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LOCAL ZETA FUNCTIONS AND NEWTON

POLYHEDRA

W. A. ZUNIGA-GALINDO∗

Abstract. To a polynomial f over a non-archimedean local field K and a cha-
racter χ of the group of units of the valuation ring of K one associates Igusa’s
local zeta function Z(s, f, χ). In this paper, we study the local zeta function
Z(s, f, χ) associated to a non-degenerate polynomial f , by using an approach
based on the p-adic stationary phase formula and Néron p-desingularization.
We give a small set of candidates for the poles of Z(s, f, χ) in terms of the
Newton polyhedron Γ(f) of f . We also show that for almost all χ, the local
zeta function Z(s, f, χ) is a polynomial in q−s whose degree is bounded by a
constant independent of χ. Our second result is a description of the largest
pole of Z(s, f, χtriv) in terms of Γ(f) when the distance between Γ(f) and the
origin is at most one.

§1. Introduction

Let K be a non-archimedean local field of arbitrary characteristic. Let

OK be the ring of integers of K and PK its maximal ideal. Let π be a

fixed uniformizing parameter of K, and let the residue field of K be Fq the

field with q = pr elements. For x ∈ K, v denotes the valuation of K such

that v(π) = 1, |x|K = q−v(x) and ac(x) = xπ−v(x). Let f(x) ∈ OK [x], x =

(x1, . . . , xn) be a non-constant polynomial, and χ : O×
K → C× a character

of O×
K , the group of units of OK . We formally put χ(0) = 0. To these data

one associates Igusa’s local zeta function,

Z(s, f, χ) =

∫

On
K

χ(acf(x))|f(x)|sK |dx|, s ∈ C,

for Re(s) > 0, where |dx| denotes the Haar measure on Kn, normalized

such that On
K has measure 1. In the case of K having characteristic zero,
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Igusa [I2] and Denef [D1] proved that Z(s, f, χ) is a rational function of

q−s.

A basic problem is to determine the poles of the meromorphic continua-

tion of Z(s, f, χ) into Re(s) < 0. The general strategy is to take a resolution

h : X → Kn of f and study the resolution data {(Ni, ni)} in which Ni is the

multiplicity of f ◦h along a exceptional divisor Di, and ni is the multiplicity

of h?(dx) along Di. The set of ratios
{

−ni
Ni

}

∪{−1} contains the real parts

of the poles of Z(s, f, χ) as observed in [I2]. However, many examples show

that most of these ratios do not correspond to poles. The problem of the

determination of the actual poles of Z(s, f, χ) for arbitrary n is still an open

problem. The case n = 2 was solved for irreducible f and χ = χtriv for all

primes p by Meuser [Me]. The generalization to reducible f and χ 6= χtriv

but for almost all primes p was solved by Veys in [Ve].

In case of non-degenerate polynomials with respect to its Newton poly-

hedron and K = R, Varchenko [Va] gave a procedure to compute a set

of candidates for the poles of the complex power of f , by using toroidal

resolution of singularities (see also [D-S-1], [D-S-2]).

The p-adic case is entirely similar to the real case. In this case, Lichtin

and Meuser [L-M] proved in the case n = 2 that not all candidates pro-

vided by the numerical data of a toric resolution of f are actually poles of

Z(s, f, χ). In [D3] Denef gave a procedure based on monomial changes of

variables to determine a small set of candidates for the poles of Z(s, f, χtriv)

in terms of the Newton polyhedron of f .

In this paper, we study the local zeta function Z(s, f, χ) associated

to a globally non-degenerate polynomial f (see Definition 1.1), by using

an approach based on the p-adic stationary phase formula and Néron p-

desingularization. We show the stationary phase formula gives a small set

of candidates for the poles of Z(s, f, χ) in terms of the Newton polyhedron

Γ(f) of f (cf. Theorem A). When χ = χtriv and char(K) = 0 this set of

poles agree with that obtained in [D3]. We also show that for almost all χ,

the zeta function Z(s, f, χ) is a polynomial in q−s whose degree is bounded

by a constant independent of χ. Our second result shows that the stationary

phase formula can be used to describe the largest pole of Z(s, f, χtriv) in

terms of Γ(f), when the distance between Γ(f) and the origin is at most

one (cf. Theorem B). This result was previously known for char(K) = 0.

This result allows one to generalize estimates for exponential sums that

were obtained in [D-Sp] to the case char(K) 6= 0 (cf. Corollary 6.1).

We set R+ = {x ∈ R | x = 0}. Let f(x) =
∑

l alx
l ∈ K[x], x =
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(x1, x2, . . . , xn) be a polynomial in n variables satisfying f(0) = 0. The

set supp(f) = {l ∈ Nn | al 6= 0} is called the support of f . The Newton

polyhedron Γ(f) of f is defined as the convex hull in Rn
+ of the set

⋃

l∈supp(f)

(

l + Rn
+

)

.

We denote by 〈 , 〉 the usual inner product of Rn, and identify Rn with its

dual by means of it. We set

〈aγ , x〉 = m(aγ),

for the equation of the supporting hyperplane of a facet γ (i.e. a face of

codimension 1 of Γ(f)) with perpendicular vector aγ = (a1, a2, . . . , an) ∈
Nn r {0}, and |aγ | :=

∑

i ai.

Definition 1.1. A polynomial f(x) =
∑

i aix
i ∈ K[x] is called glob-

ally non-degenerate with respect to its Newton polyhedron Γ(f), if it satisfies
the following two properties:

(GND1) the origin of Kn is a singular point of f(x);

(GND2) for every face γ ⊂ Γ(f) (including Γ(f) itself), the polynomial

fγ(x) :=
∑

i∈γ

aix
i

has the property that there is no x ∈ (K r {0})n such that

fγ(x) =
∂fγ

∂x1
(x) = · · · =

∂fγ

∂xn
(x) = 0.

Our first result is the following.

Theorem A. Let K be a non-archimedean local field, and let f(x) ∈
OK [x] be a polynomial globally non-degenerate with respect to its Newton

polyhedron Γ(f). Then the Igusa local zeta function Z(s, f, χ) is a rational

function of q−s satisfying :

(i) if s is a pole of Z(s, f, χ), then

s = −
|aγ |

m(aγ)
+

2πi

log q

k

m(aγ)
, k ∈ Z
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for some facet γ of Γ(f) with perpendicular aγ, and m(aγ) 6= 0, or

s = −1 +
2πi

log q
k, k ∈ Z;

(ii) if χ 6= χtriv and the order of χ does not divide any m(aγ) 6= 0,
where γ is a facet of Γ(f), then Z(s, f, χ) is a polynomial in q−s, and its

degree is bounded by a constant independent of χ.

For a polynomial f(x) ∈ K[x] globally non-degenerate with respect to

its Newton polyhedron Γ(f), we set

β(f) := max
τj

{

−
|aj |

m(aj)

}

,

where τj runs through all facets of Γ(f) satisfying m(aj) 6= 0. The point

T0 =
(

−β(f)−1, . . . ,−β(f)−1
)

∈ Qn

is the intersection point of the boundary of the Newton polyhedron Γ(f)

with the diagonal ∆ = {(t, . . . , t) | t ∈ R} in Rn. Let τ0 be the face of

smallest dimension of Γ(f) containing T0, and ρ its codimension.

If g(x) ∈ OK [x], x = (x1, . . . , xn), we denote by g(x) its reduction

modulo PK .

The second result of this paper describes the largest pole of Z(s, f, χtriv),

when β(f) ≥ −1.

