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A NOTE ON MODULAR FORMS MOD p

MASAO KOIKE

§ 1. Introduction

In this paper we shall study relations among the spaces of modular
forms modp attached to Sk(Np, ψχ) and Sk,(N, ψ) by using certain identities
between dimensions of these spaces.

Let iVbe a positive integer and χ be an arbitrary character of (ZjNZ)x.

Let Γ0(N) = jYj J ) e SL2(Z)\c = 0 (modiV)}. Let f(z) be a cusp form of

weight k satisfying

f(σ(z)) = (cz + dYχ(d)f{z) for all a = (« J) 6 Γ0(N) .

Then we call f(z) a cusp form of type (k, χ) on Γ0(N), and we denote by
Ste(N9 χ) the space of all cusp forms of type (k, χ) on Γ0(N). If χ is trivial,
we simply denote Sk(N).

From now we fix a rational prime p, p > 5. Let iV be a positive
integer such that (p, iV) = 1. Let ψ and χ be arbitrary characters of

y and (ZjpZ)x respectively such that

Let t denote the order of χ and put

(1.2) * = -<^L

with any integer a such that 1 < a < t, (a9t) — 1. Let k be any even
positive integer. Then we shall prove the following simple identities be-
tween dimensions of spaces of cusp forms by using Hijikata's explicit trace
formula [2]:

THEOREM 1.1. The notation being as above, we have
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dimc Sk(Np, ψχ) = dimc S(p+1)(fc/2)_XZV, ψ)

+ dimc S^+D^/g).^.!..)^, ψ) .

In § 3, we shall prove a statement analogous to Theorem 1.1 when k

is odd, k > 3.

Let Sfc(l) and Sfc(p) denote the space of modular forms modp attached

to Sk(ΐ) and Sk(p) respectively. Some of fundamental results on modular

forms modp, due to Serre and Swinnerton-Dyer are the followings:

(1.4) & ί ) C

(i.5) S7P) =

It is essential to prove (1.5) that it holds

S2(p) = dimc

which is a special case of Theorem 1.1. Hence next to do is to generalize

(1.5), namely to get relations between the spaces of modular forms modp

attached to Sk(Np, ψχ) and Sk,(N, ψ) as an application of Theorem 1.1.

To state further results, we fix N9 ψ and k as above. Take an alge-

braic number field K of finite degree over the rational number field which

contains all eigenvalues of all Hecke operators acting on Sk(Np, ψχ) for

all characters χ of (Z/pZ)x and on Sk,(N, ψ) for all V < (£/2)(p + 1), and

all p(p — l)-th roots of unity. We fix a prime divisor p of K lying over

p. Let v be the valuation of K attached to p normalized by \>{p) = p " 1 .

Also we write o = {a e K\ v(ά) < 1} and F — o/p.

For any character χ of (Z/pZ)x, we define Vχ and Vk, by

(1.6) Vχ = if{z) = Σ anq
n e Sk(Np, ψχ)\aneK for al l n > l ) ,

I n = l )

(1.7) Vk, = \g(z) = ± bnq« e SAN, f)\KeK for all n > l) .
L 71 = 1 J

where q = eZπίz. Then Vχ and Vk, are vector spaces over K with same

dimensions as those of Sk(Np, ψχ) and Sk,(N9 ψ) over the complex number

field respectively. For any subspace V of Vχ or Vr, we define

(1.8) V(o) = (/(*) = f] αw<T e VI αn e o for all n > l ) .
I w=i J

For any / = Σ»-i ang
n in V(o), we put
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where an = an mod p. f is a cusp form modp in slightly more generalized

sense than that of Serre and Swinnerton-Dyer. Let V denote the space

over F spanned by / for all fe V(ό). Then V has the same dimension over

F as that of V over K. V is called the space of modular forms modp

attached to V.

Let Wp == ( p ^ v Όj with some rational integers x and y, be a matrix

with determinant p. We define a linear operator ΫFP on Vχ by

(1.9) (/ ] Wp)(z) = p^(pNyz + p)- fc/( Λ f
V pNyz + p

Then we shall prove that Wp gives an isomorphism between Vχ and Vt

where χ is the character of (Z/pZ)x defined by χ(n) = the complex con-

jugate of χ(ή).

