoted to the proof of Theorem 1. For given $n, \Lambda, R > 0$, set $R_0 := \frac{1}{2} \min{\{R, \pi/\Lambda\}}$ and let r and ε be adjustable parameters with $0 < r \le R_0/70$, $0 < \varepsilon \le 2^{-(n+14)}$. From now on we denote by M and \overline{M} complete n-dimensional Riemannian manifolds which satisfy the conditions in Theorem 1 for r and ε . In the final part of the proof, we will set $r \le r_i$, and $\varepsilon \le \varepsilon_i$. We use the bound for $\| \overline{V}R \|$ actually only in Section 4. Let $\{p_i\} \subset M$ and $\{q_i\} \subset \overline{M}$ be $2^{-(n+8)}r$ -dense and $2^{-(n+9)}r$ -discrete subsets as in Theorem 1. For given $p \in M$ and $\delta > 0$, we denote by M_p the tangent space of M at p, and by $B(p, \delta)$ the δ -ball with center p. Note that all δ -balls with $\delta \le R_0$ in M and \overline{M} are convex and that by the Rauch comparison theorem, for any $v, w \in M_p$ with $\|v\|$, $\|w\| \le t, t \le R_0$

$$\sin \Lambda t/\Lambda t \leq d(\exp_p v, \exp_p w)/\|v - w\| \leq \sinh \Lambda t/\Lambda t$$
.

The purpose of this section is to prove the following lemma.

LEMMA 2.1. For each i there exists a linear isometry I_i from M_{p_i} to \overline{M}_{q_i} such that if $F_i := \exp_{q_i} \circ I_i \circ \exp_{p_i}^{-1} : B(p_i, R_0) \to B(q_i, R_0)$, then $d(F_i(p_j), q_j) \le \delta_i r$ for every p_i with $d(p_i, p_j) \le 10r$, where

$$\delta_1 = 2(n+1)(6^{n+2}n!2^{(n/2)+7})^{1/2}(40\Lambda r + 2\varepsilon)^{1/4}.$$

Proof. Set $\tilde{p}_j := \exp_{p_i}^{-1}(p_j)$ and $\tilde{q}_j := \exp_{q_i}^{-1}(q_j)$. Then $\{\tilde{p}_j\}$ and $\{\tilde{q}_j\}$ are $2^{-(n+7)}r$ -dense and $2^{-(n+10)}r$ -discrete subsets of the 10r-ball around 0 and satisfy $(1+\varepsilon)^{-1}e^{-20Ar} \le \|\tilde{q}_j - \tilde{q}_k\|/\|\tilde{p}_j - \tilde{p}_k\| \le (1+\varepsilon)e^{20Ar}$ for all $j, k, j \ne k$. Hence Lemma 2.1 is a direct consequence of the following.

LEMMA 2.1'. Let $\{x_i\}$ be a $2^{-(n+7)}r$ -dense and $2^{-(n+10)}r$ -discrete subset of $B(0,r) \subset \mathbb{R}^n$ with $x_1 = 0$. If a system $\{y_i\}$ of points in B(0,r) with $y_1 = 0$ satisfies $(1+\varepsilon)^{-1} \leq \|y_i - y_j\|/\|x_i - x_j\| \leq 1+\varepsilon$ for every $i \neq j$. Then there exists a linear isometry I of \mathbb{R}^n such that

$$||I(x_i) - y_i|| \le (n+1)(6^{n+2} \cdot n! \cdot 2^{(n/2)+7} \cdot \varepsilon^{1/2})^{1/2}r$$

for every i.

For the proof of the Lemma 2.1', it is convenient to introduce the following notion, a normal system, and to investigate some properties of a normal system. This is done in Lemma 2.3-Lemma 2.5.

DEFINITION 2.2. For $0 \le \eta < 1$ and r > 0, we say that a system of n points $\{p_i\}_{1 \le i \le n}$ of \mathbf{R}^n is (r, η) -normal if $(1 - \eta)r \le \|p_i\| \le r$, $|\langle p_i, p_j \rangle| \le \eta r^2$ for every $i \ne j$.

Lemma 2.3. For every $L \geq n+1$, let $\{p_i\}_{1 \leq i \leq n}$ be an $(r, 2^{-L})$ -normal system for \mathbb{R}^n . If we set $p_i' := p_i - \langle p_i, u_1 \rangle u_1 - \cdots - \langle p_i, u_{i-1} \rangle u_{i-1}$, $u_i := p_i' || p_i'|$ inductively, then

- (1) $||p_i'|| \ge (1 2^{-(L-i)})^{1/2} r \ge (1 2^{-(L-i)}) r$,
- $(2) |\langle p_k, u_i \rangle| \leq 2^{-(L-i)} r$

for every i, k with k > i.

Proof. For i = 1, (1) and (2) are trivial. Assume (1), (2) for j, $1 \le j \le i$. Then we get

$$egin{aligned} \|p_{i+1}'\|^2 &= \|p_{i+1}\|^2 - \langle p_{i+1}, u_1
angle^2 - \cdots - \langle p_{i+1}, u_i
angle^2 \ &\geq ((1 - 2^{-L})^2 - 2^{-2(L-1)} - \cdots - 2^{-2(L-i)})r^2 \ &\geq (1 - 2^{-(L-i-1)})r^2 \geq (1 - 2^{-(L-i-1)})^2 r^2, \end{aligned}$$

and for k > i + 1,

$$|\langle p_k, u_{i+1} \rangle| \le \|p'_{i+1}\|^{-1} (|\langle p_k, p_{i+1} \rangle| + |\langle p_{i+1}, u_i \rangle|| \langle p_k, u_i \rangle| + \cdots + |\langle p_{i+1}, u_i \rangle|| \langle p_k, u_i \rangle|)$$

$$\le 2(2^{-L} + 2^{-2(L-1)} + \cdots + 2^{-2(L-i)})r \le 2^{-L+i+1}r.$$

Thus for $L \ge n+1$, the Gram-Schmidt orthonormalization procedure yields the orthonormal basis $\{u_i\}$ for \mathbb{R}^n via an $(r, 2^{-L})$ -normal system $\{p_i\}$.