Theorem B. Let K be a non-archimedean local field, and let f(x) ∈
OK [x] be a globally non-degenerate polynomial with respect to its Newton

polyhedron Γ(f). If β(f) > −1, then β(f) is a pole of Z(s, f, χtriv) of

multiplicity ρ. If β(f) = −1, then β(f) is a pole of Z(s, f, χtriv) of multi-

plicity less than or equal to ρ + 1. Moreover, if every face γ k τ0 satisfies

Card
(

{z ∈ F×n
q | f̄γ(z) = 0}

)

> 0, then the multiplicity of β(f) is exactly

ρ + 1.

The largest pole of Z(s, f, χtriv) when f is non-degenerate with respect

to its Newton polyhedron Γ(f) and β(f) > −1 follows from observations

made by Varchenko in [Va] and was originally noted in the p-adic case in

[L-M] (although it is misstated there as β(f) 6= −1). The case β(f) = −1 is

treated in [D-H]. The case of β(f) < −1 is more difficult and is established

in [D-H] with some additional conditions on τ0 by using a difficult result on
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exponential sums. Thus our Theorem B gives a different proof of the cases

where β(f) = −1.

The organization of this paper is as follows. In Section 2, we review

Igusa’s stationary phase formula. The results of this section generalize our

previous results in [Z-G]. Section 3 contains some basic results about New-

ton polyhedra. In Section 4, we prove Theorem A. In Section 5, we prove

Theorem B. Section 6 contains some consequences of the main theorems.

More precisely, we give estimates for exponential sums involving globally

non-degenerate polynomials (cf. Corollary 6.1). In Section 7, we compute

explicitly the local zeta functions of some polynomials in two variables and

discuss the relation between the largest pole of Z(s, f, χtriv) and β(f).

Acknowledgements. I wish to thank to Jan Denef, Kathleen Hoor-
naert, and the referee for their suggestions which led to an improvement of
this work.

§2. Igusa’s stationary phase formula

In [I3] Igusa introduced the stationary phase formula for π-adic integrals

and suggested that a closer examination of this formula might lead to a

new proof of the rationality of Z(s, f, χ) in any characteristic. Following

this suggestion the author proved the rationality of the local zeta function

Z(s, f, χtriv) attached to a semiquasihomogeneous polynomial f over an

arbitrary non-archimedean local field [Z-G].

Let L be a ring and f(x) ∈ L[x], we denote by Vf (L) the corresponding

L-hypersurface and by Singf (L) the L-singular locus.

We denote by x̄ the image of an element of OK under the canonical

homomorphism OK → OK/πOK
∼= Fq, i.e. the reduction modulo π. Given

f(x) ∈ OK [x] such that not all its coefficients are in πOK , we denote by

f(x) the polynomial obtained by reducing modulo π the coefficients of f(x).

We fix a lifting R of Fq in OK . By definition, the set R is mapped

bijectively onto Fq by the canonical homomorphism OK → OK/πOK .

Let f(x) ∈ OK [x] be a polynomial in n variables, P1 = (y1, . . . , yn) ∈ On
K ,

and mP1 = (m1, . . . ,mn) ∈ Nn. We call a Kn-isomorphism ΦmP1
(x) a

dilatation, if it has the form ΦmP1
(x) = (z1, . . . , zn), zi = yi + πmixi, for

each i = 1, 2, . . . , n. The dilatation of f(x) at P1 induced by ΦmP1
(x) is

defined as

(2.1) fP1(x) := π−eP1f(ΦmP1
(x)),
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where eP1 is the minimum order of π in the coefficients of f(ΦmP1
(x)).

We call the K-hypersurface VfP1
(K) the dilatation of Vf (K) at P1 induced

by ΦmP1
(x); the number eP1 the arithmetic multiplicity of f(x) at P1 by

ΦmP1
(x), and the set S(fP1), the lifting of Sing f̄P1

(Fq), the first generation

of descendants of P1.

Given a sequence of dilatations (ΦmPk
(x))k∈N, we define inductively

eP1,...,Pk
and fP1,...,Pk

(x), S(fP1,...,Pk
) as follows:

(2.2) fP1,...,Pk
(x) :=

{

f(x), if k = 0,

π−eP1,...,Pk fP1,...,Pk−1
(ΦmPk

(x)), if k = 1,

where Pk ∈ S(fP1,...,Pk−1
), and eP1,...,Pk

is the minimum order of π in the

coefficients of fP1,...,Pk−1
(ΦmPk

(x)). For k ≥ 1, the set S(fP1,...,Pk
) :=

⋃

Pk
S(fP1,...,Pk−1,Pk

) is called the kth-generation of descendants of P1. By

definition the 0th-generation of descendants of P1 is {P1}.

Now, we review Igusa’s stationary phase formula, from the point of view of

the dilatations. For that, we fix the mPk
’s equal to (1, . . . , 1) ∈ Nn in (2.1).

Let D be a subset of Fn
q and D its preimage under the canonical ho-

momorphism OK → OK/πOK
∼= Fq. Let S(f,D) denote the subset of

Rn (the set of representatives of Fn
q in On

K) mapped bijectively to the set

Sing f̄ (Fq)∩D. We use the simplified notation S(f) in the case of D = On
K .

Also we define:

ν(f̄ , D, χ) :=

{

q−n Card
{

P ∈ D | P /∈ Vf̄ (Fq)
}

, if χ = χtriv,

q−ncχ
∑

{P∈D |P /∈Vf̄ (Fq)} mod P
cχ
K

χ(ac(f(P ))), if χ 6= χtriv,

where cχ is the conductor of χ, and

σ(f̄ , D, χ) :=
{

q−n Card
{

P ∈ D | P is a smooth point of Vf̄ (Fq)
}

, if χ = χtriv,

0, if χ 6= χtriv.

If D = On
K , we use the simplified notation ν(f̄ , χ), σ(f̄ , χ). We denote

by Z(D, s, f, χ) the integral
∫

D χ(ac(f(x)))|f(x)|sK |dx|. With all this, we

are able to establish Igusa’s stationary phase formula for π-adic integrals

([I3, p. 177]):
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Igusa’s Stationary Phase Formula.

Z(D, s, f, χ) = ν(f̄ , D, χ) + σ(f̄ , D, χ)
(1 − q−1)q−s

(1 − q−1−s)
(2.3)

+
∑

P∈S(f,D)

q−n−eP s

∫

On
K

χ(ac(fP (x)))|fP (x)|sK |dx|,

where Re(s) > 0. The proof given by Igusa in [I3], for the case χ = χtriv,

generalizes literally to arbitrary characters.

In [Z-G] the author introduced the following index of singularity at a

point P ∈ On
K , satisfying P /∈ Singf (OK).

Definition 2.1. Let f(x) ∈ OK [x] be a polynomial and P =
(a1, . . . , an) ∈ On

K , such that P /∈ Singf (OK). We define

L(f, P ) := Inf

(

v(f(P )), v
( ∂f

∂x1
(P )
)

, . . . , v
( ∂f

∂xn
(P )
)

)

.

It follows from the definition that L(f, P ) = 0 if and only if the poly-

nomial

f(x) = α0 +
∑

j

αj(xj − aj) + (degree ≥ 2) ∈ Fq[x],

satisfies αj ∈ F∗
q for some j = 0, 1, 2, . . . , n.

The index L(f, P ) appears naturally associated to Igusa’s stationary

phase, as it was already noted in [Z-G]. In addition, this index plays an

important role in the construction of the Néron π-adic desingularization of

the special fiber of smooth schemes over Spec(OK) (see [A], [N]).

If A ⊆ On
K , we denote by Ac the complement of A with respect to On

K .