Since we fix a prime divisor p, there exists a unique character ω of

(Zfozy such that

ω(τι) = n mod p

for all integers n e Z, (n?jp) = 1. Since χ is a character of (ZjpZ)x of order

ί, there exists a unique rational integer α, (1 < α < t, (a, t) = 1) such that

(1.10) χ = ωv-w-*)/* m

Put

(1.11) * = (P- l)(ί - α)/ί .

THEOREM 1.2. 7%e notation being as above, there is a decomposition

of Vχ into a direct sum of subspaces VlfX and V2tX satisfying following

properties:

(1.12) dim,, Vhx = dimc S ^ ^ . ^ . ^ i V , ψ) ,

dim,, V2,χ = dim c S(p+1Hk/2).κ(N9 ψ) .

Vί>χ — V(

(1.14) (V^\WP)

When 2V= 1, fe = 2 and χ is trivial, Theorem 1.2 implies S2(p) = Sp+1(ϊ).

As a corollary of Theorem 1.2, we shall prove
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COROLLARY 1.3. For any Hecke operator T(n) with (n, Np) = 1, the

following congruence holds:

(Λ ΛK\ ^ ^v^) ^ ^ ^k\^\p9 ty%) — tr T(n) on S(p+i)(k/2)-(p-ι-κ)\N, ψ)

+ Λ tr T(n) on Sip+mtm _,(2V, ψ) (mod p) .

Some results of this note were already announced in [5] without proofs.

For general terminology on automorphic forms, we refer to Shimura's text-

book [9].

When k = 2 and ψ and χ are trivial characters, Dr. Hatada obtained

earlier similar results to Theorem 1.1 and Theorem 1.2 in Part 2 of his

doctoral thesis at University of Tokyo, April 1979.

§ 2. Proof of Theorem 1.1

We shall prove Theorem 1.1.

Hijikata's trace formula for dimc Sk(N, X) can be read as follows [2]:

let N be a positive integer and k > 2 be an integer. Let X be an arbitrary

Cx-valued character of (Z/NZ)X such that X(- 1) = ( - l)fc.

Then we have

( 2 Λ ) dimc Sk(N, X) = φ, N, X) + tp(k, N, X) + tel(k, N, X)

+ te2(k, N9 X) + φ, N, X) ,

where

(2.2) tυ(k, N, X) = A ^ J L Π p{l + 1 ) ,
12 p\N \ Ό /

(2.3)

- a/ π 1
— Π v

0 iίS2\N,

(2.4) te2(k, N,X)= 4 PΪN 2 P . » A V M A ,

if 4 X N, and k even,
0 otherwise ,

{1 if k = 2 and X is trivial ,

0 otherwise,
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and all products run over all prime divisors p of N. tp(k, N, X) denotes

the term which comes from the contribution of the parabolic elements.

Later we shall describe it clearly.

Remark. If X does not satisfy the condition X{ — 1) = (— l)fc, dim^ Sk(N, X)

is automatically equal to zero. But the right hand side does not vanish

generally. Hence (2.1) does not hold in general if X(— 1) Φ (— l)fc.

Now we fix a rational prime p > 5. Let N be a positive rational

integer which is prime to p. Let k > 2 be an even rational integer.

Let ψ and X be arbitrary Cx-valued characters of (Z/NZ)X and (Z\pZY

respectively satisfying

ψ * ( - 1) = 1 .

Let t denote the order of X. Then t is a divisor of p — 1. For any integer

a such that 1 < a < t and (a, t) = 1, we put K — ((p — ϊ)(t — α))/ί. Put

and

We shall prove

THEOREM 2.1. The notation being as above, we have

(2.6) ta(k, Np, ψX) = ie(Ax, N, ψ) + φ2, N, ψ)

/or α: = u, p, el, e2, δ.

Remark 2.2. It is clear that Theorem 1.1 follows from Theorem 2.1.