LEMMA 2.4. If $\{p_i\}_{1\leq i\leq n}$ is an $(r, 2^{-L})$ -normal system for \mathbb{R}^n , and if for some $\delta > 0$, x and y in \mathbb{R}^n satisfy

$$||x||, ||y|| \le r, \quad |||x|| - ||y|| \le \delta, \quad |||x - p_i|| - ||y - p_i|| \le \delta$$

for all $i, 1 \le i \le n$, then $||x - y|| \le 3(n + 2^{-L+n+4})\delta$.

Proof. Notice that

$$|\langle p_i, x-y \rangle| = 2^{-1} ||x||^2 - ||y||^2 + ||p_i - y||^2 - ||p_i - x||^2| \le 3\delta r.$$

By induction, we show that

$$|\langle u_i, x - y \rangle| \le 3(1 + 2^{-L + i + 1})^2 \delta.$$

This is trivial for i = 1. Assume (*) for j, $1 \le j \le i$. Then we have with Lemma 2.3

$$|\langle u_{i+1}, x - y \rangle| \le \|p'_{i+1}\|^{-1} (|\langle p_{i+1}, x - y \rangle| + |\langle p_{i+1}, u_1 \rangle||\langle u_1, x - y \rangle| + \cdots + |\langle p_{i+1}, u_i \rangle||\langle u_i, x - y \rangle|)$$

$$\le 3(1 - 2^{-L+i+1})^{-1} (1 + 2^{-(L-1)} (1 + 2^{-L+2})^2 + \cdots + 2^{-(L-i)} (1 + 2^{-L+i+1})^2) \delta$$

$$\le 3(1 + 2^{-L+i+2}) (1 + 2^{-L+2} + \cdots + 2^{-L+i+1}) \delta$$

$$< 3(1 + 2^{-L+i+2})^2 \delta.$$

Hence we conclude that

$$||x-y|| \leq \sum_{1}^{n} |\langle u_i, x-y \rangle| \leq \sum_{1}^{n} 3(1+2^{-L+i+1})^2 \delta \leq 3(n+2^{-L+n+4}) \delta.$$
 Q.E.D.

LEMMA 2.5. For k, $1 \le k \le n$, and $L \ge k + 2$, let $\{e_i\}_{1 \le i \le k} \subset \mathbb{R}^n$ be a $(1, 2^{-L})$ -normal system for the linear subspace spanned by $\{e_i\}$ with $\|e_i\| = 1$ for all i. If two unit vectors x and y which belong to $\operatorname{Span} \{e_i\}_{1 \le i \le k}$ satisfy the following inequalities;

$$|\langle (e_i, x) - \langle (e_i, y)| < \alpha \quad (1 < i < k - 1), \langle x, e_i \rangle > 3/4, \langle y, e_i \rangle > 3/4,$$

then $\langle (x,y) \leq 6((k-1)+2^{-L+k+3})\alpha$, where $\langle (x,y) \rangle$ denotes the angle between x and y.

Proof. Notice that
$$|\langle e_i, x \rangle - \langle e_i, y \rangle| \le \alpha$$
 ($1 \le i \le k-1$), and $2^{-1} \not < \langle x, y \rangle \le \sin \not < \langle x, y \rangle \le \|x-y\|$.

Hence it suffices to estimate ||x-y|| from above. Let $\{u_i\}$ be an orthonormal basis for Span $\{e_i\}$ obtained by the Gram Schmidt process from $\{e_i\}$. From Lemma 2.4 (*), we get $|\langle u_i, x-y\rangle| \leq (1+2^{-L+i+1})^2 \alpha$ $(1\leq i\leq k-1)$. By Lemma 2.3,

$$\langle u_k, x \rangle \ge \|e_k'\|^{-1} (\langle e_k, x \rangle - |\langle e_k, u_1 \rangle) \|\langle u_1, x \rangle| - \cdots - |\langle e_k, u_{k-1} \rangle) \|\langle u_{k-1}, x \rangle\|$$

 $\ge \langle e_k, x \rangle - 2^{-L+1} - \cdots - 2^{-L+k-1} \ge 3/4 - 2^{-L+k} \ge 1/2.$

Hence the inequality;

$$|\langle u_{\scriptscriptstyle k}, x
angle^{\scriptscriptstyle 2} - \langle u_{\scriptscriptstyle k}, y
angle^{\scriptscriptstyle 2}| = \left|\sum\limits_{\scriptscriptstyle 1}^{\scriptscriptstyle k-1} (\langle u_{\scriptscriptstyle i}, x
angle^{\scriptscriptstyle 2} - \langle u_{\scriptscriptstyle i}, y
angle^{\scriptscriptstyle 2})
ight| \leq 2\sum\limits_{\scriptscriptstyle 1}^{\scriptscriptstyle k-1} \langle u_{\scriptscriptstyle i}, x - y
angle|$$

implies

$$|\langle u_k, x - y \rangle| \leq 2 \sum_{i=1}^{k-1} |\langle u_i, x - y \rangle|,$$

and this yields that

$$||x - y|| \le \sum_{1}^{k} |\langle u_i, x - y \rangle| \le 3 \sum_{1}^{k-1} (1 + 2^{-L+i+1})^2 \alpha$$

 $\le 3((k-1) + 2^{-L+k+3})\alpha$. Q.E.D.

From now we return to the situation in Lemma 2.1'. Let $\{x_i\}$ be a $2^{-(n+7)}r$ -dense and $2^{-(n+10)}r$ -discrete subset of B(0, r) and let $\{y_i\}$ be a system of points in B(0, r) with $y_1 = 0$ such that

$$(1+\varepsilon)^{-1} \leq \|y_i - y_j\|/\|x_i - x_j\| \leq 1+\varepsilon$$
 for every $i \neq j$.

Lemma 2.6.
$$|\langle (x_i, x_j) - \langle (y_i, y_j)| \leq 2^{(n/2)+8} \varepsilon^{1/2}$$
 for every $i \neq j$.