Proposition 2.2. Let D ⊆ On
K be an open and compact subset, and

let f(x) ∈ OK [x] be a polynomial such that Singf (K) ∩ D = ∅. Then there

exists a constant C(f,D) ∈ N, depending only on f and D, such that

(2.4) L(f, P ) 5 C(f,D), for all P ∈ D.

Proof. By contradiction, we suppose that L(f, P ) is not bounded on D.
Thus there exists a sequence (Qi)i∈N of points of D satisfying lim L(f,Qi) →
∞, when i → ∞. This sequence has a limit point Q∗ ∈ D. Since Singf (K)
is a closed set, we have that Q∗ ∈ Singf (K) ∩ D = ∅, contradiction.
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From now on, we shall suppose that C(f,D) is minimal for condition

(2.4).

We recall that a subset A of Kn is open and compact if and only if there

is m = 0 such that A is the finite union of classes modulo πm. In particular

the preimage of any subset of Fn
q under the canonical homomorphism OK →

OK/πOK is an open and compact subset.

The following lemma is a generalization of Proposition 2.3 of [Z-G].

Lemma 2.3. Let D ⊆ On
K be the preimage under the canonical homo-

morphism OK → OK/πOK of a subset D ⊆ Fn
q , and let f(x) ∈ OK [x] be a

polynomial such that Singf (OK) ∩ D = ∅, then

(i) L(fP1,...,Pk
, 0) 5 L(f, P1 + πP2 + · · · + πk−1Pk) − k, for every Pk,

k ≥ 1, satisfying : (H1) Pk is in the (k − 1)th-generation of descendants of

P1; (H2) Pk has at least one descendant in the kth-generation of descendants

of P1.

(ii) For any P = P1 ∈ S(f,D), if k ≥ C(f,D)+1 then S(fP1,P2,...,Pk
) =

∅.

Proof. First, we observe that

(2.5) f(P1 + πP2 + · · · + πk−1Pk + πkx) = πE(P1,...,Pk)fP1,...,Pk
(x),

where E(P1, . . . , Pk) = eP1 +eP1,P2 +eP1,...,Pk
. The result follows from (2.5),

if
eP1,...,Pl

≥ 2, for l = 1, 2, . . . , k.

This last fact follows from the following reasoning.
By applying the Taylor formula to fP1,...,Pl−1

(Pl + πx), we obtain

fP1,...,Pl−1
(Pl + πx) =(2.6)

fP1,...,Pl−1
(Pl) + π

∑

j

∂fP1,...,Pl−1

∂xj
(Pl)xj + π2(degree ≥ 2).

From hypothesis (H1) follows that v(fP1,...,Pl−1
(Pl)) ≥ 1 and

v
( ∂fP1,...,Pl−1

∂xj
(Pl)

)

≥ 1,

and from hypothesis (H1) and (H2) that

v(fP1,...,Pl−1
(Pl)) ≥ 2;

therefore (2.6) implies that eP1,...,Pl
≥ 2, l = 1, 2, . . . , k.

(ii) The second part of the lemma follows immediately from (i).
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We observe that if Pl ∈ S(fP1,...,Pl−1
) does not have descendants in the

lth-generation (i.e. S(fP1,...,Pl−1,Pl
) = ∅), then the polynomial

fP1,...,Pl−1,Pl
(Pl+1 + πx) =

fP1,...,Pl
(Pl+1) + π

∑

j

∂fP1,...,Pl

∂xj
(Pl+1)xj + π2(degree ≥ 2)

satisfies fP1,...,Pl
(Pl+1) 6= 0, or

∂fP1,...,Pl
∂xj0

(Pl+1) 6= 0, for some j0. Thus

for any Pl+1 satisfying fP1,...,Pl
(Pl+1) = 0, it holds that fP1,...,Pl+1

(x) is a

polynomial of degree at most one.

Lemma 2.4. Let D ⊆ On
K be the preimage under the canonical homo-

morphism OK → OK/πOK of a subset D ⊆ Fn
q . Let f(x) ∈ OK [x] be a

polynomial such that Singf (K) ∩ D = ∅, then

∫

D
χ(acf(x))|f(x)|sK |dx| =











T (q−s)

1 − q−1q−s
, χ = χtriv,

L(q−s), χ 6= χtriv,

where T and L are polynomials in q−s with rational coefficients. Further-

more, in the case χ 6= χtriv, the degree of the polynomial L(q−s) is bounded

by a constant depending only on f and D.

Proof. We define inductively Ik as follows:

I1 := S(f,D),

Ik := {(P1, P2, . . . , Pk) | (P1, P2, . . . , Pk−1) ∈ Ik−1, Pk ∈ S(fP1,P2,...,Pk−1
)},

k ≥ 2.

We set E(P1, . . . , Pk) := eP1 + eP1,P2 + · · · + eP1,P2,...,Pk
.

If m = C(f,D) + 1, then Im+1 = ∅, because Lemma 2.3 (ii) implies
that S(fP1,P2,...,Pm) = ∅, for every (P1, P2, . . . , Pm) ∈ Im. By applying the
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stationary phase formula m + 1-times, we obtain

Z(D, s, f, χ) = ν(f̄ , D, χ) + σ(f̄ , D, χ)
(1 − q−1)q−s

(1 − q−1−s)

(2.7)

+
m
∑

k=1

q−kn





∑

(P1,...,Pk)∈Ik

ν(f̄P1,...,Pk
, χ)q−E(P1,...,Pk)s





+
(1 − q−1)q−s

(1 − q−1−s)

m
∑

k=1

q−kn





∑

(P1,...,Pk)∈Ik

σ(f̄P1,...,Pk
, χ)q−E(P1,...,Pk)s



 .

In the case χ 6= χtriv, all σ(f̄P1,...,Pk
, χ) = 0, thus Z(D, s, f, χ) is a polyno-

mial in q−s and its degree is bounded by the maximum of the E(P1, . . . , Pm),
where Pm runs through the descendants of the C(f,D) + 1-generation of
S(f,D).

Corollary 2.5. Let D ⊆ On
K be the preimage under the canonical

homomorphism OK → OK/πOK of a subset D ⊆ Fn
q . Let F (x) = f(x) +

πβg(x) ∈ OK [x] be a polynomial such that β = C(f,D) + 1, and

SingF (K) ∩ D = Singf (K) ∩ D = ∅.

Then

(2.8) Z(D, s, F, χ) = Z(D, s, f, χ).

Proof. The result follows immediately from expansion (2.7) and the
fact that C(f,D) = C(F,D).

§3. Newton polyhedra

In this section we review some well-known results about Newton poly-

hedra that we shall use in this paper (see e.g. [K-M-S], [D3]).

We set R+ = {x ∈ R | x = 0}. Let f(x) =
∑

l alx
l ∈ K[x], x =

(x1, x2, . . . , xn) be a polynomial in n variables satisfying f(0) = 0. The

set supp(f) = {l ∈ Nn | al 6= 0} is called the support of f . The Newton

polyhedron Γ(f) of f is defined as the convex hull in Rn
+ of the set

⋃

l∈supp(f)

(

l + Rn
+

)

.
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By a proper face γ of Γ(f), we mean the non-empty convex set γ obtained by

intersecting Γ(f) with an affine hyperplane H, such that Γ(f) is contained

in one of two half-spaces determined by H. The hyperplane H is named the

supporting hyperplane of γ. A face of codimension one is named a facet .

We set 〈 , 〉 for the usual inner product in Rn, and identify the dual vector

space with Rn. For a ∈ Rn
+, we define

m(a) := inf
x∈Γ(f)

{〈a, x〉}.

The first meet locus of a ∈ Rn
+ r {0} is defined by

F (a) := {x ∈ Γ(f) | 〈a, x〉 = m(a)}.