Proo/. We should remark that ψ(— 1) = ( - l)fcl = (~ l)fc2. Because

if ψ(— 1) = 1, then %(— 1) = 1. Hence K is even. So kx and k2 are also

even. If ψ(— 1) = — 1, then χ(— 1) = — l. Hence K is odd. So At and

k2 are also odd. We should remark that, for a = v, el, e% the terms cor-

responding to prime factors ί, of N are common in both hand sides of (2.6).

For a = v, we have
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UK l, Ψ) + Uk2, l, ψ) = -A. {A, + fc2 - 2}

For α = d, the left hand side of (2.6) is equal to 1 if and only if k = 2

and ψ and X are trivial characters. Then we have t = 1 and /c = 0. Hence

Λj = 2 and &2 = p + 1. Therefore the right hand side of (2.6) is equal to

1. Otherwise kγ Φ 2 and £2 Φ 2. Hence the right hand side of (2.6) is

equal to zero.

For a = el, it is sufficient to prove:

When P Ξ 2 (mod 3), the left hand side of (2.6) is equal to zero. On the

other hand, we have kx = κ — \ (mod 3) and k2 = — K (mod 3). Hence ω*1"1

= ωκ~2 and ωfc2-1 = ω~κ~\ To prove (2.6), it is sufficient to prove the fol-

lowing lemma:

LEMMA 2.3. For any integer ΛΓ, we have

(2.7) ω"2 - ω"-2 = a/"*"1 - ω~κ~ι

Proof. If ιc = 0 (mod 3), we have ωκ~2 = ω and G/"*"1 = co'"1 = ω. If

K ΞΞ 1 (mod 3), we have co*"2 = ω~ι = ωr and α)'"*"1 = ω7 '2 = ω7. If K = 2

(mod 3), we have ωκ~2 = 1 and α/"*"1 = 1. Hence Lemma 2.3 is proved.

When p = l (mod 3), the left hand side of (2.6) is equal to (X(ω) +

(̂ωOXω*"1 — α/*"1). In this case, ω* is proved to be equal to X(ω) or X(ω').

Since ωkl~ι = ω'-ω*-1 and ω62"1 = ω"κωfc"1, we have

Hence Theorem 2.1 is proved for α = el. Now we shall prove (2.6) for a

= e2. If Z(— 1) = — 1, K is odd. Hence &! and &2 are also odd. Hence

the both hand sides of (2.6) are equal to zero. Therefore we may assume

that Z(— 1) = 1. Hence kx and k2 are even, so it is sufficient to prove:
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(2.8) (l + (si±yjχ(ΐ)i*-* = i^-2 + ί^ .

When p = 3 (mod 4), the left hand side of (2.8) is equal to zero. Since kx —
k2=p~l = 2 (mod4), we have ikl~2 + ifc2~2 = 0. Hence (2.8) is true.
When p = 1 (mod 4), the left hand side of (2.8) is equal to 2X(i)ίk-2. Since
χ(— l) = l, χ(ΐ) is equal to ± 1 . Hence X(ί) = iκ = i~κ. Therefore we have
jfei-2 __ j/cjfc-2 a n ( j ^2-2 _ ι-κ^i-i __ jκmjk-2 s o

Now we calculate £p(&, iV, X) following the formula in [2], We use the same

notation as in [2]. Let s = 2 and Φ(X) = (X - I)2. For 1 < f < N, we

calculate c(2, /). Let p be a prime divisor of N and ^ = ordp /. Then v =

ordp N. Let p m denote the conductor of Xp. Put

A = { x e Z | ( x - l ) 2 Ξ θ moάpv+2p, 2 X Ξ 2 m o d ^ }

JB = {xe A\(x - I)2 = 0modp*+1+2'} .