Proof. Set $\alpha_{i,j} := \swarrow (x_i, x_j)$ and $\beta_{i,j} := \swarrow (y_i, y_j)$. First we show that $|\cos \alpha_{i,j} - \cos \beta_{i,j}| \le 2^{(n+13)} \varepsilon$. Set $\kappa = 1 + \varepsilon$, then we get

$$\cos \alpha_{i,j} = (\|x_i\|^2 + \|x_j\|^2 - \|x_i - x_j\|^2)/2\|x_i\|\|x_j\|$$

$$\leq (\kappa^2(\|y_i\|^2 + \|y_j\|^2) - \kappa^{-2}\|y_i - y_j\|^2)/2\|x_i\|\|x_j\|$$

$$= (\kappa^2(2\|y_i\|\|y_j\|\cos \beta_{i,j} + \|y_i - y_j\|^2) - \kappa^{-2}\|y_i - y_j\|^2)/2\|x_i\|\|x_j\|$$

$$= \kappa^2 \cos \beta_{i,j} \cdot \|y_i\|\|y_j\|/\|x_i\|\|x_j\| + (\kappa^2 - \kappa^{-2})\|y_i - y_j\|^2/2\|x_i\|\|x_j\|$$

$$\leq \kappa^4 \cos \beta_{i,j} + (\kappa^2 - \kappa^{-2})(2^{(n+10)}\kappa + \kappa^2),$$

$$\cos \alpha_{i,j} - \cos \beta_{i,j} \le (\kappa^4 - 1) \cos \beta_{i,j} + (\kappa^2 - \kappa^{-2})(2^{(n+10)}\kappa + \kappa^2)$$
 $< 2^{(n+13)}\varepsilon$:

Hence we can get that $|\cos \alpha_{i,j} - \cos \beta_{i,j}| \leq 2^{(n+13)} \varepsilon$, and this yields

$$egin{align} & 2(\sin{(|lpha_{i,j}-eta_{i,j}|/2)})^2 \leq 2^{(n+13)}arepsilon \ , \ & |lpha_{i,j}-eta_{i,j}| \leq 2\sin^{-1}((2^{n+12}arepsilon)^{1/2}) \ & \leq 2^{(n/2)+8}arepsilon^{1/2} \quad (arepsilon \leq 2^{-(n+14)}) \ . \end{split}$$
 Q.E.D.

Q.E.D.

LEMMA 2.7. There exist $\{x_{m_j}\}_{1 \le j \le n} \subset \{x_i\}$ and $\{y_{m_j}\}_{1 \le j \le n} \subset \{y_i\}$ such that they are $(r, 2^{-(n+4)})$ -normal systems for \mathbb{R}^n .

Proof. Take an orthogonal basis $\{w_j\}$ for \mathbb{R}^n such that $\|w_j\|=$ $(1-2^{-(n+6)})r$, and by denseness, take $\{x_{m_j}\}_{1\leq j\leq n}\subset \{x_i\}$ such that $\|x_{m_j}-w_j\|$ $\leq 2^{-(n+7)}r$. An easy calculation shows that $\{X_{m_j}\}_{1\leq j\leq n}$ and the corresponding $\{y_{m_j}\}_{1 \leq j \leq n}$ have the required properties. Q.E.D.

Proof of Lemma 2.1'. Let $\{u_i\}$ and $\{v_i\}$ be the orthonormal bases for \mathbf{R}^n obtained by applying the Gram-Schmidt process to $\{x_{m_i}\}$ and $\{y_{m_i}\}$ respectively. A required linear isometry I of \mathbb{R}^n is defined by $I(u_i) := v_i$. If we set $X_k = I(x_{m_k})/\|I(x_{m_k})\|$ and $Y_k = y_{m_k}/\|y_{m_k}\|$, then we have with Lemma 2.3 (1)

$$\langle v_k, X_k \rangle, \langle v_k, Y_k \rangle > 1 - 2^{-(n+4-k)}$$
.

This yields

$$egin{align} \langle X_{\scriptscriptstyle k}, \, Y_{\scriptscriptstyle k}
angle & \geq \cos{(\swarrow(X_{\scriptscriptstyle k}, \, v_{\scriptscriptstyle k}) + \, \swarrow(v_{\scriptscriptstyle k}, \, Y_{\scriptscriptstyle k}))} \ & \geq 2\cos^2{\theta} - 1 & (\cos{\theta} \colon = 1 - 2^{-(n+4-k)}) \ & \geq 1 - 2^{-(n+2-k)} > 3/4 \,. \end{aligned}$$

Assertion 1. $(I(x_{m_k}), y_{m_k}) \le (6k-5)6^{k-2}(k-1)! \varepsilon'$. $\varepsilon' := 2^{(n/2)+8} \varepsilon^{1/2}$.

Proof. From the triangle inequality and Lemma 2.6, we have

$$\langle (y_{m_i}, I(x_{m_k})) \leq \langle (I(x_{m_k}), I(x_{m_i})) + \langle (I(x_{m_i}), y_{m_i}) \rangle$$

$$\langle \langle (y_{m_i}, y_{m_i}) + \langle (I(x_{m_i}), y_{m_i}) + \varepsilon',$$

and similarly,

$$\langle (y_{m_i}, I(x_{m_i})) \geq \langle (y_{m_i}, y_{m_i}) - \langle (I(x_{m_i}), y_{m_i}) - \varepsilon',$$

hence,

$$|\langle (y_{m_i}, I(x_{m_k})) - \langle (y_{m_i}, y_{m_k})| \leq \langle (I(x_{m_i}), y_{m_i}) + \varepsilon'.$$

Clearly, $\langle (I(x_{m_1}), y_{m_1}) = 0$. Assume the assertion for $i, 1 \leq i \leq k-1$, then we get for every $i (1 \leq i \leq k-1)$

$$| (y_{m_i}, I(x_{m_k})) - (y_{m_i}, y_{m_k}) | \le (6i - 5)6^{i-2}(i - 1)! \varepsilon' + \varepsilon'$$

$$\le ((6k - 11)6^{k-3}(k - 2)! + 1)\varepsilon'.$$

Notice that $\{y_{m_i}/\|y_{m_i}\|\}_{1\leq i\leq k}$ is a $(1,2^{-(n+\delta)})$ -normal system for its spanning subspace. Hence applying Lemma 2.5 to $\{y_{m_i}/\|y_{m_i}\|\}_{1\leq i\leq k}, X_k$ and Y_k in place of $\{e_i\}_{1\leq i\leq k}, x$ and y, we conclude

$$(I(x_{m_k}), y_{m_k}) \le (6k - 5)6^{k-2}(k - 1)! \varepsilon'.$$
 Q.E.D.