The first meet locus F (a) of a is a proper face of Γ(f).

We define an equivalence relation on Rn
+ r {0} by

a w a′ if and only if F (a) = F (a′).

If γ is a face of Γ(f), we define the cone associated to γ as

∆γ := {a ∈ (R+)n r {0} | F (a) = γ}.

The following two propositions describe the geometry of the equivalences

classes of w (see e.g. [D3]).

Proposition 3.1. Let γ be a proper face of Γ(f). Let w1, w2, . . . , we

be the facets of Γ(f) which contain γ. Let a1, a2, . . . , ae be vectors which

are perpendicular to respectively w1, w2, . . . , we. Then

∆γ =

{ e
∑

i=1

αiai

∣

∣

∣ αi ∈ R, αi > 0

}

.

If a1, a2, . . . , ae ∈ Rn, we call
{
∑e

i=1 αiai | αi ∈ R, αi > 0
}

the cone

strictly positive spanned by the vectors a1, a2, . . . , ae. Let ∆ be a cone

strictly positive spanned by the vectors a1, a2, . . . , ae. If a1, a2, . . . , ae are

linearly independent over R, the cone ∆ is called a simplicial cone. In this

last case, if a1, a2, . . . , ae ∈ Zn, the cone ∆ is called a rational simplicial

cone. If {a1, a2, . . . , ae} can be completed to be a basis of Z-module Zn, the

cone ∆ is named a simple cone.

A vector a ∈ Rn is called primitive if the components of a are positive

integers whose greatest common divisor is one.

For every facet of Γ(f) there is a unique primitive vector in Rn which

is perpendicular to this facet. Let D be the set of all these vectors.
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Proposition 3.2. Let ∆ be the cone strictly positively spanned by vec-

tors a1, a2, . . . , ae ∈ Rn
+ r {0}. Then there is a partition of ∆ into cones

∆i, such that each ∆i is strictly positively spanned by some vectors from

{a1, a2, . . . , ae} which are linearly independent over R.

The two previous propositions imply the existence of a partition of ∆γ

into rational simplicial cones.

Proposition 3.3. ([K-M-S], p. 32–33) Let ∆ be a rational simplicial

cone. Then there exists a partition of ∆ into simple cones.

Summarizing, given a polynomial f(x) ∈ K[x], f(0) = 0, with Newton

polyhedron Γ(f), there exists a finite partition of Rn
+ of the form:

Rn
+ = {(0, . . . , 0)} ∪

⋃

i

∆i,

where each ∆i is a simplicial cone contained in an equivalence class of w .

Furthermore, by Proposition 3.3, it is possible to refine this partition in

such a way that each ∆i is a simple cone contained in an equivalence class

of w .

§4. Local zeta functions of globally non-degenerate polynomials

In this section we prove Theorem A. First, we give some preliminary

results.

If A ⊆ Zn
+, we set

EA := {(x1, . . . , xn) ∈ On
K | (v(x1), . . . , v(xn)) ∈ A},

and

ZA(s, f, χ) :=

∫

EA

χ(acf(x))|f(x)|sK |dx|.

Also, if B ⊆ On
K , we set

Z(B, s, f, χ) :=

∫

B
χ(acf(x))|f(x)|sK |dx|.

Thus ZA(s, f, χ) = Z(EA, s, f, χ).
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Proposition 4.1. Let f(x) ∈ OK [x] be a globally non-degenerate poly-

nomial with respect to its Newton polyhedron Γ(f), γ ⊆ Γ(f) a proper

face, and ∆γ its associated cone. If ∆γ is a simple cone spanned by

a1, a2, . . . , ae ∈ D, and f(x) = fγ(x) + πg0H(x), where g0 ≥ C(fγ ,O×
K) + 1

(the constant whose existence was established in Proposition 2.2), and all

monomials of H(x) are not in γ, then

(4.1) Z∆γ (s, f, χ) = Z(O×n
K , s, fγ , χ)

q−
Pe

j=1(|aj |+m(aj)s)

∏e
j=1

(

1 − q−|aj |−m(aj )s
) .

Proof. The hypothesis ∆γ is a simple cone spanned by aj =
(a1,j , a2,j , . . . , an,j), j = 1, 2, . . . , e, implies that

(4.2) ∆γ ∩ Nn =

e
⊕

j=1

aj(N r {0}).

From (4.2), we obtain the following expansion for Z∆(s, f, χ):

(4.3) Z∆γ (s, f, χ) =

∞
∑

y1=1

· · ·
∞
∑

ye=1

∫

ω(y1,...,ye)

χ(acf(x))|f(x)|sK |dx|,

where

ω(y1,...,ye) :=

{(x1, . . . , xn) ∈ On
K | xi = π

P

j ai,jyj µi, µi ∈ O×
K , i = 1, 2, . . . , n}.

In order to compute the integral in (4.3), we introduce the dilatation

Φ(y1,...,ye)(x) = (Φ1(x), . . . ,Φn(x)) : Kn −→ Kn,

where

(4.4) Φi(x) = π
P

j ai,jyj xi, i = 1, 2, . . . , n.

By using the dilatation (4.4) as a change of variables in (4.3), it holds
that

(4.5)

∫

ω(y1,...,ye)

χ(acf(x))|f(x)|sK |dx| =

q−
Pe

j=1 yj(|aj |+m(aj )s)

(

∫

O×n
K

χ(ac(f(y1 ,...,ye)(x)))|f(y1 ,...,ye)(x)|sK |dx|

)

,
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where f(y1,...,ye)(x) = fγ(x)+πg(y1 ,...,ye)+g0H(y1,...,ye)(x), and g(y1, . . . , ye) ≥
1. The result follows from (4.5) by using Corollary 2.5 and expansion (4.3).

Proposition 4.2. Let f(x) ∈ OK [x] be a globally non-degenerate poly-

nomial with respect to its Newton polyhedron Γ(f), γ ⊆ Γ(f) a proper

face, and ∆γ its associated cone. If ∆γ is a simple cone spanned by

a1, a2, . . . , ae ∈ D, then

Z∆γ (s, f, χ)

=
∑

y finite

Ay(q
−s)Z(O×n

K , s, fy, χ) +
∑

I⊆{1,2,...,e}

AI(q
−s)Z(O×n

K , s, fI , χ)
∏

j∈I

(

1 − q−|ajm(aj )s
) ,

where y runs through a finite number of points in Nn, Ay(q
−s), AI(q

−s) ∈
Q[q−s], fy(x) and fI(x) are polynomials in OK [x] satisfying Singfy

(K) ∩
(K r {0})n = ∅, for every y ∈ N, SingfI

(K) ∩ (K r {0})n = ∅, for every

I, respectively. Furthermore, if γai denotes the facet with perpendicular ai,

and γI =
⋂

i∈I γai , then fI(x) = fγI
(x).

Proof. By induction on l, the number of generators of the simple cone
∆γ .

Case l = 1.
Let m0 = C(fγ ,O×

K) + 1, and

S := ∆γ ∩ Nn = {a1y | y ∈ N, y ≥ 1}.

The set S can be partitioned into the subsets S0, S1, defined as follows:

S0 := {a1y | y = 1, 2, . . . ,m0 − 1}, S1 := {a1y | y ∈ N, y = m0}.

Also we define

E0 := {(x1, . . . , xn) ∈ On
K | (v(x1), . . . , v(xn)) ∈ S0},

E1 := {(x1, . . . , xn) ∈ On
K | (v(x1), . . . , v(xn)) ∈ S1}.