Let A (resp. ΰ) be a complete system of representatives of A (resp. B)

modulo pv+p. c(2,f) and c(2,f,p) are defined by the folio wings:

c(2,/)= Πc(
V

Σ
yeB

(Case of v = 2n,ne Z). We have A = {xeZ\x = l moάpn+p} and B =

{xeZ\x = lmoάpn+1+p}. Hence we have A = {xmoάp2n+p, x = lmoάpn+p}

and B = {xmodp2w+% x = 1 modpn+/)+1}, so \A\ = pn and ]JB] ̂ p 7 1 ' 1 . There-

fore we have

!

p - 1 if m = n + p + 1 ,

iίm>n + p + l .

(Case of v = 2n + 1, n e Z). We have Ά = B = {xeZ\x = l moάpn+ί+p}.

Hence we have A = B = {xmodp2n+1+p, x = lmodpn + 1 + / >} and |A| = | S | =

pn. Therefore we have

Since X(— 1) = (— l)fc, £p(&, 2V, X) is given by the following:
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(2.11)

where / ranges from 1 to N.

We should write c(2, /, N, X) or c(2, /, p, N, X) instead of c(2, /) or c(2, /, p)

to make explicit contributions of the level N and the character X. It is

clear that tp(k, N, X) is independent of k.

LEMMA 2.4. Let f be an integer such that l<f<N. Put /' = / + iN

for 0 < i < p — 1. Then, for any prime divisor £ of N, we have

(2.12) c(2, /', /f Np, ψX) = c(2, /, 4f iV, ψ) .

Proo/. Put p = ord^/, ^r = ord^/' and v = ord^ N. Let ^m denote the

conductor of ψe. Since £ Φ p, we have (ψX)e = ψe. 1£ p <v, p' is equal

to p. Hence (2.12) is true. If p > v, it also holds p' > v. But it is clear

that m < v9 so we have

n + p > m and n + pf > m .

Hence (2.12) is true.

LEMMA 2.5. If v = 1, we have

c(2,/,p) = 2

/or any integer /.

Proo/. When y = 1, we have n = 0. Hence τι + ô + 1 > 1 and m < 1,

so n + /> + 1 > m. Therefore c(2,/,p) = 2.

Now we shall prove Theorem 2.1 for a = p. We have

tp(k, Np, ψX) = - - | - Σ 42, Λ P, Np, ψX) Π c(2, f, £, Np, ψX)

4 N p
Σ

4 Σ_c(2,/,iV,ψ)
4N

This completes the proof.
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§3. Supplements to Theorem 1.1

Here we shall give several supplements to Theorem 1.1.

Let S°k(N, X) denote the subspace of all new forms in Sk(N, X). We

consider the same situation as in Theorem 1.1. Let M denote the con-

ductor of ψ. If the conductor of X is p, we have

Sk(Np, ψχ) = θ ® S°k(Mp, ψχ)d (direct sum)
M d\(N/M)

where S&Mp, ψX)d — {f(dz)\fe S&Mp, ψX)} and the summation ranges over

all positive divisors M of N which are multiples of M and over all positive

divisors d of NjM.

If X is the trivial character, we have Sk(Np, ψX) = Sk(Np, ψ) and

Sk(Np,ψ) = ® © {S°k(M, ψ)d 0 S°(M, Ψ)dp} © ® So

k(Mp,ψ)*
M d\(N/M) M d\(N/M)

(direct sum)

where the summation ranges over the same sets as above. Therefore, using

inductions on levels and Theorem 1.1, we can easily prove the following:

THEOREM 3.1. We use the same notation as in Theorem 1.1. We

assume that X is not trivial, then we have

dimc S°k(Np, ψχ) = dimc S^^^.^.^N, ψ)

We also have

dim c S°k(Np, ψ) + 2 d im c S&N, ψ) = dim c S(°fc/a)(p+i)-(P-i>W Ψ)

+ dimcS(°Λ/2)(J,+1)(iV,ψ) ,

where ψ is an arbitrary character of (Z/NZ)X such that ψ(— 1) = 1.

Combining the above theorem and Hijikata's results in [3], we can

prove identities between dimensions of spaces of cusp forms with respect

to Fuchsian groups which are obtained from split orders of indefinite

division quaternion algebras.