Assertion 2. $||I(x_i) - y_{m_k}|| - ||y_i - y_{m_k}|| \le (2k!6^k \varepsilon)^{1/2} r$ for every i and every k, $1 \le k \le n$.

This and Lemma 2.4 complete the proof of Lemma 2.1'.

Proof of Assertion 2. Assertion 1 and the triangle inequality imply that

$$\langle (I(x_i), y_{m_k}) \leq \langle (I(x_i), I(x_{m_k}) + \langle (I(x_{m_k}), y_{m_k}) \rangle \leq \langle (y_i, y_{m_k}) + ((6k - 5)6^{k-2}(k - 1)! + 1)\varepsilon',$$

and similarly,

$$\langle (I(x_i), y_{m_k}) \geq \langle (y_i, y_{m_k}) - ((6k-5)6^{k-2}(k-1)! + 1)\varepsilon',$$

hence,

$$| \langle (I(x_i), y_{m_k}) - \langle (y_i, y_{m_k}) | \leq ((6k - 5)6^{k-2}(k - 1)! + 1)\varepsilon'.$$

Therefore we have

$$egin{aligned} \|I(x_i) - y_{m_k}\|^2 - \|y_i - y_{m_k}\|^2 \| & \leq \|I(x_i)\|^2 - \|y_i\|^2 \|y_m\| \|y_i\| \cos \not \subset (y_i, y_{m_k}) \| & - \|I(x_i)\| \cos \not \subset (I(x_i), y_{m_k}) \|, \end{aligned}$$

where $|||I(x_i)||^2 - ||y_i||^2| \le 2\varepsilon r^2$ and

$$\begin{aligned} |\|y_i\| \cos \langle (y_i, y_{m_k}) - \|I(x_i)\| \cos \langle (I(x_i), y_{m_k})| \\ &\leq r(|\langle (y_i, y_{m_k}) - \langle (I(x_i), y_{m_k}) + \varepsilon) \\ &\leq ((6k - 5)6^{k-2}(k - 1)! + 2)\varepsilon'r. \end{aligned}$$

Hence the inequality

$$|||I(x_i) - y_{m_k}|| - ||y_i - y_{m_k}||| \le ||I(x_i) - y_{m_k}||^2 - ||y_i - y_{m_k}||^2|^{1/2}$$

implies the required estimate.

Q.E.D.

§ 3. Reduction and C^0 -estimates

In this section we average the local diffeomorphisms F_i , constructed in the previous section, with a center of mass technique to obtain a smooth map $F: M \to \overline{M}$ and control the C^0 error between F and F_i . Let ψ be a smooth function such that

$$\psi|[0,4]=1, \quad \psi|[5,\infty)=0, \quad 0 \geq \psi' \geq -2.$$

For every $x \in M$, define the weights $\phi_i(x)$ of $F_i(x)$ by

$$\phi_i(x) := \psi(d(x, p_i)/r)/\sum_i \psi(d(x, p_j)/r)$$
.

Notice that all p_j with $d(x, p_j) \leq 5r$ are finite and the corresponding $F_j(x)$ are contained in some convex ball B. It is easy from convexity argument to see that for a fixed $x \in M$, the function $C_x : \overline{M} \to R$ defined by $C_x(y) = \frac{1}{2} \sum_i \phi_i(x) d^2(y, F_i(x))$ is C^{∞} strongly convex on B, and has a unique minimum point on \overline{M} . Setting

$$F(x) :=$$
 the unique minimum point of C_x

we define a map $F: M \to \overline{M}$. We show that F is smooth. Define a map V from a sufficiently small neighborhood of the graph of F in $M \times \overline{M}$ to the tangent bundle $T\overline{M}$ by

$$V(x,y) := -\sum_{i} \phi_{i}(x) \exp_{y}^{-1}(F_{i}(x))$$
.

Since $V(x, y) = (\operatorname{grad} C_x)(y)$, we have V(x, F(x)) = 0. Let $K: TT\overline{M} \to T\overline{M}$ be the connection map, and define a map $D_2V_{(x,y)}: \overline{M}_y \to \overline{M}_y$ by $D_2V_{(x,y)}(\dot{y}(0)) = \overline{V}_{\dot{y}(0)}V(x, y(t))$, where we consider V(x, y(t)) as a vector field along a smooth curve y(t) with $\dot{y}(0) = y$. Notice that

$$K(d/dt \ V(x, y(t))|_{t=0}) = D_2 V_{(x,y)}(\dot{y}(0)),$$

and $D_2V_{(x,y)}$ is a linear map. From the standard Jacobi fields estimates (See (4.3) in the proof of Lemma 4.2),

$$||D_2V_{(x,y)}(\dot{y}(0)) - \dot{y}(0)|| \le (30\Lambda r)^2||\dot{y}(0)|| < ||\dot{y}(0)||.$$

This yields that $D_2V_{(x,y)}$ is a linear isomorphism, and hence for y = F(x), the space spanned by $\{d/dt\ V(x,y(t))|_{t=0}\}$ and the (horizontal) tangent space of the zero section of $T\overline{M}$ at (F(x),0) span $(T\overline{M})_{(F(x),0)}$. Therefore the implicit function theorem implies the smoothness of F.

From now on we fix $x_0 \in M$ and set $y_0 := F(x_0)$.

LEMMA 3.1. dF_{x_0} has maximal rank iff

$$\begin{array}{ll} (*) & \sum\limits_i d/dt \; \psi(d(x(t),p_i)/r)|_{t=0} \cdot \exp_{y_0}^{-1}(F_i(x_0)) \\ & + \sum\limits_i \psi(d(x_0,p_i)/r) \cdot d(\exp_{y_0}^{-1})(dF_i(\dot{x}(0))) \neq 0 \end{array}$$

for every smooth curve x(t) with $x(0) = x_0$ and $\dot{x}(0) \neq 0$.