Thus Z∆γ (s, f, χ) = Z(E0, s, f, χ) + Z(E1, s, f, χ), and by making a change
of variables of type (4.4), we obtain

Z∆γ (s, f, χ) =

m0−1
∑

y=1

q−y(|a1|+m(a1)s)Z(O×
K , s, fy, χ)(4.6)

+ q−m0(|a1|+m(a1)s)Z∆γ (s, fa1(x) + πm0H(x), χ),
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where fy(x) are obtained from f(x) by a change of variables of type (4.4)
followed by a division by a power of π, fa1(x) is the restriction of f(x) to
the facet γa1 with perpendicular a1, and all monomials of H(x) are not in
γa1 . The result follows from (4.6), by means of the following equality (cf.
Proposition 4.1)

q−m0(|a1|+m(a1)s)Z∆γ (s, fa1(x) + πm0H(x), χ)

=
q−(m0+1)(|a1 |+m(a1)s)

1 − q−(|a1|+m(a1)s)
Z(O×

K , s, fa1 , χ).

Induction hypothesis. Suppose that the lemma is valid for every
polynomial f(x) globally non-degenerate with respect its Newton polyhe-
dron, and for every simple cone spanned by at most e − 1 vectors of D.

Case l > 1.
Let f(x) be globally non-degenerate polynomial and ∆γ a simple cone

spanned by a1, a2, . . . , ae, satisfying the conditions of Proposition 4.2.
We set m0 = C(fγ ,O×

K) + 1, and

(4.7) S := ∆γ ∩ Nn =

e
⊕

j=1

aj(N r {0}),

aj = (a1,j, . . . , an,j), j = 1, 2, . . . , e. For each subset I ⊆ {1, 2, . . . , e}, we
put rI ∈ Ne−Card(I), rI = (ri1 , ri2 , . . . , rie−Card(I)

), with 0 < ril ≤ m0 − 1,
l = 1, 2, . . . , e − Card(I). The set S admits the following partition:

(4.8) S =
⋃

I,rI

SI,rI
,

with

SI,rI
=

{

∑

j∈I

ajyj +
∑

j /∈I

ajrj

∣

∣

∣
yj ≥ m0, if j ∈ I, and yj = rij , if j /∈ I

}

,

where for each I ⊆ {1, 2, . . . , e}, the corresponding rI ’s run through all
possible different integer vectors satisfying the above mentioned conditions.
We set

EI,rI
:= {(x1, . . . , xn) ∈ On

K | (v(x1), . . . , v(xn)) ∈ SI,rI
}.

It follows from partition (4.8) that

(4.9) Z∆γ (s, f, χ) =
∑

I,rI

Z(EI,rI
, s, f, χ).
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By a change of variables of type

Φi(x) = π(
P

j∈I ai,jyj+
P

j /∈I ai,jrj)xi, i = 1, . . . , n;

the integral Z(EI,rI
, s, f, χ) equals

(4.10) q−m0
P

j∈I(|aj |+m(aj )s)−
P

j /∈I rj(|aj |+m(aj)s)Z∆I
(s, fI , χ),

where ∆I is a simple cone generated by ai, i ∈ I, and fI(x) is obtained
from f(Φi(x)) by division by a power of π. From these observations and
(4.9), we obtain

(4.11) Z∆γ (s, f, χ) =
∑

I⊂{1,2,...,e}

AI(q
−s)Z∆I

(s, fI , χ)

+ q−m0
Pe

j=1(|aj |+m(aj )s)Z∆γ (s, fγ + πg0H(x), χ),

where I runs through all proper subsets of {1, 2, . . . , e}, AI(q
−s) =

∑

k q−ak(I)−bk(I)s, ak(I), bk(I) ∈ N, g0 = m0, and all monomials of H(x)
are not in γ. From (4.11) and Proposition 4.1, we obtain

(4.12) Z∆γ (s, f, χ) =
∑

I⊂{1,2,...,e}

AI(q
−s)Z∆I

(s, fI , χ)

+ q−(1+m0)
Pe

i=1(|ai|+m(ai)s)Z(O×n
K , s, fγ , χ)

1
∏e

j=1(1 − q−|aj |−m(aj )s)
.

The result follows from the induction hypothesis and (4.12).

We observe that each AI(q
−s) in Proposition 4.1 is a finite sum of mono-

mials of type q−aI−bIs, with aI , bI > 0. We also note that a facet with sup-

porting hyperplane xi0 = 0 contributes to the denominator of Z∆γ (s, f, χ)

with a constant factor 1/(1 − q−1).

The proof of Proposition 4.2 can be easily adapted to state the following

more general result.

Corollary 4.3. Let f(x) ∈ OK [x] be a globally non-degenerate poly-

nomial with respect to its Newton polyhedron Γ(f), γ ⊆ Γ(f) a proper face,

and ∆γ its associated cone. Let {a1, a2, . . . , af} ⊂ D be a set of genera-

tors of ∆γ, {a1, a2, . . . , ae} ⊂ {a1, a2, . . . , af} of e R-linearly independent
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vectors, and b ∈ ∆γ ∩ (N r {0})n. We set ∆ := b +
⊕e

j=1 ajN. Then

Z∆(s, f, χ) =
∑

y

Ay(q
−s)Z(O×n

K , s, fy, χ)

+
∑

I⊆{1,2,...,e}

AI(q
−s)Z(O×n

K , s, fI , χ)
∏

j∈I(1 − q−|aj |−m(aj)s)
,

where y runs through a finite number of points in Nn, Ay(q
−s), AI(q

−s) ∈
Q[q−s], with AI(q

−s) =
∑

k q−ak(I)−bk(I)s, ak(I), bk(I) ∈ N, fy(x) and fI(x)
are polynomials in OK [x] satisfying Singfy

(K)∩ (K r {0})n = ∅, for every

y, SingfI
(K) ∩ (K r {0})n = ∅, for every I, respectively. Furthermore, if

γai denotes the facet with perpendicular ai, and γI =
⋂

i∈I γai , then fI(x) =
fγI

(x).

Lemma 4.4. Let f(x) ∈ OK [x] be a globally non-degenerate polynomial

with respect to its Newton polyhedron Γ(f), γ ⊆ Γ(f) a proper face, and ∆γ

its associated cone. Let {a1, a2, . . . , ae} ⊂ D be a set of generators of ∆γ.

Then

Z∆γ (s, f, χ) =
∑

y

Ay(q
−s)Z(O×n

K , s, fy, χ)(4.13)

+
∑

I⊆{1,2,...,e}

AI(q
−s)Z(O×n

K , s, fI , χ)
∏

j∈I(1 − q−|aj |−m(aj )s)
,

where y runs through a finite number of points in Nn, Ay(q
−s), AI(q

−s) ∈
Q[q−s], with AI(q

−s) =
∑

k q−ak(I)−bk(I)s, ak(I), bk(I) ∈ N, fy(x) and fI(x)
are polynomials in OK [x] satisfying Singfy

(K)∩(Kr{0})n = ∅, for every y,
and SingfI

(K) ∩ (K r {0})n = ∅, for every I, respectively. Furthermore, if

γai denotes the facet with perpendicular ai, and γI =
⋂

i∈I γai , then Γ(fI) =
γI .

Proof. By Proposition 3.2 there exists a finite partition of ∆γ into
cones ∆j , such that each ∆j is strictly positively spanned by some vectors
from {a1, a2, . . . , ae} which are linearly independent over R. Now, each cone
∆j can be partitioned into a finite number of cones satisfying the conditions
of Corollary 4.3. In order to verify this last assertion, we observe that the
set ∆j ∩ Nn admits the following partition:

(4.14) ∆j ∩ Nn =

( e
⊕

i=1

ai(N r {0})

)

∪
⋃

b

(

b +

e
⊕

i=1

ajN

)

,
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where b runs through a finite number of vectors in

Nn ∩

{ e
∑

i=1

aiλi

∣

∣

∣ λi ∈ R, 0 ≤ λi < 1, i = 1, . . . , e

}

.