In Theorem 1.1, we assume that k is even. Now we consider the case

that k is odd and k > 3. Let ψ and X be arbitrary characters of (Z/NZ)X

and {ZjpZy respectively satisfying ψx(— 1) = — 1. Let t denote the order

of X. Put K = ((p — ΐ)(t — a))jt with any integer a such that 1 < a < t

and (a, t) = 1. Put
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and

We have to check whether ψ(— 1) = (— l)fcl or not.

LEMMA 3.2. We have

ψ{_ 1 } = ί ( - D f c l = (-D f c 2 if p ΞΞ 1 (mod 4) ,

I - (-l)*i = - (-iy* if p ΞΞ 3 (mod 4) .

Proof. If p = 3 (mod 4), we have hx~ K (mod 2) and k2 = κ (mod 2).

Since χ ( - l ) = (-1)% we have ψ(-ΐ) = - χ ( - l ) = - (-1) ' = - (-l) f c l =

— (—l)fc2. If p = 1 (mod 4), we have Ax = 1 + A: and A2 = 1 + K (mod 2). Since

χ(_l) = (-1)-, we have ψ(-ΐ) = - χ ( - l ) = (-1)1 + Λ = (-l) f c l = (-l) f c 2.

Considering a statement analogous to Theorem 1.1 in the case k is

odd, we have almost no problem i f p Ξ l (mod 4). But, if p ~ 3 (mod 4),

the right hand side of (1.3) is automatically equal to zero, because

dimc Skl(N, ψ) = 0 if ψ(—1) Φ (—I)*1. So we have to define the followings:

let N be a positive integer and k > 2 be an integer. Let X be an arbitrary

Cx-valued character of (Z/NZ)X. We don't assume that χ ( - l ) = (-1)*.

For the triple (k,N,X), we define tv(k,N,X), tβl(k,N,X), te2(k,N,X) and

tδ(k9 N, X) by (2.2) - (2.5). For the definition of tp(k, N, X), we use (2.11).

The definitions of these numbers don't need the condition X(—1) = (—l)fc.

Then we put

(3.1) d(k, N,χ)= Σ ta(k, N, X) .
a=v,el,e2,p.,δ

Hence if X(-ί) = (-l) f e, d(k9 N9 X) coincides with dimc Sk(N, X).

THEOREM 3.3. We suppose k is odd, k > 3 and fX(— 1) = — 1. The

notation being as above, we have

(3.2) d{k, Np, ψα) = d(kί9 N9 ψ) + d(k2, N9 ψ ) .

Proof. In proving Theorem 2.1, we don't use the condition k is even

except for the proof in the case a = e2. Since k is odd, the left hand

side is always equal to zero. If p = 3 (mod 4), we have (—4/p) = — 1, so

the right hand side is equal to zero. We may assume p ~ 1 (mod 4). Then
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we have kx = k2 = 1 + K (mod 2). If K is even, namely X(—1) = 1, the right

hand side is equal to zero. If X(—1) = — 1, we have X(i) + %(—0 = 0.

This completes the proof.

EXAMPLE 3.4. We calculate d(k) = d(k, 1, X°) for any odd k and the

trivial character X°. We have

(3.3)

k-1
12

m
2

m
2

m

1
2

1 if

if

if

1
3

k

k

k

ωk~ι -

ω-

= 6m

= 6m

= 6m

- a

- a

+

+

+

/

1,

3 ,

5 .

Let p be a rational prime such that ] ) Ξ 3 (mod 4) and p > 5. We apply

Theorem 3.3 for dimc Sk(p, X) for an odd k, k > 3 and an arbitrary character

% of (Z\pZY such that %(-l) = - 1. Let t denote the order of X. Then

we have

(3.4) dimc Sk(p, χ) = d ( [ | ( p + 1) - (p - 1 -

When Z(n) = (n/p), we have

§ 4. Proof of Theorem 1.2

We use the same notation as in the introduction. We prove the fol-
lowing lemma.

LEMMA 4.1. Wp gives the isomorphism between Vχ and Vχ.