Proof. Differentiating the curve V(x(t), F(x(t))) in the zero section of $T\overline{M}$, we have

(3.2)
$$d/dt \ V(x(t), y_0)|_{t=0} + D_2 V_{(x_0, y_0)}(dF(\dot{x}(0))) = 0.$$

Hence dF_{x_0} has maximal rank iff $d/dt \ V(x(t), y_0)|_{t=0} \neq 0$. Since $V(x_0, y_0) = 0$,

(3.3)
$$\begin{aligned} d/dt \ V(x(t), y_0)|_{t=0} \\ &= -\sum_i d/dt \ \psi_i(d(x(t), p_i)/r)|_{t=0} \cdot \exp_{y_0}^{-1}(F_i(x_0))/\sum_j \psi_j(d(x_0, p_j)/r) \\ &- \sum_i \phi_i(x_0) \cdot d(\exp_{y_0}^{-1})(dF_i(\dot{x}(0))) \ . \end{aligned}$$

This completes the proof.

Q.E.D.

We will show in Section 4 that in the above (*), the norm of the first term is smaller than that of the second if r and ε are taken sufficiently small. To do this we must first estimate the numbers of the sum in each term.

LEMMA 3.4. If $N_1 := \sharp \{i; \ \psi(d(x_0, p_i)/r) = 1\}$ and $N_2 := \sharp \{i: \psi(d(x_0, p_i)/r) \neq 0\}$, then $N_2/N_1 \leq 6^n$.

Proof. Since $\{p_i\}$ is $2^{-(n+8)}r$ -dense, the union of $B(p_i, 2^{-(n+8)}r)$ with $d(x_0, p_i) \leq 4r$ covers the 3.9r-ball around x_0 , and since $\{p_i\}$ is $2^{-(n+9)}r$ -discrete, the family of $B(p_i, 2^{-(n+10)}r)$ with $d(x_0, p_i) \leq 5r$ are disjoint and contained in the 5.1r-ball around x_0 . It follows from the Rauch comparison theorem that

$$N_1 \geq \tilde{v}(3.9r)/v(2^{-(n+8)}r), \quad N_2 \leq v(5.1r)/\tilde{v}(2^{-(n+10)}r).$$

Hence we can get an explicit bound for N_2/N_1 . Q.E.D.

Now we fix i and k such that $d(x_0, p_i)$, $d(x_0, p_k) \leq 5r$, and estimate $d(F_i(x_0), F_k(x_0))$.

LEMMA 3.5. $|d(q_j, F_k(x_0)) - d(q_j, F_i(x_0))| \leq \delta_2 r$ for every j with $d(p_i, p_j)$, $d(p_k, p_j) \leq 10r$, where $\delta_2 = 2(\delta_1 + 600 \Lambda r)$.

Proof. Notice that

$$e^{-20Ar} \leq d(F_k(x_0), F_k(p_i))/d(x_0, p_i) \leq e^{20Ar}$$
.

By Lemma 2.1,

$$|d(q_1, F_k(x_0)) - d(F_k(p_1), F_k(x_0))| \leq \delta_1 r.$$

Hence the triangle inequality implies

$$(3.6) |d(p_i, x_0) - d(q_i, F_k(x_0))| \le (\delta_i r + 40 Ar \cdot d(p_i, x_0)) \le \delta_i r/2.$$

From the same estimate for i, we have the required bound. Q.E.D.

Here we assume the following bound on ε and r in order to bound $\delta_2 \leq 1/2$;

$$(**) \qquad \varepsilon, 20 \Lambda r \leq 2^{-18} (n+1)^{-4} (6^{n+2} n! 2^{(n/2)+7})^{-2}.$$

This bound assures that $d(F_i(x_0), F_k(x_0)) \leq 2r/3$.

LEMMA 3.7.
$$d(F_k(x_0), F_i(x_0)) \leq \delta_3 r$$
, where $\delta_3 = 8(n+1)\delta_2$.

Proof. Take a $q_{m_0} \in \{q_i\}$ such that $d(q_{m_0}, F_k(x_0)) \leq 2^{-(n+8)}r$, and let x_k and x_i denote the images of $F_k(x_0)$ and $F_i(x_0)$ by $\exp_{q_{m_0}}^{-1}$. Then from the above bound (**) we have that $||x_k||$, $||x_i|| \leq r$. By Lemma 2.7, we can choose $\{q_{m_j}\}_{1\leq j\leq n}$ out of $\{q_i\}$ such that if \tilde{q}_{m_j} denotes the image of q_{m_j} by $\exp_{q_{m_0}}^{-1}$, then $\{\tilde{q}_{m_j}\}_{1\leq j\leq n}$ 1 is an $(r, 2^{-(n+4)})$ normal system for $\overline{M}_{q_{m_0}}$. Notice that $\{p_{m_j}\}_{1\leq j\leq n}$ corresponding to $\{q_{m_j}\}_{1\leq j\leq n}$ are contained in $B(p_k, 10r) \cap B(p_i, 10r)$. From Lemma 3.5 we have

$$\|\| ilde{q}_{m_j} - x_{k}\| - \| ilde{q}_{m_j} - x_{i}\|\| \le 2\delta_2 r, \quad 0 \le j \le n,$$

and together with Lemma 2.4 this yields

$$d(F_{k}(x_{0}), F_{i}(x_{0})) \leq 8(n+1)\delta_{2}r$$
. Q.E.D.