Now the result follows from Corollary 4.3.

In the proof of the above result, we did not use a partition of the cone ∆

into simple cones, because this approach produces a bigger list of candidates

for the poles of Z∆γ (s, f, χ).

Proof of Theorem A. (i) Given a polynomial f(x) ∈ OK [x], f(0) = 0,
there exists a partition of Rn

+ of the form:

(4.15) Rn
+ = {(0, . . . , 0)} ∪

⋃

γ

∆γ ,

where γ runs through all proper faces of Γ(f), and ∆γ is a cone strictly
positive spanned by some vectors a1, . . . , ae ∈ D. In addition, ∆γ is con-
tained in an equivalence class of w . From the above partition we obtain
the following expression for Z(s, f, χ):

(4.16) Z(s, f, χ) =

∫

O× n
K

χ(acf(x))|f(x)|sK |dx| +
∑

γ

Z∆γ (s, f, χ).

In (4.16) there are two different types of integrals: Z(O×n
K , s, f, χ), and

Z∆γ (s, f, χ). The integrals of the first type are rational functions of q−s

with poles satisfying Re(s) = −1 (cf. Lemma 2.4). The second type of
integrals are rational functions of q−s with poles satisfying condition (i) in
the statement of Theorem A (cf. Lemma 4.4).

(ii) If χ 6= χtriv, from (4.16) and Lemma 2.4 follow that Z(s, f, χ) is
equal to a polynomial, with degree bounded by a constant independent of
χ, plus a finite sum of functions of the form

(4.17)
AI(q

−sZ(O×n
K , s, fI , χ))

∏

j∈I

(

1 − q−|aj |−m(aj)s
) ,

where fI(x) denotes the restriction of f(x) to the face γI =
⋂

i∈I γai , and
γai denotes the facet with perpendicular ai. The second part of the theorem
follows from (4.17) by the following fact: if the order of χ does not divide
some m(aj) 6= 0, j ∈ I, then

(4.18) Z(O×n
K , s, fI , χ) = 0.
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If the order of χ does not divide m(aj), with aj = (a1,j , a2,j , . . . , an,j), then
there exists an u ∈ O×

K such that

(4.19) χm(aj)(u) 6= 1.

We set

(4.20)
φu : O×n

K −−−→ O×n
K

(x1, x2, . . . , xn) −−−→ (x1u
a1,j , x2u

a2,j , . . . , xnuan,j ).

The map φu establishes a bijection of O×n
K to itself that preserves the

Haar measure. By using (4.20) as change of variables in the integral
Z(O×n

K , s, fI , χ), it verifies that

(

1 − χm(aj )(u)
)

Z(O×n
K , s, fI , χ) = 0.

Therefore, (4.19) implies Z(O×n
K , s, fI , χ) = 0.

§5. The largest pole of Z(s, f, χtriv)

In this section we prove Theorem B. Its proof will be accomplished by

means of three preliminary results.

For a polynomial f(x) ∈ OK [x] globally non-degenerate with respect

to its Newton polyhedron Γ(f), we set

β(f) := max
τj

{

−
|aj |

m(aj)

}

,

where τj runs through all facets of Γ(f) satisfying m(aj) 6= 0. The point

T0 =
(

−β(f)−1, . . . ,−β(f)−1
)

∈ Qn

is the intersection point of the boundary of the Newton polyhedron Γ(f)

with the diagonal ∆ = {(t, . . . , t) | t ∈ R} in Rn. Let τ0 be the face

of smallest dimension of Γ(f) containing T0, and ρ its codimension, i.e.

ρ = dim∆τ0 .

Proposition 5.1. Let f(x) ∈ OK [x] be a globally non-degenerate poly-

nomial with respect to its Newton polyhedron Γ(f). If β(f) > −1, then β(f)
is a pole of Z(s, f, χtriv) and its multiplicity is equal to ρ.
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Proof. First, we note that the multiplicity of the possible pole β(f)
is less then or equal to dim∆τ0 = ρ (cf. formulas (4.16), (4.13), (2.7)). In
order to prove that β(f) is a pole of Z(s, f, χtriv), it is sufficient to show
that

(5.1) lim
s→β(f)

(

1 − qβ(f)−s
)ρ

Z(s, f, χtriv) > 0.

This last assertion is a consequence of the following result (cf. (4.16), (4.13)):

Claim A. (i)

(5.2) lim
s→β(f)

(

1 − qβ(f)−s
)ρ
(

AI(q
−s)Z(O×n

K , s, fI , χtriv)
∏

j∈I

(

1 − q−|aj |−m(aj )s
)

)

≥ 0,

for every cone ∆γ =
{
∑e

i=1 aiyi | yi ≥ 0, for all i
}

, and every I ⊆
{1, 2, . . . , e}.

(ii) There is a cone ∆0 and a subset I0 of generators of this cone such
that inequality (5.2) is strict.

The first part of the previous claim follows from the following two facts.
The first fact is

(5.3) lim
s→β(f)

(

AI(q
−s)Z(O×n

K , s, fI , χtriv)
)

> 0.

Since AI(q
−s) =

∑

k qak(I)−bk(I)s, with ak(I), bk(I) ∈ N, inequality (5.3)
follows from noticing that

lim
s→β(f)

(

(1 − q−1)q−s

1 − q−1−s

)

> 0, when β(f) > −1.

The second fact is

(5.4) lim
s→β(f)

(

1 − qβ(f)−s
)ρ
(

1
∏

j∈I

(

1 − q−|aj |−m(aj)s
)

)

≥ 0.

The second part of the claim follows from the following reasoning. Let
a1, a2, . . . , ae be the unique primitive vectors perpendicular to the facets
which contain τ0. There exists a cone ∆0 in the partition into simplicial
cones of ∆τ0 given by Proposition3.2 and I0 ⊆ {1, 2, . . . , e} such that {ai |
i ∈ I0} is a set of ρ linearly independent generators of ∆0, because the
dimension of ∆τ0 is ρ. Then inequality (5.2) is strict for the cone ∆0 and
I0. Thus, β(f) is a pole of Z(s, f, χtriv) of multiplicity ρ.
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Proposition 5.2. Let f(x) ∈ OK [x] be a globally non-degenerate poly-

nomial with respect to its Newton polyhedron Γ(f), and γ ⊆ Γ(f) a proper

face. If σ(f̄γ ,O×n
K ) = σ(f̄γ ,O×n

K , χtriv) > 0 then

(5.5) lim
s→−1

(

1 − q−1−s
)

Z(O×n
K , s, fγ , χtriv) 6= 0.

Proof. By using expansion (2.7), with D = O×n
K , and m =

C(fγ ,O×n
K ) + 1, we have that

(5.6) lim
s→−1

(

1 − q−1−s
)

Z(O×n
K , s, fγ , χtriv) = (q − 1)σ(f̄γ ,O×n

K , χtriv)

+ (q − 1)

m
∑

k=1

q−kn





∑

(P1,...,Pk)∈Ik

σ(f̄γP1,...,Pk
, χtriv)q

E(P1,...,Pk)



 .

Since the right side of (5.6) is a sum of positive numbers, the result
follows from the hypothesis σ(f̄γ ,O×n

K , χtriv) > 0.