Proof. By virtue of results of Miyake [7] and Asai [1], Wp gives the

isomorphism between Sk(Np, ψX) and Sk(Np, ψχ). Therefore it is sufficient

to prove that Wp maps Vχ into Vv or Wp maps a suitable basis of Vχ into

Vr As a suitable basis of Vχ9 we can choose following elements:

( i ) ft{z) = Σn=i UnQ71 6 Sk(Np, ψZ) are common eigenfunctions of all
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Hecke operators such that aλ = 1 which are called primitive eigenforms

in Sk(Np, ψX),

(ii) gj(z) are primitive eigenforms in Sk(M, ψχ) for any positive

divisors M of Np such that ψX is defined modulo M9

(iii) gj(dz) for any positive divisors d of NpjM.

By Lemma 3 in [1], Wp maps ft(z) into V r If gά(z) is a primitive eigen-

form in Sk(Mp9 ψX) where M is a positive divisor of N9 for any positive

divisors d of iV/M, we have

Yc
gj(dz) \Wp = d~ mgj(z) I

dOlΓpx, 1

J
ΐpx, dU

[p(Nld)y, p\[θ

Hence we can apply Lemma 3 in [1] to gό{z), so Wp maps gj(dz) into Vv

If gj(z) is a primitive eigenform in Sk(M, ψ) where M is a positive divisor

of N9 X must be the trivial character. Hence we have, for any positive

divisors d of NjM9

\d 0}\px,

0

ΐx, dlΐpd 01

[(Nld)y, p\[θ lj

Since (foi^y n b e l ° n g s to Γ0(Nld), Wp maps gs{dz) into Vv Hence Lemma

4.1 is completely proved.

Let Iζ, denote the completion of K at p and op the closure of o in Kp.

We mainly consider Vx ® Kf and Ft/ ® iΓ, (over K) in this section. It is

clear that Wp is uniquely extended to the 2£,,-linear isomorphism between

Vx ® Kp and Vt ® JK,, SO we also denote this by Wp. We define i^-norms

Nx and N'x on V, ® Kp as follows: for any / = Σ~= 1 αMgn € Vx ® .K,,, αn e £,,

we define iVχ and Nx by

(4.1) iVϊ(/) = supv(αn),
n

and

(4.2) N&f) = Nt(f\Wp) .

Hence by virtue of Proposition 4 of Chap II, § 2 in [10], there exists the

following decomposition
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(4.3) vx®κ9 = V Θ . Θ V ^

of Vx ® Kp into a direct sum of subspaces Vt of dimension 1 such that

and

whenever υt e Vt for 1 < i < dχ where dχ denotes the dimension of Vχ <g> K9

over iζ,. Here we may assume that Vt = Kp υt with vt e Vt and Nχ(Vi) = 1

for 1 < i < dΓ Changing the order of i suitably, we may assume

{N'x(υt) < pr'w for 1 < i < rχ ,
( ' ^ {N'χ(υd>p*^ forrχ<i<dχ.

THEOREM 4.2. The notation being as above, we have

(4.5) rχ = dim c SW2Up+1)^p^.κ){N, ψ) .

Proof. We use the same idea as in the proof of Theorem (3.4) in [4],

so we quote several results from [4]. For any odd Dirichlet character η

modp, let

Σ
m>0
mi>0

c. =

denote the normalized Eisenstein series of type (1, η) on Γ0(p). Then we

have

Γ° -1! _
LP Oj

where C(ω) = 2S-} ω(ά)e2πHa/p) is the Gauss sum.

For each υi9 1 < i < dχ, put

(4.6) ht = ϋXBj,.)^^^-15"^-1-^ .

Then At is written by a l£p-linear sum of elements in Skl(Np9 ψ). Hence

we can define

as in [4].
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Then Tr(hi) is written by a iξ.-linear sum of elements in Skl(N9 ψ).

We shall prove

(4.7) TAhd^ht (modp)

for i, 1 < i < rχ.