From the definition of F it is clear that $d(F(x_0), F_i(x_0)) \leq \delta_3 r$ for every i with $d(x_0, p_i) \leq 5r$. Hence we have with Lemma 3.4

(3.8)
$$\begin{split} \| \sum_{i} d/dt \ \psi(d(x(t), p_{i})/r)|_{t=0} \cdot \exp_{y_{0}}^{-1}(F_{i}(x_{0})) \| \\ \leq N_{i}(2/r)\delta_{3}r \| \dot{x}(0) \| \leq 2 \cdot 6^{n}\delta_{3}N_{1} \| \dot{x}(0) \| \ . \end{split}$$

$\S 4. \quad C^1$ -estimates

To estimate the second term in Lemma 3.1 (*) from below, we must control the error between $d(\exp_{y_0}^{-1})(dF_i(\dot{x}(0)))$ and $d(\exp_{y_0}^{-1})(dF_k(\dot{x}(0)))$. To

do this it is essential to estimate $||dF_k(\dot{x}(0)) - PdF_i(\dot{x}(0))||$ from above, where P denotes the parallel translation along the minimizing geodesic from $F_i(x_0)$ to $F_k(x_0)$. This is done in Lemma 4.5.

LEMMA 4.1. For each $x \in \overline{M}$, let $\{q_{\alpha_j}\}:=\{q_i\} \cap B(x,r) \text{ and } N':=\sharp \{q_{\alpha_j}\}.$ The map $\Phi \colon B(x,r/2) \to \mathbf{R}^{N'}$ defined by $\Phi^j(y)=d^2(q_{\alpha_j},y)$ satisfies the following;

(1) Φ is an embedding, and $||d\Phi(v)|| \ge r||v||$ for every tangent vector v on B(x, r/2),

(2)
$$N' \leq 2^{n(n+11)}$$
.

Proof. The convexity of each component Φ^i of Φ implies the injectivity of Φ . For a given tangent vector v on B(x, r/2), let Υ be a geodesic with $\mathring{\tau}(0) = v/\|v\|$. Take a q_{a_j} such that $d(q_{a_j}, \Upsilon(r/2)) \leq 2^{-(n+8)}r$. Comparing the triangle with vertices $(\Upsilon(0), \Upsilon(r/2), q_{a_j})$ to a triangle with the same edge length in the sphere with constant curvature Λ^2 , we have that $\cos \chi(\mathring{\tau}(0), \mathring{\sigma}(0)) \geq 1/2$, where σ denote a unique minimizing geodesic from $\Upsilon(0)$ to q_{a_j} . This yields that

$$||d\Phi(v)|| \geq |d\Phi^j(v)| \geq r||v||$$
.

The same proof as in Lemma 3.4 implies (2).

Q.E.D.

We fix i and k with $d(p_i, x_0)$, $d(p_k, x_0) \leq 5r$ and take an embedding $\Phi \colon B(F_k(x_0), r/2) \to \mathbb{R}^{N'}$ defined in the previous lemma for $F_k(x_0)$, where we set $\{q_{aj}\} := \{q_i\} \cap B(F_k(x_0), r)$. For a unit tangent vector v at x_0 , let f, f, and f be geodesics such that $\dot{f}(0) = v$, $\dot{f}_k(0) = dF_k(v)$ and $\dot{f}_k(0) = dF_k(v)$. For every f, we set

$$egin{aligned} f_{j}(t) &= d^{2}(p_{lpha_{j}}, \varUpsilon(t)) \,, & g_{m,\,j}(t) &= arPhi^{j}(F_{m} \cdot \varUpsilon(t)) \,, \ h_{m,\,j}(t) &= arPhi^{j}(\sigma_{m}(t)) \,, & m &= k, i \,. \end{aligned}$$

LEMMA 4.2. On [0, r/2],

(1)
$$2(1 - \Lambda^2 f_j) \le f_j'' \le 2(1 + \Lambda^2 f_j),$$

 $2(1 - \Lambda^2 h_{m,j}) e^{-20\Lambda r} \le h_{m,j}'' \le 2(1 + \Lambda^2 h_{m,j}) e^{20\Lambda r},$

(2) $|g_{m,j}^{\prime\prime}-h_{m,j}^{\prime\prime}|\leq \Omega_1 r$ where $\Omega_1=82+10 n^3 \Omega r$,

$$\Omega = 60n(n-1)(10\Lambda_1 r^2 + 4\Lambda^2 r + 400n^{3/2}\Lambda(\Lambda r)^3)e^{10(2n^2\Lambda^2+1)r}.$$

(2) is the only place where we need the assumption for $\|\nabla R\|$.

Proof. We consider geodesic veriations

$$lpha(t,s) = \exp_{q_{lpha_j}} s(\exp_{q_{lpha_j}}^{-1} F_m(\varUpsilon(t))) , \ eta(t,s) = \exp_{q_{lpha_i}} s(\exp_{q_{lpha_i}}^{-1} \sigma_m(t)) .$$

Then for a fixed t, we have Jacobi fields

$$J_0(s) = rac{\partial lpha}{\partial t}(t,s) \quad ext{and} \quad J(s) = rac{\partial eta}{\partial t}(t,s)$$
 ,

and the second variation formula yields

$$g_{m,j}^{"}(t) = 2(\langle V_{j_0}J_0, T_0 \rangle + \langle J_0, V_{T_0}J_0 \rangle)(1), \quad h_{m,j}^{"}(t) = 2\langle J, V_TJ \rangle(1),$$

where T_0 and T denote the vector fields $\partial \alpha/\partial s$ and $\partial \beta/\partial s$. We assert that

$$(*) (1 - \Lambda^2 ||T||^2) ||J(1)||^2 \le \langle J, V_T J \rangle (1) \le (1 + \Lambda^2 ||T||^2) ||J(1)||^2,$$

which implies (1). Let τ be a geodesic with $\|\dot{\tau}\| = \|T\|$ in the *n*-sphere S with constant curvature Λ^2 and I a linear isometry from $\overline{M}_{q_{\alpha_j}}$ to $S_{\tau(0)}$, and W the vector field along τ defined by using the parallel translations along $\beta(t, \cdot)$ and τ and I. Then a standard comparison argument implies

$$\langle J, J' \rangle (1) = I_0(J, J') \geq I_0(W, W) \geq I_0(V, V) = \langle V, V' \rangle (1)$$

where I_0 denote the index form and V the Jacobi field along τ with V(0) = 0 and V(1) = W(1). It is easy to check that

$$\|V(s)\|^2 = s^2 \|J^T(1)\|^2 + rac{\sin^2 A \|T\| s}{\sin^2 A \|T\|} (\|J(1)\|^2 - \|J^T(1)\|^2) ,$$

$$\langle V, V' \rangle (1) = \|J^T(1)\|^2 + A\|T\| \cot A\|T\| \cdot (\|J(1)\|^2 - \|J^T(1)\|^2),$$

where J^T denote the tangential component of J. Hence we have that $\langle J, J' \rangle (1) \geq (1 - \Lambda^2 ||T||^2) ||J(1)||^2$. Let P be a parallel vector field along $\beta(t, \cdot)$, then we get

$$|\langle J(s)-sJ'(s),P
angle'|=|s\langle R(T,J)T,P
angle|\leq 2arLambda^2\|T\|^2\|J\|s$$
 .