Proposition 5.3. Let f(x) ∈ OK [x] be a globally non-degenerate poly-

nomial with respect to its Newton polyhedron Γ(f). Let a1, a2, . . . , ae be the

unique primitive vectors perpendicular to the facets which contain τ0. If

β(f) = −1, then β(f) is a pole of Z(s, f, χtriv) with multiplicity less than or

equal to ρ + 1. Furthermore, if every face γ k τ0 satisfies σ(f̄γ ,O×n
K ) > 0,

then the multiplicity of the pole β(f) is ρ + 1.

Proof. In the case β(f) = −1 the multiplicity of the possible pole β(f)
is less than or equal to ρ + 1 because Z(O×n

K , s, fI , χtriv) may have a pole
at s = −1 (cf. formulas (4.16), (4.13), (2.7)). As in the case β(f) > −1, the
result follows from inequality (5.1) by Claim A. In the case β(f) = −1, we
may suppose that

(5.7) Z(O×n
K , s, fI , χtriv) =

cI(q
−s)

(1 − q−1−s)
,

where cI(q
−s) is a polynomial with positive coefficients (cf. expansion (2.7)).

The proof of Claim A, for β(f) = 1, involves the same ideas as in the case
β(f) > −1.

The second part of the proposition is proved as follows. There exists
a simplicial cone ∆0 ⊆ ∆τ0 with dim∆0 = ρ (cf. final part of the proof of
Proposition 5.1). Let I0 be a set of ρ linearly independent generators of ∆0.
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By duality this cone corresponds to a face γ k τ0, and Z(O×n
K , s, fI0 , χtriv)

has a pole of multiplicity 1 at s = −1 (cf. Proposition 5.2), thus

(5.8) lim
s→−1

(

1 − q−1−s
)ρ+1

(

AI0(q
−s)Z(O×n

K , s, fI0 , χtriv)
∏

j∈I0

(

1 − q−|aj |−m(aj )s
)

)

> 0.

Proof of Theorem B. The theorem follows from Proposition 5.1 and
Proposition 5.3.

§6. Exponential sums

Let Ψ be an additive character trivial on OK but not on P−1
K . A such

character is named standard . We put z = uπ−m, m ∈ N r {0}, u ∈ O×
K .

To these data one associates the following exponential sum:

E(z,K, f) = q−nm
∑

x mod Pm
K

Ψ(uf(x)/πm).

The following corollary follows Theorem A, Theorem B above, and Propo-

sition 1.4.5 of [D2], by writing Z(s, f, χ) in partial fractions.

Corollary 6.1. (i) Let f(x) ∈ OK [x] be a globally non-degenerate

polynomial with respect to its Newton polyhedron Γ(f), then for |z| big

enough E(z,K, f) is a finite C-linear combination of functions of the form

χ(ac(z))|z|λK (logq(|z|K))β ,

with coefficients independent of z, and with λ ∈ C a pole of (1 − q−1−s)
Z(s, f, χtriv) or of Z(s, f, χ), χ 6= χtriv, and β ∈ N, β 5 (multiplicity of

pole λ) − 1. Moreover all poles λ appear effectively in this linear combina-

tion.

(ii) Let L be a global field, and let f(x) ∈ L[x] be a globally non-

degenerate polynomial with respect to its Newton polyhedron Γ(f), and sup-

pose that β(f) > −1. For almost all non-archimedean completions Lv of L,

there exists a constant C(Lv) ∈ R satisfying

|E(z, Lv , f)| 5 C(Lv)|z|
β(f)
Lv

logq(|z|Lv )ρ−1, for all z ∈ Lv.

Igusa has conjectured that C(Lv) = 1 for almost all v [I2]. This conjec-

ture was proved by Denef and Sperber when K has characteristic zero, f is

a non-degenerate polynomial, and the face of the Newton polyhedron which

cuts the diagonal does not have vertex in {0, 1}n [D-Sp]. Corollary 6.1 per-

mits us to extent the result of Denef and Sperber to positive characteristic

using the methods in [D-Sp].
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§7. Examples

Example 7.1. In this example, we compute Z(s, f, χtriv) = Z(s, f),
for f(x, y) = x2 + xy + y2, when the characteristic of K is different from 2,
3, and analyze the behavior of the pole s = −1. In this case Sing f (K) =
{(0, 0)}, and the Newton polygon has only a compact segment with sup-
porting hyperplane x+y = 2. The polynomial f is globally non-degenerate
with respect to its Newton polygon.

One easily verifies that R2
+r{(0, 0)} can be partitioned into equivalence

classes modulo w , as follows.
If

∆1 := {(0, a) | a > 0},

∆2 := {(b, a + b) | a, b > 0},

∆3 := {(a, a) | a > 0},

∆4 := {(a + b, a) | a, b > 0},

∆5 := {(a, 0) | a > 0},

then

R2
+ = {(0, 0)} ∪

5
⋃

i=1

∆i,

and

Z(s, f) = Z(O× 2
K , s, f) +

5
∑

i=1

Z∆i(s, f).

Calculation of Z(O× 2
K , s, f), and Z∆1(s, f).

By using the stationary phase formula, we obtain

(7.1) Z(O× 2
K , s, f) = ν(f̄ ,O× 2

K ) + σ(f̄ ,O× 2
K )

(1 − q−1)q−1

(1 − q−1−s)
.

On the other hand, it is simple to verify that Z∆1(s, f) = q−1(1− q−1).

Calculation of Z∆2(s, f) and Z∆3(s, f).

Z∆2(s, f) =

∞
∑

a,b=1

q−a−2b

∫

O× 2
K

|π2bx2 + πa+2bxy + π2a+2by2|sK |dxdy|(7.2)

=
q−3−2s(1 − q−1)

(1 − q−1−s)(1 + q−1−s)
.
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Z∆3(s, f) =

∞
∑

a≥1

q−2a

∫

O× 2
K

|π2ax2 + π2axy + π2ay2|sK |dxdy|

(7.3)

=
q−2−2s

(1 − q−1−s)(1 + q−1−s)

(

ν(f̄ ,O× 2
K ) + σ(f̄ ,O× 2

K )
(1 − q−1)q−s

(1 − q−1−s)

)

.

Calculation of Z∆4(s, f) and Z∆5(s, f).

Z∆4(s, f) =

∞
∑

a,b≥1

q−2a−b

∫

O× 2
K

|π2a+2bx2 + π2a+bxy + π2ay2|sK |dxdy|(7.4)

=
q−3−2s(1 − q−1)

(1 − q−1−s)(1 + q−1−s)
.

(7.5) Z∆5(s, f) = q−1(1 − q−1).

From the above calculations, we obtain

(7.6) lim
s→−1

(

1 − q−1−s
)2

Z(s, f) =
σ(f̄ ,O× 2

K )(q − 1)

2
.

Now suppose that K = Qp, with p 6= 2, 3. Since

σ(f,O× 2
K ) = p2 Card

(

{(u, v) ∈ F× 2
p | f̄(u, v) = 0}

)

=

{

0, if p ≡ 5, 11 mod 12,

2p−2(p − 1), if p ≡ 1, 7 mod 12,

it follows from (7.6) that

(7.7) lim
s→−1

(

1 − p−1−s
)2

Z(s, f) =

{

0, if p ≡ 5, 11 mod 12,

p−2(p − 1)2, if p ≡ 1, 7 mod 12.

Thus Z(s, f) has a pole at s = −1 of multiplicity ρ + 1 = 2, when

Card
(

{(u, v) ∈ F× 2
p | f̄τ0(u, v) = 0}

)

= Card
(

{(u, v) ∈ F× 2
p | f̄(u, v) = 0}

)

> 0.