For any element / = 2ί=i αreg
w e lζ,[M], we define

N(f) = sup i<αn)
n

Then, in order to prove (4.7), it sufficient to prove

(4.8)

for 1 < i < rΓ It is clear that

ro - i ] \ 4 1

Therefore, using Proposition (1.2) in [4], we have

Hence (4.8) holds for 1 < i < rΓ

Since ht Ξ vt (mod p), we have

Tr(Λ«)Ξi;, (modi))

for 1 < ί < rχ. Hence {vi91 <i < rχ} are contained in Vkl. Since {5t, 1 <

ί < rx} axe linearly independent over F, we have

(4.9) rχ

We apply the same argument to V%. Let

(4.10) u

for 1 < i < dΓ Then {ut, 1 < i < dJ forms a basis of Vi ® Kr For χ, K

changes to p — 1 — K.

Hence we have

for rx + 1 < i < dΓ Therefore we have
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(4.Π) dχ-rχ<dimcSk2(N,ir).

By virtue of Theorem 1.1, we have

(4.12) dχ = dimc Skl(N, ψ) + dimc Sk2(N, ψ) .

Combining (4.9), (4.11) and (4.12), we obtain the proof of Theorem 4.2.

Proof of Theorem 1.2. For each υi9 1 < ί < dχ, there exists an element

ft in Vχ satisfying vt = ft (mod p). As VlfX and V2>χ, we can take the spaces

spanned by {fi9 1 < i < r j and {fi9 rχ + 1 < i < d j respectively over if.

Then the proof of Theorem 4.2 shows that (1.12), (1.13) and (1.14) are true.

§ 5. Proof of Corollary 1.3

We use the same notation as in the proof of Theorem 4.2, except for

dχ and r r We simply write d and r instead of dχ and rΓ Let {υi9 l<i<d}

be the basis of Vχ ® Kr For any positive integer n such that (n, Np) — 1,

we simply denote by T(n) the Hecke operator of degree n acting on

Sk(Np, ψϊ) or Sk,(N, 1). Since T(n) are ϋΓ-linear endomorphisms of Vχ or

Vfc/, T(n) are uniquely extended to ifp-linear endomorphisms of Vχ ® Kp or

yfc/ ® K^ which we also denote by T(ή). Let 6 be a prime such that

Then, for any v = J^=ι a(ή)qn eVχ® Kp, a(n) e Kp, we have

(5.1) υ I T(£) = g {α(^) +

where α(τι/^) = 0 if £ \ n.

Theorem 1.2 implies that, for each υi9 1 < / < r, there exists an element

ft in Vkl ® Kp such that

(5.2) ι;t = U (mod p) .

Then it is clear that {fi91 < i < r} forms a basis of Vkl ® Iζ,. For any

/ = Σ»=i b(n)Qn e v*i ® κ» b(n) e Kp, we have

(5.3) / | T(£) = Σ \b{ni)

Since ^fcl- ! = ^(W(P + D-(P-I-)-I Ξ ^ - I . ^ « = χ(^)^*-i (modp), by (5.1), (5.2) and

(5.3), we have

(5.4) Vi\T(n) ~ ftlTiή) (mod?)

for any i, 1 < i < r and for any positive integers n such that (n, Np) — 1.
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We should remark that Vkl is closed under the action of Tin), but the

space spanned by vt, 1 < i < r may not be closed under the action of any

Tin).

Take suitable constants ct e Kp satisfying

(5.5) [
(U Ci/ N^Ut) = 1 for 1 < i < d .

For any u = ΣZ-i c(n)Qn 6 Vι ® κ» c (") € K>, we have

(5.6) u I T{i) = Σ (c(n^) + ^

Theorem 1.2 implies that for each i, r + 1 < i < d, there exists an element

gt in y t 2 ® Kp such that

(5.7) w4 = ft (mod jj).