The integration implies

$$||J(1) - J'(1)|| \le \Lambda^2 ||T||^2 ||J(1)||.$$

It follows

$$|\langle J, J' \rangle(1)| \leq ||J(1)|| ||J'(1)|| \leq (1 + \Lambda^2 ||T||^2) ||J(1)||^2$$
.

For (2), we get with (*)

$$egin{aligned} g_{m,j}''(t) - h_{m,j}''(t) &| \leq 2 |\langle J_0, J_0'
angle (1) - \langle J, J'
angle (1) | + 2 |\langle ar{V}_{J_0} J_0, T_0
angle (1) | \ &\leq e^{20Ar} (2 + 8A^2r^2) - e^{-20Ar} (2 - 8A^2r^2) + 2 \|ar{V}_{J_0(1)} J_0\| \cdot 2.3r \ &\leq 82Ar + 4.6r \|ar{V}_{J_0(1)} J_0\| \,. \end{aligned}$$

Let $\{e_i\}$ be an orthonormal basis for M_{p_m} and $\{x_i\}$, $\{y_i\}$ the normal coordinate systems on $B(p_m, 10r)$, $B(q_m, 10r)$ based on $\{e_i\}$, $\{I_m(e_i)\}$ respectively. Let $\Gamma_{i,j}^k$ and $\bar{\Gamma}_{i,j}^k$ be the Cristoffel symbols with respect to $\{x_i\}$ and $\{y_i\}$ and let $c:=F_m\circ r$. Note that

$$egin{aligned} \dot{c} &:= \sum_i \dot{c}_i rac{\partial}{\partial y_i}, \quad \ddot{c}_k + \sum_{i,j} arGamma_{i,j}^k (\varUpsilon(t)) \dot{c}_i \dot{c}_j = 0 \,, \ & V_{\dot{c}} \dot{c} &= \sum_k \left(\ddot{c}_k + \sum_{i,j} ar{arGamma}_{i,j}^k (c(t)) \dot{c}_i \dot{c}_j
ight) rac{\partial}{\partial y_k} \ &= \sum_{k,i,j} \left(-arGamma_{i,j}^k (\varUpsilon(t)) + ar{arGamma}_{i,j}^k (c(t))
ight) \dot{c}_i \dot{c}_j rac{\partial}{\partial y_i} \,. \end{aligned}$$

By the Rauch comparison theorem, we get

$$egin{aligned} |\dot{c}_i| & \leq e^{10 A r} \|\dot{c}\| \leq e^{30 A r} \ , & \left\|rac{\partial}{\partial y_k}
ight\| \leq e^{10 A r} \ , \ & |arGamma_{i,j}| \leq e^{10 A r} \left\|arValphi_{\partial/\partial x_i} rac{\partial}{\partial x_i}
ight\|, & |ararGamma_{i,j}| \leq e^{10 A r} \left\|arValphi_{\partial/\partial y_i} rac{\partial}{\partial y_j}
ight\|, \end{aligned}$$

and from a Cheeger's result (See [4], Lemma 4.3), we can estimate with (**) in Section 3

$$\left\| V_{\partial/\partial x_i} \frac{\partial}{\partial x_j} \right\|, \quad \left\| V_{\partial/\partial y_i} \frac{\partial}{\partial y_j} \right\| \leq \Omega.$$

Therefore we conclude that $\|\nabla_{\dot{c}}\dot{c}\| \leq 2n^3e^{80Ar}\Omega$, and this yields (2). Q.E.D.

The following lemma is used in the proof of Lemma 4.5.

LEMMA 4.4. Let φ ; $[0, t] \to \mathbf{R}$ be a C^2 -function such that $\varphi(0) = 0$ and $|\varphi(s)| \le \alpha$, $|\varphi''(s)| \le \kappa$ on [0, t]. Then $|\varphi'(0)| \le \alpha/t + \kappa t/2$.

Lemma 4.5. $||PdF_i(v) - dF_k(v)|| \le 2^{n(n+11)/2}(11\delta_3 + \Omega_1 r/2)$, where P denotes the parallel translation along the minimizing geodesic from $F_i(x_0)$ to $F_k(x_0)$.

Proof. Let τ be a geodesic with $\dot{\tau}(0) = PdF_{\iota}(v)$ and let $u_{j}(t) := \Phi^{j}(\tau(t))$. We apply the previous lemma to $h_{\iota,j} - u_{j}$. On [0, r/2] we have with (3.6) and Lemma 4.2 (2)

$$|h_{k,j}-h_{i,j}| \leq |h_{k,j}-g_{k,j}|+|g_{k,j}-f_{j}|+|f_{j}-g_{i,j}|+|g_{i,j}-h_{i,j}|$$

 $\leq 4\delta_{2}r^{2}+\Omega_{1}r^{2}/4.$

and the Rauch comparison theorem implies

$$|h_{i,j}-u_j|\leq d(\sigma_i(0),\,\tau(0))\cosh \Lambda r\cdot 4r\leq 5\delta_3 r^2$$
,

hence

$$|h_{k,j} - u_j| \leq (4\delta_2 + 5\delta_3 + \Omega_1 r/4)r^2$$
.