Otherwise the multiplicity is ρ = 1.
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Example 7.2. In this example, by using the method of Lemma 4.4,
we compute the local zeta function attached to the polynomial f(x, y) =
x2y2 + x5 + y5 ∈ K[x, y], when the characteristic of K is different from 2,
5. This polynomial is globally non-degenerate with respect to its Newton
polyhedron.

One easily verifies that R2
+r{(0, 0)} can be partitioned into equivalence

classes modulo w , as follows.

If

∆1 := {(0, a) | a > 0},

∆2 := {(2b, a + 3b) | a, b > 0},

∆3 := {(2a, 3a) | a > 0},

∆4 := {(2a + 3b, 3a + 2b) | a, b > 0},

∆5 := {(3a, 2a) | a > 0},

∆6 := {(3a + b, 2a) | a, b > 0},

∆7 := {(a, 0) | a > 0},

then

R2
+ = {(0, 0)} ∪

7
⋃

i=1

∆i,

where each ∆i is exactly an equivalence class modulo w .

Calculation of Z(O× 2
K , s, f), and Z∆1(s, f).

By using the stationary phase formula, we obtain

(7.8) Z(O× 2
K , s, f) = ν(f̄ ,O× 2

K ) + σ(f̄ ,O× 2
K )

(1 − q−1−s)

1 − q−1−s
.

On the other hand, it is simple to verify that Z∆1(s, f) = q−1(1 − q−1).

Calculation of Z∆2(s, f) and Z∆3(s, f).

The cone ∆2 is not a simple. In this case, one verifies that there is only
one element in ∆2 ∩ N2 satisfying 0 ≤ a < 1, 0 ≤ b < 1. This element is
(1, 2) = (0, 1) 1

2 + (2, 3) 1
2 . Thus

∆2 ∩ N2 = {(0, 1)(N r {0}) + (2, 3)(N r {0})}(7.9)

∪ {(1, 2) + (0, 1)N + (2, 3)N}.
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From the partition (7.9), we obtain that

Z∆2(s, f) =

∞
∑

a,b=1

q−a−5b

∫

O× 2
K

|π2a+10bx2y2 + π10bx5 + π5a+15by5|sK |dxdy|

(7.10)

+
∞
∑

a,b=0

q−a−5b−3

∫

O× 2
K

|π2a+10b+6x2y2 + π10b+5x5 + π5a+15b+10y5|sK |dxdy|

=
q−5−10s

1 − q−5−10s
q−1(1 − q−1) +

q−3−5s

1 − q−5−10s
(1 − q−1)

=
(1 − q−1)(q−3−5s + q−6−10s)

1 − q−5−10s
.

By applying Proposition 4.1, and then the stationary phase formula to
Z∆3(s, f), one obtains

Z∆3(s, f) =

∞
∑

a=1

q−5a−10as

∫

O× 2
K

|y2 + x3|sK |dxdy|(7.11)

=
q−5−10s

1 − q−5−10s

(

ν(f̄ ,O× 2
K ) + σ(f̄ ,O× 2

K )
(1 − q−1)q−s

(1 − q−1−s)

)

.

Calculation of Z∆4(s, f) and Z∆5(s, f).
The cone ∆4 is not a simple, thus we proceed as in the computation of

Z∆2(s, f), i.e. we find 0 ≤ a < 1, 0 ≤ b < 1, such that

(2, 3)a + (3, 2)b ∈ N2 ∩ ∆4.

If a = b, one finds immediately that (2, 3) i
5 + (3, 2) i

5 ∈ N2 ∩ ∆4,
i = 1, 2, 3, 4. The case a 6= b cannot occur. Suppose that (m,n) ∈ N2 ∩∆4,
with b > a, a 6= 0, b 6= 0, (a = 0 or b = 0 cannot occur), i.e.

(7.12) m = 2a + 3b, n = 3a + 2b, m, n ∈ N r {0}, 0 < a < b < 1.

From (7.12), we get b−a = m−n, but this is impossible because 0 < b−a <
1, and m − n ≥ 1. If a > b then a − b = n − m and the same argument
applies.

Therefore, we have the following partition for N2 ∩ ∆4:

N2 ∩ ∆4 = {(2, 3)(N r {0}) + (3, 2)(N r {0})}(7.13)

∪
4
⋃

i=1

{(i, i) + (2, 3)N + (3, 2)N}.
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From the partition (7.13), we obtain that
(7.14)

Z∆4(s, f) =

(

(1 − q−1)(q−5−10s)

1 − q−5−10s

)2

+

( 4
∑

i=1

q−2i−4is

)(

1 − q−1

1 − q−5−10s

)2

.

For Z∆5(s, f), we get

(7.15) Z∆5(s, f) =
q−5−10s

1 − q−5−10s

(

ν(f̄ ,O× 2
K ) + σ(f̄ ,O× 2

K )
(1 − q−1)q−s

1 − q−1−s

)

.

Calculation of Z∆6(s, f).
In the computation of the integral Z∆6(s, f), we use the following par-

tition:

∆6 ∩ N2 = {(3, 2)(N r {0}) + (1, 0)(N r {0})}(7.16)

∪ {(2, 1) + (3, 2)N + (1, 0)N}.

From the above partition, we get

(7.17) Z∆6(s, f) = (1 − q−1)
q−3−5s + q−6−10s

1 − q−5−10s
.

Calculation of Z∆7(s, f).

(7.18) Z∆7(s, f) = q−1(1 − q−1).

Now, with β(f) = −1/2, and ρ = 2, it holds that

lim
s→β(f)

(

1 − qβ(f)−s
)ρ

Z(s, f) = lim
s→β(f)

(

1 − qβ(f)−s
)ρ

Z∆4(s, f)

=
(1 − q−1)2

50
.
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Astérisque, 201/202/203 (1990–1991).

https://doi.org/10.1017/S0027763000008631 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008631


58 W. A. ZUNIGA-GALINDO

[D3] J. Denef, Poles of p-adic complex powers and Newton Polyhedra, Nieuw Archief

voor Wiskunde, 13 (1995), 289–295.

[D-H] J. Denef and K. Hoornaert, Newton polyhedra and Igusa’s local zeta functions,

Journal of Number Theory, 89 (2001), 31–64.

[D-S-1] J. Denef and P. Sargos, Polyédre de Newton et distribution f s
+, J. Analyse

Math., 53 (1989), 201–218.

[D-S-2] J. Denef and P. Sargos, Polyédre de Newton et distribution f s
+. II, Math. Ann.,

293 (1992), 193–211.

[D-Sp] J. Denef and S. Sperber, On exponential sums mod pm and Newton polyhedra,

Bull. Belg. Math. Soc. Simon Stevin (2001), 55–63.

[I1] J.-I. Igusa, On the first terms of certain asymptotic expansions, Complex and

Algebraic Geometry, Iwanami Shoten and Cambridge university press (1977),

pp. 357–368.

[I2] J.-I. Igusa, Complex powers and asymptotic expansions I, J. Reine Angew Math.,

268/269 (1974), 110–130.

[I3] J.-I. Igusa, A stationary phase formula for p-adic integrals and its applications,

Algebraic geometry and its applications, Springer-Verlag (1994), pp. 175–194.

[I4] J.-I. Igusa, On the arithmetic of a singular invariant, Amer. J. Math. (1988),

197–233.

[K-M-S] G. Kempf, F. Knudsend, D. Mumford and B. Saint-Donat, Toroidal embedings,

Lectures notes in Mathematics, 339 (1973).

[L-M] B. Lichtin and D. Meuser, Poles of a local zeta function and Newton polygons,

Compositio Math., 55 (1985), 313–332.

[Me] D. Meuser, On the poles of a local zeta function for curves, Invent. Math., 73

(1983), 445–465.
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