For any ^ = Σ ? . i ^(ra)gn e V",, ® Kt, d(ή) e K,, we have

(5.8) g\T(ί) =

Since ^ ί a-' = ŵ»)o«+»-«-> = ^*->./-« = f^χii) (modj)), by (5.6), (5.7) and

(5.8), we have

(5.9) Uι\T(n) = gt\T(n) (modp),

for any i, r + 1 <i < d and for any positive integer n such that (n, Np)

= 1. Let

[fr+i, , vΔ I Tin) = [υu • • •, vd]A(n) ,

(5.10) [ur+i, • • •, ud] I Tin) = K , MJC<Λ) ,

[ft+., , gΔ I Γ(Λ) = [ft*., , gΔD(n),

where A(ri), C(n), D(ή) are d x d — r, d x d — r, d — r x d — r matrices

whose elements are in o r Then (5.9) shows that

(5.11) C(ή) (mod p) = \-^Vr (mod p) .
L D(n) J

In [1], Asai proved that, for any positive integer n such that (re, Np) = 1,

it holds

(5.12) X(ή){Vi I ί*y I Tin) = {u, | Γ(n)} | W, ,

for any i, 1 <ί < d. We should remark that he considered only when
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the level is square free but it is easily shown that his method is applicable

to our case.

Therefore we have

[vr+u • ••,vd\\T(n)\Wp = [υlt , υΛ]A(n)| Wp

= ([v1, ,va]\Wp)A(ή)

Γ--1 0

A(ή)

and

fcrii o
( n ) [ ϋ r + M , υt]\ Wp\T(ή) = X(n)[ur+1, •••,ui] T(n)

= X{ri)[Ui,---,ua]C(n)

:;U 0

Hence we have

A(ή) = X(n)C(n
r"ii 0

. 0 cj1.

so

(5.12)

cr1 0 '

. 0 'ci\

A{n)

cr+ί 0

cd\

where A(ra) = (αo).

Then combining (5.4), (5.9), (5.11) and (5.12) we have

(5.13) tr T(ή) on Vχ = tr r(fi) on Vkl + X(n) tr T(n) on Vfcβ (mod p) .

This completes the proof.
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Remark 5.1. In subsequent papers [6], we shall give another method

to prove these congruences. It is to compute tr T(ri) on Vχ (modp),

tr T(ή) on Vk, (mod p) directly by using Hijikata's explicit trace formulae

for Hecke operators [2], and to compare both hands sides of (5.13).

Remark 5.2. If (5.13) is proved by an another method, we can get

simpler proof of Theorem 1.1 applying (5.13) to the case n — 1.

§6. Supplements to Theorem 1.2

Here we assume that p = 1 (mod 4), k is odd, k > 3 and ψX( — 1) = — 1.

In Theorem 3.3, § 3, we proved certain identities of dimensions of spaces

of cusp forms analogous to Theorem 1.1. Hence it is natural to study a

statement analogous to Theorem 1.2 in this case. We slightly modify the

proof of Theorem 1.2 at following points:

( i ) K must be enlarged to contain V d for all positive divisors d

of Np.

(ii) We consider Sk(Np, ψXωiP~1)/2) instead of Sk(Np, ψχ). Since p ΞΞ 1

(mod 4), we have ω ( ί )"1 ) / 2(- 1) = 1 and ψXωip-1)/2(- 1) = - 1. Hence the

order of Xω(p~1)/2 coincides with that of X. Therefore we have

dimc Sk(Np, ψZω(ί"1)/2) = dimc Sk(Np,

Since ω(p~l)/2 is a real valued character, we have

(iii) Vx should be changed as follows:

Vx = \f{z) = Σ anq
n e Sk(Np, ψXω<p-1)/2)\an e K for all n > l) .

I 71 = 1 J

(iv) Since k is odd, we have

Hence, following the arguments in § 4, § 5, we can prove

THEOREM 6.1. The notation being as above, there is a decomposition

of Vx into a direct sum of subspaces Vίtϊ and V2>x satisfying following

properties:

VlfZ = dimc Skι(N, ψ) ,

V2,χ = dimc Sk2(N, ψ) .
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(6.2) V^χ = Vkl .

(6.3) ( C r o = vk2.
COROLLARY 6.2. For any Hecke operator T(n), with (n, Np) = 1, the

following congruence holds:

/6 4s tr Γ(n) on Sk(Np, ψlω^-l)/2) ΞΞ tr T(n) on Skl(N, ψ)

+ n tr Γ(n) on S,2(iV, ψ) (mod jj) .
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