Together with Lemma 4.2 (1), Lemma 4.4 applied to $\varphi = h_{k,j} - u_j$ yields

$$egin{aligned} |d arPhi^j \! (\dot{\sigma}_k(0) - \dot{ au}(0))| &\leq 2(4 \delta_2 + 5 \delta_3 + \varOmega_1 r/4) r + 82 \varLambda r^2/4 \ &\leq (11 \delta_3 + \varOmega_1 r/2) r \,. \end{aligned}$$

By Lemma 4.1, we conclude

$$||PdF_i(v) - dF_k(v)|| \le 2^{n(n+11)/2} (11\delta_3 + \Omega_1 r/2).$$
 Q.E.D.

Let P_k , P_i denote the parallel translation along the minimizing geodesics from y_0 to $F_k(x_0)$, $F_i(x_0)$, and for simplicity, set

$$v_m := dF_m(v), \quad \tilde{v}_m := d(\exp_{v_0}^{-1})(dF_m(v)), \quad m = i, k.$$

Lemma 4.6.
$$\|\tilde{v}_k - \tilde{v}_i\| \leq \delta_i$$
, where $\delta_i = 2^{n(n+11)/2}(12\delta_3 + \Omega_1 r/2)$.

Proof. From standard estimate of the Jacobi equation and an easy comparison argument, we get

$$\|P_k \widetilde{v}_k - v_k\|, \quad \|P_i^{-1} v_i - \widetilde{v}_i\|, \quad \|P v_i - P_k P_i^{-1} v_i\| \leq {\it \Lambda}^2 r^2.$$

Together with Lemma 4.5, this yields

$$\begin{split} \|\tilde{v}_{k} - \tilde{v}_{i}\| &= \|P_{k}\tilde{v}_{k} - P_{k}\tilde{v}_{i}\| \\ &\leq \|P_{k}\tilde{v}_{k} - v_{k}\| + \|v_{k} - Pv_{i}\| + \|Pv_{i} - P_{k}P_{i}^{-1}v_{i}\| \\ &+ \|P_{k}P_{i}^{-1}v_{i} - P_{k}\tilde{v}_{i}\| \\ &\leq 2^{n(n+11)/2}(12\delta_{3} + \Omega_{1}r/2) \,. \end{split} \qquad \text{Q.E.D.}$$

Proof of Theorem 1. By Lemma 4.6, we have

$$\|\sum_i \psi(d(x_{\scriptscriptstyle 0},p_{\scriptscriptstyle i})/r) {\widetilde v}_i - \sum_i \psi(d(x_{\scriptscriptstyle 0},p_{\scriptscriptstyle i})/r) {\widetilde v}_{\scriptscriptstyle k}\| \leq \delta_{\scriptscriptstyle 4} N_{\scriptscriptstyle 2}$$
 ,

hence with Lemma 3.4

$$\|\sum_{i} \psi(d(x_{\scriptscriptstyle 0}, p_{\scriptscriptstyle i})/r) \tilde{v}_{\scriptscriptstyle i}\| \geq (0.9 - 6^n \delta_{\scriptscriptstyle 4}) N_{\scriptscriptstyle 1}$$
 .

If we set $\varepsilon \leq \varepsilon_1$, $r \leq r_1$, then we get with (3.8)

$$\|\sum_i \psi(d(x_{\scriptscriptstyle 0},p_{\scriptscriptstyle i})/r)\widetilde{v}_{\scriptscriptstyle i}\| > \|\sum_i d/dt \ \psi(d(\varUpsilon(t),p_{\scriptscriptstyle i})/r)|_{t=0} \cdot \exp_{y_0}^{-1}(F_{\imath}(x_{\scriptscriptstyle 0}))\| + 0.1N_{\scriptscriptstyle 1}$$
 .

By Lemma 3.1, F is an immersion. Furthermore the above inequality and (3.3) imply

$$||d/dt|V(\gamma(t), y_0)|_{t=0}|| > 0.1 N_1/N_2$$
.

On the other hand, a standard Jacobi fields estimate (4.3) yields

$$||V_{dF(v)}V(x_0, F(\gamma(t)))|| \leq 4N_2||dF(v)||$$
.

Hence we have with (3.2) and Lemma 3.4

$$\|dF(v)\| \geq N_1/40\,N_2^2 \geq ilde{v}(2^{-(n+10)}r)/40\cdot 6^n v(5.1r) > 0$$
 .

This conclude that F must be surjective, and hence injective since it is a homotopy equivalence by its construction. Q.E.D.

Added in proof. Recently we have received a preprint, S. Peters "Cheeger's finiteness theorem for diffeomorphism classes of Riemannian manifolds", where the finiteness of diffeomorphism classes of Cheeger type is proved for all dimensions without the assumption for $\|\vec{V}R\|$ by using a similar method to our Theorem 1.

REFERENCES

- [1] R. Bishop and R. Crittenden, Geometry of manifolds, Academic Press, New-York, 1964.
- [2] P. Buser and H. Karcher, Gromov's almost flat manifolds, Astérisque, 1981.
- [3] J. Cheeger, Comparison and finiteness theorems for Riemannian manifolds, Ph. D. Thesis, Princeton Univ., 1967.
- [4] —, Pinching theorems for a certain class of Riemannian manifolds, Amer. J. Math., 91 (1969), 807-834.
- [5] —, Finiteness theorems for Riemannian manifolds, Amer. J. Math., 92 (1970), 61-74.
- [6] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, 1975.
- [7] R. Greene, Complete metrics of bounded curvature on noncompact manifolds, Arch. Math., 31 (1978), 89-95.
- [8] M. Gromov, Almost flat manifolds, J. Differential Geom., 13 (1978), 231-241.
- [9] —, Structures métriques pour les variétés riemanniennes, rédigé par J. Lafontaine et P. Pansu, Cedic-Fernand Nathan, Paris, 1981.
- [10] E. Heintz and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Ecole Norm. Sup., 11 (1978), 451-470.
- [11] M. Maeda, Volume estimate of submanifolds in compact Riemannian manifolds, J. Math. Soc. Japan, 30 (1978), 533-551.
- [12] Y. Shikata, On a distance function on the set of differentiable structures, Osaka J. Math., 3 (1966), 65-79.

192

TAKAO YAMAGUCHI .

[13] A. Weinstein, On the homotopy type of positively-pinched manifolds, Arch. Math., 18 (1967), 523-524.

Saga University Faculty of Science and Engineering Saga 840, Japan